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Abstract

The False Discovery Rate (FDR) is a commonly used type I error rate in multiple testing problems.

It is defined as the expected False Discovery Proportion (FDP), that is, the expected fraction of

false positives among rejected hypotheses. When the hypotheses are independent, the Benjamini-

Hochberg procedure achieves FDR control at any pre-specified level. By construction, FDR control

offers no guarantee in terms of power, or type II error. A number of alternative procedures have been

developed, including plug-in procedures that aim at gaining power by incorporating an estimate of

the proportion of true null hypotheses.

In this paper, we study the asymptotic behavior of a class of plug-in procedures based on

kernel estimators of the density of the p-values, as the number m of tested hypotheses grows to

infinity. In a setting where the hypotheses tested are independent, we prove that these procedures are

asymptotically more powerful in two respects: (i) a tighter asymptotic FDR control for any target

FDR level and (ii) a broader range of target levels yielding positive asymptotic power. We also show

that this increased asymptotic power comes at the price of slower, non-parametric convergence rates

for the FDP. These rates are of the form m−k/(2k+1), where k is determined by the regularity of the

density of the p-value distribution, or, equivalently, of the test statistics distribution. These results

are applied to one- and two-sided tests statistics for Gaussian and Laplace location models, and for

the Student model.

Keywords: multiple testing, false discovery rate, Benjamini Hochberg’s procedure, power, crit-

icality, plug-in procedures, adaptive control, test statistics distribution, convergence rates, kernel

estimators

1. Introduction

Multiple simultaneous hypothesis testing has become a major issue for high-dimensional data analy-

sis in a variety of fields, including non-parametric estimation by wavelet methods in image analysis,

functional magnetic resonance imaging (fMRI) in medicine, source detection in astronomy, and

DNA microarray or high-throughput sequencing analyses in genomics. Given a set of observations

corresponding either to a null hypothesis or an alternative hypothesis, the goal of multiple testing is

to infer which of them correspond to true alternatives. This requires the definition of risk measures
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Université Paris VII-Denis Diderot and INSERM U900/Institut Curie/Mines ParisTech.
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that are adapted to the large number of tests performed: typically 104 to 106 in genomics. The False

Discovery Rate (FDR) introduced by Benjamini and Hochberg (1995) is one of the most commonly

used and one of the most widely studied such risk measure in large-scale multiple testing prob-

lems. The FDR is defined as the expected proportion of false positives among rejected hypotheses.

A simple procedure called the Benjamini-Hochberg (BH) procedure provides FDR control when

the tested hypotheses are independent (Benjamini and Hochberg, 1995) or follow specific types of

positive dependence (Benjamini and Yekutieli, 2001).

When the hypotheses tested are independent, applying the BH procedure at level α in fact yields

FDR = π0α, where π0 is the unknown fraction of true null hypotheses (Benjamini and Yekutieli,

2001). This has motivated the development of a number of “plug-in” procedures, which consist in

applying the BH procedure at level α/π̂0, where π̂0 is an estimator of π0. A typical example is the

Storey-λ procedure (Storey, 2002; Storey et al., 2004) in which π̂0 is a function of the empirical

cumulative distribution function of the p-values.

In this paper, we consider an asymptotic framework where the number m of tests performed goes

to infinity. When π̂0 converges in probability to π0,∞ ∈ [π0,1) as m →+∞, the corresponding plug-

in procedure is by construction asymptotically more powerful than the BH procedure, while still

providing FDR ≤α. However, as FDR control only implies that the expected FDP is below the target

level, it is of interest to study the fluctuations of the FDP achieved by such plug-in procedures around

their corresponding FDR. This paper studies the influence of the plug-in step on the asymptotic

properties of the corresponding procedure for a particular class of estimators of π0, which may be

written as kernel estimators of the density of the p-value distribution at 1.

2. Background and Notation

In this section, we introduce the multiple testing setting considered in this paper, and define two

central concepts: plug-in procedures and criticality.

2.1 Multiple Testing Setting

We consider a test statistic X distributed as F0 under a null hypothesis H0 and as F1 under an

alternative hypothesis H1. We assume that for a ∈ {0,1}, Fa is continuously differentiable, and

that the corresponding density function, which we denote by fa, is positive. This testing problem

may be formulated in terms of p-values instead of test statistics. The p-value function is defined

as p : x 7→ PH0
(X ≥ x) = 1−F0(x) for one-sided tests and p : x 7→ PH0

(|X | ≥ |x|) for two-sided

tests. As F0 is continuous, the p-values are uniform on [0,1] under H0. For consistency we denote

by G0 the corresponding distribution function, that is, the identity function on [0,1]. Under H1,

the distribution function and density of the p-values are denoted by G1 and g1, respectively. Their

expression as functions of the distribution of the test statistics are recalled in Proposition 1 below

in the case of one- and two-sided p-values. For two-sided p-values, we assume that the distribution

function of the test statistics under H0 is symmetric (around 0):

∀x ∈ R,F0(x)+F0(−x) = 1 . (1)

Assumption (1) is typically satisfied in usual models such as Gaussian or Laplace (double exponen-

tial) models. Under Assumption (1), the two-sided p-value satisfies p(x) = 2(1−F0(|x|)) for any

x ∈ R.
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Proposition 1 (One- and two-sided p-values) For t ∈ [0,1], let q0(t) = F−1
0 (1− t). The distribu-

tion function G1 and the and density function g1 of the p-value under H1 at t satisfy the following:

1. for a one-sided p-value, G1(t) = 1−F1 (q0(t)) and g1(t) = ( f1/ f0)(q0(t));

2. for a two-sided p-value, G1(t) = 1−F1 (q0(t/2))+F1 (−q0(t/2)) and

g1(t) = 1/2(( f1/ f0)(q0(t/2))+( f1/ f0)(−q0(t/2))).

The assumption that f1 is positive entails that g1 is positive as well. We further assume that

G1 is concave. (2)

As g1 is a function of the likelihood ratio f1/ f0 and the non-increasing function q0, Assumption (2)

may be characterized as follows:

Lemma 2 (Concavity and likelihood ratios) 1. For a one-sided p-value, Assumption (2) holds
if and only if the likelihood ratio f1/ f0 is non-decreasing.

2. For a two-sided p-value under Assumption (1), Assumption (2) holds if and only if x 7→
( f1/ f0)(x)+( f1/ f0)(−x) is non-decreasing on R+.

We consider a sequence of independent tests performed as described above and indexed by the

set N∗ of positive integers. We assume that either all of them are one-sided tests, or all of them are

two-sided tests. This sequence of tests is characterized by a sequence (H,p) = (Hi, pi)i∈N∗ , where

for each i ∈ N
∗, pi is a p-value associated to the ith test, and Hi is a binary indicator defined by

Hi =

{
0 if H0 is true for test i

1 if H1 is true for test i
.

We also let m0(m) = ∑m
i=1(1−Hi), and π0,m = m0(m)/m. Following the terminology proposed

by Roquain and Villers (2011), we define the conditional setting as the situation where H is deter-

ministic and p is a sequence of independent random variables such that for i ∈N
∗, pi ∼ GHi . This is

a particular case of the setting originally considered by Benjamini and Hochberg (1995), where no

assumption was made on the distribution of pi when Hi = 1. In the present paper, we consider an

unconditional setting introduced by Efron et al. (2001), which is also known as the “random effects”

setting. Specifically, H is a sequence of random indicators, independently and identically distributed

as B(1−π0), where π0 ∈ (0,1), and conditional on H, p follows the conditional setting, that is, the

p-values satisfy pi|Hi ∼ GHi . This unconditional setting has been widely used in the multiple test-

ing literature, see, for example, Storey (2003); Genovese and Wasserman (2004); Chi (2007a). In

this setting, the p-values are independently, identically distributed as G = π0G0 +(1−π0)G1, and

m0(m) follows the binomial distribution Bin(m,π0).

Remark 3 We are assuming that π0 < 1, which implies that the proportion 1− π0,m of true null
alternatives does not vanish as m → +∞. While this restriction is natural in the unconditional
setting considered in this paper, we note that our results do not apply to the “sparse” situation
where π0,m → 1 as m →+∞.
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As G0 is the identity function, the multiple testing model is entirely characterized by the two

parameters π0 and G1 (or, equivalently, π0 and G), where G1 is itself entirely characterized by F0

and F1, by Proposition 1. The mixture distribution G is concave if and only if Assumption (2) holds.

More generally, we note that making a regularity assumption on G1 (or g1) is equivalent to making

the same regularity assumption on G (or g):

Remark 4 (Differentiability assumptions) Throughout the paper, differentiability assumptions on
the distribution of the p-values near 1 are expressed in terms of g, the (mixture) p-value density. As
g = π0 +(1−π0)g1, we note that they could equally be written in terms of g1, the p-value density
under the alternative hypothesis.

2.2 Type I and II Error Rate Control in Multiple Testing

We define a multiple testing procedure P as a collection of functions (Pα)α∈[0,1] such that for any

α∈ [0,1], Pα takes as input a vector of m p-values, and returns a subset of {1, . . .m} corresponding to

the indices of hypotheses to be rejected. For a given procedure P and a given α ∈ [0,1], the function

Pα will be called “Procedure P at (target) level α”. In this paper, we focus on thresholding-based
multiple testing procedures, for which the rejected hypotheses are those with p-values less than a

threshold. Each possible value for the threshold corresponds to a trade-off between false positives

(type I errors) and false negatives (type II errors). Most risk measures developed for multiple testing

procedures are based on type I errors. We focus on one such measure, the False Discovery Rate

(FDR), which is one of the most widely used error rate in multiple testing. Denoting by Rm be

the total number of rejections of Pα among m hypotheses tested, and by Vm the number of false

rejections, the corresponding False Discovery Proportion is defined as FDPm = Vm/(Rm ∨ 1), and

the False Discovery Rate is the expected FDP, that is:

FDRm = E

[
Vm

Rm ∨1

]
.

A trivial way to control the FDR, or any risk measure only based on type I errors, is to make no

rejection with high probability. Obviously, this is not the best strategy, as it may lead to a high

number of type II errors. The performance of multiple testing procedures may be evaluated through

their power, which is a function of the number of type II errors. Specifically, the power of a multiple

testing procedure at level α is generally defined as the (random) proportion of correct rejections

(true positives) among true alternative hypotheses (see, for example, Chi, 2007a):

Πm =
Rm −Vm

(m−m0(m))∨1
.

Remark 5 All of the quantities defined in this section implicitly depend on the multiple testing
procedure considered, P = (Pα)α∈[0,1]. However, for simplicity, we will write Rm,Vm,FDRm, and

Πm, instead of RPα
m ,V Pα

m ,FDRPα
m , and ΠPα

m whenever not ambiguous.

Remark 6 By definition, the power of a thresholding-based procedure is a non-decreasing func-
tion of its threshold. Therefore, among thresholding-based procedures that yield FDR less than a
prescribed level, maximizing power is equivalent to maximizing the threshold of the procedure.
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2.3 The Benjamini-Hochberg Procedure

Suppose we wish to control the FDR at level α. Let p(1) ≤ . . . ≤ p(m) be the ordered p-values,

and denote by H(i) the null hypothesis corresponding to p(i). Define Îm(α) as the largest index

k ≥ 0 such that p(k) ≤ αk/m. The Benjamini-Hochberg procedure at level α rejects all H(i) such

that i ≤ Îm(α) (if Îm(α) = 0, then no rejection is made). This procedure has been proposed by

Benjamini and Hochberg (1995) in the context of FDR control; Seeger (1968) reported that it had

previously been used by Eklund (1961–1963) in another multiple testing context. When all true

null hypotheses are independent, the BH procedure at level α yields strong FDR control, that is,

it entails FDR ≤ α regardless of the number of true null hypotheses (Benjamini and Hochberg,

1995). The BH procedure also controls the FDR when the p-values satisfy specific forms of positive

dependence, see Benjamini and Yekutieli (2001). Figure 1 illustrates the application of the BH

procedure with α = 0.2 to m = 100 simulated hypotheses, among which 20 are true alternatives.

The left panel illustrates the above definition of the BH procedure. An equivalent definition is that

the procedure rejects all hypotheses with associated p-value is less than τ̂m(α) = αÎm(α)/m. The

Figure 1: Illustrations of the BH procedure on a simulated example with m = 100. Left: sorted

p-values: i/m 7→ p(i). Right: empirical distribution function: t 7→ Ĝm(t).

right panel provides a dual representation of the same information, where the x and y axes have

been swapped. It gives a geometrical interpretation of τ̂m(α) as the largest crossing point between

the line y = x/α and the empirical distribution function of the p-values, defined for t ∈ [0,1] by

Ĝm(t) = ∑m
i=1 1Pi≤t :

τ̂m(α) = sup{t ∈ [0,1],Ĝm(t)≥ t/α} .

2.4 Plug-in Procedures

In our setting where all of the hypotheses tested are independent, the BH procedure at target level α

(henceforth denoted by BH(α) for short) in fact yields FDR control at level π0α exactly (Benjamini
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and Hochberg, 1995; Benjamini and Yekutieli, 2001). This entails that the BH(α′) procedure yields

FDR ≤ α if and only if α′ ≤ α/π0. Therefore, as the threshold of the BH(α) procedure is a non-

decreasing function of α and by Remark 6, the BH(α/π0) procedure is optimal in our setting, in the

sense that it yields maximum power among procedures of the form BH(α′) that control the FDR at

level α. As π0 is unknown, this procedure cannot be implemented; it is generally referred to as the

Oracle BH procedure.

Remark 7 If α ≥ π0, then rejecting all null hypotheses is optimal, as it corresponds to the largest
possible threshold while still maintaining FDR = π0 ≤ α. Therefore, we will assume that α < π0

throughout the paper.

In order to mimic the Oracle procedure, it is natural to apply the BH procedure at level α/π̂0,m,

where π̂0,m ≤ 1 is an estimator of π0 (Benjamini and Hochberg, 2000). Such plug-in procedures

(also known as two-stage adaptive procedures) have the same geometric interpretation as the BH

procedure (see Figure 1) in terms of the largest crossing point, with α/π̂0,m instead of α. Their

rejection threshold can be written as τ̂0
m(α) = τ̂m(α/π̂0,m), that is:

τ̂0
m(α) = sup{t ∈ [0,1],Ĝm(t)≥ π̂0,mt/α} .

Note that τ̂0
m depends on the observations through both Ĝm and π̂0,m. By construction, a plug-in

procedure based on an estimator π̂0,m that converges in probability to π0,∞ ∈ [π0,1) as m → +∞ is

asymptotically more powerful that the original BH procedure.

Adapting a method originally proposed by Schweder and Spjøtvoll (1982), Storey (2002) de-

fined π̂Sto
0,m(λ) = #{i/Pi ≥ λ}/#{i ≥ λ} for λ ∈ (0,1). This estimator is generally referred to as the

Storey-λ estimator. It may also be written as a function of the empirical distribution of the p-values:

π̂Sto
0,m(λ) =

1− Ĝm(λ)

1−λ
. (3)

The rationale for π̂Sto
0,m(λ) is that under Assumption (2), larger p-values are more likely to cor-

respond to true null hypotheses than smaller ones. Moreover, π̂Sto
0,m(λ) converges in probability to

(1−G(λ))/(1−λ), where the limit is greater than π0 as G stochastically dominates the uniform dis-

tribution. Several choices of λ have been proposed, including λ= 1/2 (Storey and Tibshirani, 2003),

a data-driven choice based on the bootstrap (Storey et al., 2004), and λ=α (Blanchard and Roquain,

2009). In our setting, a slightly modified version of the corresponding plug-in BH(α/π̂Sto
0,m(λ)) pro-

cedure where 1/m is added to the numerator in (3) achieves strong FDR control at level α (Storey

et al., 2004). We note that the Storey-λ estimator π̂Sto
0,m(λ) can be viewed as a kernel estimator of the

density g at 1.

Definition 8 (Kernel of order ℓ and kernel estimator of a density at a point)

1. A kernel of order ℓ ∈ N is a function K : R → R such that the functions u 7→ u jK(u) are
integrable for any j = 0 . . . ℓ, and satisfy

∫
R

K = 1, and
∫
R

u jK(u)du = 0 for j = 1 . . . ℓ.

2. The kernel estimator of a density g at x0 based on m independent, identically distributed
observations x1, . . .xm from g is defined by

ĝm(x0) =
1

mh

m

∑
i=1

K

(
xi − x0

h

)
,

where h > 0 is called the bandwidth of the estimator, and K is a kernel.
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By Definition 8, π̂Sto
0,m(λ) is a kernel estimator of the density g at 1 with kernel KSto(t) = 1[−1,0](t)

and bandwidth h = 1−λ. KSto is an asymmetric, rectangular kernel of order 0.

2.5 Criticality and Asymptotic Properties of FDR Controlling Procedures

Upper bounds on the asymptotic number of rejections of FDR controlling procedures have been

identified and characterized by Chi (2007a) and Chi and Tan (2008), who introduced the notion of

critical value of a multiple testing problem and that of critical value of a multiple testing procedure.

Both notions are defined formally below. They are tightly connected, with the important difference

that the former only depends on the multiple testing problem, while the latter depends on both the

multiple testing problem and a specific multiple testing procedure.

Definition 9 (Critical value of a multiple testing problem) The critical value of the multiple test-
ing problem parametrized by π0 and G is defined by

α⋆ = inf
t∈(0,1]

π0t

G(t)
. (4)

Chi and Tan (2008, proof of Proposition 3.2) proved that for any multiple testing procedure, for

α < α⋆, there exists a positive constant c(α) such that almost surely, for m large enough, the events

{Vm/Rm ≤ α} and {Rm ≥ c(α) logm} are incompatible. This restriction is intrinsic to the multiple

testing problem, in the sense that it holds regardless of the considered multiple testing procedure.

Obviously, this is not a limitation when α⋆ = 0. We introduce the following Condition:

α⋆ > 0 . (5)

Whether Condition (5) is satisfied or not only depends on G. However, the value of α⋆ as defined

in (4) depends on both π0 and G. Under Assumption (2) we have α⋆ = limt→0 π0t/G(t) = π0/(π0 +
(1−π0)g1(0)), where g1(0) ∈ [0,+∞] is defined by g1(0) = limt→0 g1(t). By Proposition 1, g1(0)
only depends on the behavior of the test statistics distribution. In particular, under Assumption (2),

Condition (5) is satisfied if and only if the likelihood ratio f1/ f0 is bounded near +∞.

We now introduce the notion of critical value of a multiple testing procedure. Chi (2007a)

defined the critical value of the BH procedure as α⋆
BH = inft∈(0,1] t/G(t). Let us denote by

τ∞(α) = sup{t ∈ [0,1],G(t)≥ t/α} (6)

the rightmost crossing point between G and the line y = x/α. Chi (2007a) has proved the following

result:

Proposition 10 (Asymptotic properties of the BH procedure) For α ∈ [0,1], let τ̂m(α) be the
threshold of the BH(α) procedure, and let τ∞(α) be defined by (6). Let α⋆

BH = inft∈(0,1] t/G(t).
As m →+∞,

1. If α < α⋆
BH , then τ̂m(α)

a.s.→ 0;

2. If α > α⋆
BH , then τ̂m(α)

a.s.→ τ∞(α), where the limit is positive.
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A straightforward consequence of Proposition 10 is that the BH(α) procedure has asymptotically

null power when α < α⋆
BH and positive power when α > α⋆

BH . The following Definition generalizes

the notion of critical value of to a generic multiple testing procedure:

Definition 11 (Critical value of a multiple testing procedure) Let P denote a multiple testing pro-
cedure. The critical value of P is defined by

α⋆
P = sup

{
α ∈ [0,1],ΠPα

m
a.s.−→

m→+∞
0

}
.

The critical value α⋆
P depends on both the procedure P , and the multiple setting. For the BH

procedure, criticality (α < α⋆
BH) corresponds to situations where the target FDR level α is so small

that there is no positive crossing point between G and the line y = x/α. Conversely, when α >
α⋆

BH , there is a positive crossing point between G and the line y = x/α, as illustrated by Figure 1

(right). The almost sure convergence results of Proposition 10 in the case α>α⋆
BH were extended by

Neuvial (2008), in the conditional setting. Specifically, the threshold τ̂m(α) of the BH procedure was

shown to converge in distribution to τ∞(α) at rate m−1/2 as soon as α > α⋆
BH . Neuvial (2008) also

proved that similar central limit theorems hold for a class of thresholding-based FDR controlling

procedures that covers some plug-in procedures, including the Storey-λ procedure: the threshold of

a procedure P of this class converges in distribution to a procedure-specific, positive value at rate

m−1/2 as soon as α > α⋆
P .

Remark 12 (Criticality of a multiple testing problem versus criticality of a procedure) Whether
Condition (5) hols or not only depends on the behavior of the test statistics distribution. However,
this condition is tightly connected to the critical value of FDR controlling procedures. In order
to shed some light on this connection, we note that α⋆ = π0α⋆

BH may be interpreted as the critical
value of the Oracle BH procedure BH(α/π0). Therefore, as the Oracle BH procedure at level α

is the most powerful procedure among thresholding-based procedures that control FDR at level α,
α⋆ is a lower bound on the critical values of these procedures. Specifically, multiple problems for
which Condition (5) is satisfied or not differ in that:

• when Condition (5) is satisfied, all thresholding-based procedures that control FDR have null
asymptotic power in a range of levels containing [0,α⋆);

• when Condition (5) is not satisfied, some procedures (including BH) have positive asymptotic
power for any positive level α.

This paper extends the asymptotic results of Chi (2007a) and Neuvial (2008) to the case of plug-

in procedures of the form BH(α/π̂0,m), where π̂0,m is a kernel estimator of the p-value distribution

g at 1. Specifically, we consider a class of kernel estimators of π0, which includes a modification

of the Storey-λ estimator, where the parameter λ tends to 1 as m → ∞. In Section 3, we prove that

this class of estimators of π0 achieves non-parametric convergence rates of the form m−k/(2k+1)/ηm,

where ηm goes to 0 slowly enough as m →+∞, and k controls the regularity of g at 1. In Section 4,

we characterize the critical value α⋆
0 of plug-in procedures based on such estimators, and prove that

when the target FDR level α is greater than α⋆
0, the convergence rate of these plug-in procedures

is m−k/(2k+1)/ηm, which is slower than the parametric rate achieved by the BH procedure and by

the plug-in procedures studied in Neuvial (2008). In Section 5, these results are applied to one and

two-sided tests in location and Student models. Practical consequences and possible extensions of

this work are discussed in Section 6.
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3. Asymptotic Properties of Non-Parametric Estimators of π0

Let λ ∈ (0,1). The expectation π0 (λ) of the Storey-λ estimator is given by

π0 (λ) = π0 +(1−π0)
1−G1(λ)

1−λ
. (7)

Moreover, as a regular function of the empirical distribution of the p-values, π̂Sto
0,m(λ) has the follow-

ing asymptotic distribution for λ ∈ (0,1) (Genovese and Wasserman, 2004):

√
m
(
π̂Sto

0,m(λ)−π0 (λ)
)
 N

(
0,

G(λ)(1−G(λ))

(1−λ)2

)
.

In our setting, g1 is positive, as noted in Section 2.1. Therefore, we have G1(λ)< 1 for any λ ∈
(0,1), and the bias π0 (λ)−π0 is positive: the Storey-λ estimator achieves a parametric convergence

rate, but it is not a consistent estimator of π0. Under Assumption (2), this bias decreases as λ

increases (by Equation (7)). In order to mimic the Oracle BH(α/π0) procedure, it is therefore natural

to choose λ close to 1. We consider plug-in procedures where π0 is estimated by π̂Sto
0,m(1−hm), with

hm → 0 as m →+∞. As the limit in probability of this estimator is g(1) = π0 +(1−π0)g1(1), it is

consistent if and only if the following “purity” condition, which has been introduced by Genovese

and Wasserman (2004), is met:

g1(1) = 0 (8)

We note that the Storey-λ estimator is not a consistent estimator of π0 even in when Condition (8)

is met. Moreover, Condition (8) is entirely determined by the shape of the test statistics under

the alternative hypothesis. The asymptotic bias and variance of π̂Sto
0,m(1− hm) are characterized by

Proposition 13:

Proposition 13 (Asymptotic bias and variance of π̂Sto
0,m(1−hm)) Let (hm)m∈N be a positive

sequence such that hm → 0.

1. If mhm →+∞ as m →+∞, then
√

mhm
(
π̂Sto

0,m(1−hm)−E
[
π̂Sto

0,m(1−hm)
])
 N (0,g(1)) .

2. Assume that for k ≥ 1, g is k times differentiable at 1, with g(l)(1) = 0 for 1 ≤ l < k. Then

E
[
π̂Sto

0,m(1−hm)
]
−g(1) =

m→+∞

(−1)kg(k)(1)

(k+1)!
hk

m +o
(

hk
m

)
.

Only the bias term in Proposition 13 depends on the regularity k of the distribution near 1: the

asymptotic bias is of order hk
m, while the asymptotic variance of π̂Sto

0,m(1−hm) is of order (mhm)
−1,

regardless of the regularity of the distribution. The bandwidth hm in Proposition 13 realizes a trade-

off between the asymptotic bias and variance of π̂Sto
0,m(1−hm). When the regularity of the distribution

is known, a natural way to resolve this bias/variance trade-off is to calibrate hm such that the Mean

Squared Error (MSE) of the corresponding estimator is asymptotically minimum. This gives rise to

an optimal choice of the bandwidth, which is characterized by the following proposition:
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Proposition 14 (Asymptotic properties of π̂Sto
0,m(1−hm)) Assume that g is k times differentiable at

1 for k ≥ 1, with g(l)(1) = 0 for 1 ≤ l < k.

1. If g(k)(1) 6= 0, then the asymptotically optimal bandwidth for π̂Sto
0,m(1−hm) in terms of MSE is

of order m−1/(2k+1), and the corresponding MSE is of order m−2k/(2k+1).

2. Let ηm be any sequence such that ηm → 0 and mk/(2k+1)ηm →+∞ as m →+∞. Then, letting
hm(k) = m−1/(2k+1)η2

m, we have, as m →+∞:

mk/(2k+1)ηm
(
π̂Sto

0,m(1−hm(k))−g(1)
)
 N (0,g(1)) . (9)

Proposition 14 is proved in Appendix B. The convergence rate in (9) is a typical convergence rate

for non-parametric estimators of a density at a point. However, Proposition 14 cannot be derived

from classical results on kernel estimators such as those obtained in Tsybakov (2009). Indeed, such

results typically require that the order of the kernel matches the regularity k of the density, whereas

the kernel of Storey’s estimator, KSto(t) = 1[−1,0](t), is of order 0. The results that can be obtained

with kernels of order k are summarized by Proposition 15; we refer to Tsybakov (2009) for a proof

of this result.

Proposition 15 (kth order kernel estimator) Assume that for k ≥ 1, g is k times differentiable at 1.
Let ĝk

m(1) be a kernel estimator of g(1) with bandwidth hm, associated with a kth order kernel.

1. The optimal bandwidth for ĝk
m(1) in terms of MSE is of order m−1/(2k+1), and the correspond-

ing MSE is of order m−2k/(2k+1);

2. Let ηm be any sequence such that ηm → 0 and mk/(2k+1)ηm →+∞ as m →+∞. Then letting
hm(k) = m−1/(2k+1)η2

m, we have, as m →+∞:

mk/(2k+1)ηm

(
ĝk

m(1)−g(1)
)
 N (0,g(1)) .

Propositions 14 and 15 show that the convergence rate of kernel estimators of g(1) with asymp-

totically optimal bandwidth directly depends on the regularity k of g at 1. The only difference

between the two propositions is that the assumption that the first k−1 derivatives of g are null at 1

for π̂0,m(1−hm) is not needed for kth order kernel estimators. Importantly, these convergence rates

cannot be improved in our setting, in the sense that m−k/(2k+1) is the minimax rate for the estimation

of a density at a point where its regularity is of order k (Tsybakov, 2009, Chapter 2).

To the best of our knowledge, the only non-parametric estimators of π0 for which convergence

rates have been established in our setting are those proposed by Storey (2002), Swanepoel (1999)

and Hengartner and Stark (1995). We now briefly review asymptotic properties of these estimators

in the context of multiple testing, as stated in Genovese and Wasserman (2004), and show that their

convergence rates can essentially be recovered by Propositions 14 and 15.

Confidence envelopes for the density: Hengartner and Stark (1995) derived a finite sample confi-

dence envelope for a monotone density. Assuming that G is concave and that g is Lipschitz

in a neighborhood of 1, Genovese and Wasserman (2004) obtained an estimator which con-

verged to g(1) at rate (lnm)1/3m−1/3. The same rate of convergence can be achieved by

Proposition 14 or 15 (for ηm = (lnm)−1/3) if we assume that g is differentiable at 1. This is

a slightly stronger assumption than the ones made by Hengartner and Stark (1995), but it still

corresponds to a regularity of order 1.
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Spacings-based estimator: Swanepoel (1999) proposed a two-step estimator of the minimum of

an unknown density based on the distribution of the spacings between observations: first, the

location of the minimum is estimated, and then the density at this point is itself estimated.

Assuming that at the value at which the density g achieves its minimum, g and g(1) are null,

and g(2) is bounded away from 0 and +∞ and Lipschitz, then for any δ > 0, there exists an

estimator converging at rate (lnm)δm−2/5 to the true minimum. The same rate of convergence

can be achieved by Proposition 14 or 15 (for ηm = (lnm)−δ) if one assumes that g is twice

differentiable at 1 (and additionally that g(1)(1) = 0 for Proposition 14). In our setting, the

Lipschitz condition for the second derivative is unnecessary: the minimum of g is necessarily

achieved at 1 because g is non-increasing (under Assumption (2)), so the first step of the

estimation in Swanepoel (1999) may be omitted.

As both estimators are estimators of g(1), the differences in their asymptotic properties are driven by

the differences in the regularity assumptions made for g (or g1) near 1, rather than by their specific

form.

4. Consistency, Criticality and Convergence Rates of Plug-in Procedures

The aim of this section is to derive convergence rates for plug-in procedures based on the estima-

tors π̂0,m of π0 studied in Section 3. Specifically, our goal is to establish central limit theorems

for the threshold τ̂0
m(α) of the plug-in procedure BH(α/π̂0,m) and the associated False Discov-

ery Proportion, which we denote by FDPm(τ̂
0
m(α)). The convergence results obtained by Neuvial

(2008) cover a broad class of FDR controlling procedures, including the BH procedure and plug-in

procedures based on estimators of π0 that depend on the observations only through the empirical

distribution function Ĝm of the p-values (Storey, 2002; Storey et al., 2004; Benjamini et al., 2006).

Although these results were obtained in the conditional setting of Benjamini and Hochberg (1995),

extending them to the unconditional setting considered here is relatively straightforward, because

the proof techniques developed in Neuvial (2008) can be adapted to this setting. For completeness,

the asymptotic properties of the BH procedure and the plug-in procedure based on the Storey-λ

estimator are derived in Appendix C. The problem considered in this section is more challenging,

as the kernel estimators introduced in Section 3 depend on m not only through Ĝm, but also through

the bandwidth of the kernel (for example, hm for π̂Sto
0,m(1−hm)).

Let π̂0,m denote a generic estimator of π0. We assume that π̂0,m converges in probability to

π0,∞ ≤ 1 as m → +∞. We do not assume that π0,∞ = π0. Therefore, π̂0,m may or may not be a

consistent estimator of π0. We recall that the BH(α/π̂0,m) procedure rejects all hypotheses with

p-values smaller than

τ̂0
m(α) = sup

{
t ∈ [0,1],Ĝm(t)≥ π̂0,mt/α

}
.

We now study the behavior of the BH(α/π̂0,m) procedure when π̂0,m converges at a rate rm slower

than the parametric rate m−1/2, that is, m−1/2 = o(rm). We define the asymptotic threshold τ0
∞(α)

corresponding to τ̂0
m(α) as

τ0
∞(α) = sup{t ∈ [0,1],G(t)≥ π0,∞t/α} .

We have τ0
∞(α) = τ∞(α/π0,∞), that is, the asymptotic threshold of the BH procedure defined in

Equation (6) at level α/π0,∞.
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Theorem 16 (Asymptotic properties of plug-in procedures) Let π̂0,m be an estimator of π0 such
that π̂0,m → π0,∞ in probability as m →+∞. Let α⋆

0 = π0,∞α⋆
BH . Then:

1. α⋆
0 is the critical value of the BH(α/π̂0,m) procedure;

2. Further assume that the asymptotic distribution of π̂0,m is given by
√

mhm (π̂0,m −π0,∞) N (0,s2
0)

for some s0, with hm = o(1/ ln lnm) and mhm →+∞ as m→+∞. Then, under Assumption (2),
for any α > α⋆

0,

(a) The asymptotic distribution of the threshold τ̂0
m(α) is given by

√
mhm

(
τ̂0

m(α)− τ0
∞(α)

)
 N

(
0,

(
s0τ0

∞(α)/α

π0,∞/α−g(τ0
∞(α))

)2
)

;

(b) The asymptotic distribution of the FDP achieved by the BH(α/π̂0,m) procedure is given
by

√
mhm

(
FDPm(τ̂

0
m(α))−

π0α

π0,∞

)
 N


0,

(
π0αs0

π2
0,∞

)2

 .

Theorem 16 states that for α > α⋆
0, for any estimator π̂0,m that converges in distribution at a rate

rm slower than the parametric rate m−1/2, the plug-in procedure BH(α/π̂0,m) converges at rate rm

as well. This is a consequence of the fact that rm dominates the fluctuations of Ĝm, which are of

parametric order.

We now state the main result of the paper (Corollary 17), that is, the asymptotic properties of

plug-in procedures associated with the estimators of π0 studied in Section 3, for which s2
0 = g(1).

This result can be derived by combining the results of Theorem 16 with those of Propositions 14

and 15.

Corollary 17 Assume that (2) holds, and that g is k times differentiable at 1 for k ≥ 1. Define
hm(k) = m−1/(2k+1)η2

m, where ηm → 0 and mk/(2k+1)ηm →+∞ as m →+∞. Denote by π̂k
0,m one of

the following two estimators of π0:

• Storey’s estimator π̂Sto
0,m(1− hm(k)); in this case, it is further assumed that g(l)(1) = 0 for

1 ≤ l < k;

• A kernel estimator of g(1) associated with a kth order kernel with bandwidth hm(k).

Then

1. α⋆
0 = g(1)α⋆

BH is the critical value of the BH(α/π̂k
0,m) procedure;

2. For any α > α⋆
0,

(a) The asymptotic distribution of the threshold τ̂0
m(α) is given by

mk/(2k+1)ηm
(
τ̂0

m(α)− τ0
∞(α)

)
 N

(
0,

(
τ0

∞(α)/α

g(1)/α−g(τ0
∞(α))

)2

g(1)

)
;
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(b) The asymptotic distribution of the FDP achieved by the BH(α/π̂0,m) procedure is given
by

mk/(2k+1)ηm

(
FDPm(τ̂

0
m(α))−

π0α

g(1)

)
 N

(
0,

π2
0α2

g(1)3

)
.

We note that unlike the modification of the Storey-λ estimator studied here, the estimators of π0

based on kernels of order k do not require the first k−1 derivatives of g at 1 to be null. Therefore,

the latter are generally preferable to the former. Corollary 17 has the following consequences, which

are also summarized in Table 1:

• Assume that Condition (8) is met. Then the asymptotic threshold of the BH(α/π̂0,m) pro-

cedure is τ∞(α/π0), that is, the asymptotic threshold of the Oracle procedure BH(α/π0). In

particular, the asymptotic FDP achieved by the estimators in Corollary 17 is then exactly
α (and its asymptotic variance is α2/π0), whereas the asymptotic FDP of the original BH

procedure is π0α.

• We have

α⋆ ≤ α⋆
0 ≤ α⋆

Sto(λ) ≤ α⋆
BH .

In models where Condition (5) is not satisfied, all the critical values in (4) are null, implying

that all the corresponding procedures have positive power for any target FDR level. In models

where Condition (5) is satisfied, all the critical values in (4) are positive, and (4) implies that

the range of target FDR values α that yield asymptotically positive power is larger for the

plug-in procedures studied in this paper than for the BH procedure or the Storey-λ procedure.

• We have τ0
∞(α) ≥ τ0,λ

∞ (α) ≥ τ∞(α), where τ0,λ
∞ (α) denotes the asymptotic threshold of the

Storey-λ procedure, which is formally defined and characterized in Appendix C. Therefore,

as the power of a thresholding-based FDR controlling procedure is a non-decreasing function

of its threshold (Remark 6), the asymptotic power of the BH(α/π̂0,m) procedure is greater

than that of both the Storey-λ and the original BH procedures, even in the range α > α⋆
BH

where all of them have positive asymptotic power.

Name π̂0,m FDR/α Rate (Asy. var. of FDP)/ FDR

BH 1 π0 m−1/2 (π0τ∞(α))
−1 −1

Oracle BH π0 1 m−1/2 (τ∞(α/π0))
−1 −1

Storey-λ π̂Sto
0,m(λ) π0/π0 (λ) m−1/2 (π0τ0,λ

∞ (α))−1 +(1−G(λ))−1

Kernel(hm(k)) π̂k
0,m π0/g(1) m−k/(2k+1) g(1)−1

Table 1: Summary of the asymptotic properties of the FDR controlling procedures considered in

this paper, for a target FDR level α greater than the (procedure-specific) critical value.

Note that “Storey-λ” denotes the original procedure with a fixed λ, while our extension

with λ = 1−hm(k) is categorized in the table as a particular case of kernel estimator (last

row). For Storey-λ, we also assume that λ > τ0,λ
∞ (α).

These results characterize the increase in asymptotic power achieved by plug-in procedures based

on kernel estimators of π0. However, this increased asymptotic power comes at the price of a slower
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convergence rate. Specifically, the convergence rate of plug-in procedures is the non-parametric

rate m−k/(2k+1)/ηm (where k controls the regularity of g) for the BH(α/π̂k
0,m) procedure, while the

parametric rate m−1/2 was achieved by the original BH procedure, the Oracle BH procedure, and

the Storey-λ procedure (as proved in Appendix C).

5. Application to Location and Student Models

In Section 4 we proved that the asymptotic behavior of plug-in procedures depends on whether the

target FDR level α is above or below the critical value α⋆
0 characterized by Theorem 16, and by

establishing convergence rates for these procedures when α > α⋆
0. Both the critical value α⋆

0 and the

obtained convergence rates depend on the test statistics distribution. In the present section, these

results are applied to Gaussian and Laplace location models, and to the Student model. We begin

by defining these models (Section 5.1) and studying criticality in each of them (Section 5.2). Then,

we derive convergence rates for plug-in procedures based on the kernel estimators of π0 considered

in Sections 3 and 4, both for two-sided tests (Section 5.3) and one-sided tests (Section 5.4).

5.1 Models for the Test Statistics

In this subsection, we define the location and Student models used throughout Section 5.

5.1.1 LOCATION MODELS

In location models the distribution of the test statistic under H1 is a shift from that of the test statistic

under H0: F1 = F0(· − θ) for some location parameter θ > 0. The most widely studied location

models are the Gaussian and Laplace (double exponential) location models. Both the Gaussian

and the Laplace distribution can be viewed as instances of a more general class of distributions

introduced by Subbotin (1923) and given for γ ≥ 1 by

f γ
0(x) =

1

Cγ
e−|x|γ/γ, with Cγ =

∫ +∞

−∞
e−|x|γ/γdx = 2Γ(1/γ)γ1/γ−1 .

Therefore, the likelihood ratio in the γ-Subbotin location model may be written as

f γ
1

f γ
0

(x) = exp

( |x|γ
γ

− |x−θ|γ
γ

)
. (10)

The Gaussian case corresponds to γ = 2 and the Laplace case to γ = 1. In the Laplace case, the

distribution of the p-values under the alternative can be derived explicitly, see Lemma 22 in Ap-

pendix. We focus on 1 ≤ γ ≤ 2 as this corresponds to situations in which Assumption (2) is satis-

fied. Specifically, for one-sided tests, Assumption (2) holds as soon as γ ≥ 1, because then f γ
1/ f γ

0 is

non-decreasing; for two-sided tests, if additionally γ ≤ 2, then Assumption (2) holds (as proved in

Appendix A, Proposition 23).

5.1.2 STUDENT MODEL

Student’s t distribution is widely used in applications, as it naturally arises when testing equality of

means of Gaussian random variables with unknown variance. In the Student model with parameter

ν > 0, F0 is the (central) t distribution with ν degrees of freedom, and F1 is the non-central t dis-

tribution with ν degrees of freedom and non-centrality parameter θ > 0. The Student model is not
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a location model, as F1 cannot be written as a translation of F0. Following Chi (2007a, Equation

(3.5)), we note that the likelihood ratio of the Student model may be written as

f1

f0

(t) =
+∞

∑
j=0

a j(ν,θ)ψ( j,ν)(t) , (11)

where ψ( j,ν)(t) = (t/
√

t2 +ν) j = sgn(t) j
(
1+ν/t2

)− j/2
for t ∈ R and

a j(ν,θ) = e−θ2/2 Γ((ν+ j+1)/2)

Γ((ν+1)/2)

(
√

2θ) j

j!
.

Remark 18 The sequence a j(ν,θ) is positive, and it is not hard to see that (∑ j a j(ν,θ)) is a con-
vergent series using Stirling’s formula. Therefore, as ψ( j,ν)(t)∈ [−1,1], the dominated convergence
theorem ensures that the right-hand side of Equation (11) is well-defined for any t ∈ R.

Another useful expression for the Student likelihood ratio may be derived from the integral

expression of the density of a non-central t distribution given by Johnson and Welch (1940):

f1

f0

(t) = exp

[
−θ2

2

1

1+ t2

ν

]
Hhν

(
− θt√

ν+t2

)

Hhν(0)
, (12)

where Hhν(z) =
∫ +∞

0
uν

ν!
e−

1
2
(u+z)2

dx. As noted by Chi (2007a, Section 3.1), the likelihood ratio of

Student test statistics is non-decreasing, which implies that Assumption (2) holds for one-sided

tests. It also holds for two-sided tests, as proved in Appendix A, Proposition 26.

The location models and the Student model considered here are parametrized by two parameters:

(i) a non-centrality parameter θ, which encodes a notion of distance between H0 and H1; (ii) a

parameter which controls the (common) tails of the distribution under H0 and H1: γ for the γ-

Subbotin model, and ν for the Student model with ν degrees of freedom.

5.2 Criticality

As the asymptotic behavior of plug-in procedures crucially depends on whether the target FDR level

is above or below the critical value α⋆
0 characterized by Theorem 16, it is of primary importance to

study criticality in the models we are interested in. Noting that α⋆
0 = π0,∞α⋆

BH = π0,∞α⋆/π0, we have

α⋆
0 > 0 if and only if Condition (5) is satisfied, that is, if and only if the likelihood ratio f1/ f0 is

bounded near +∞. In this section, we study Condition (5) in location and Student models.

5.2.1 LOCATION MODELS

In location models, where f1 = f0(·−θ) with θ > 0, the behavior of the likelihood ratio is closely

related to the tail behavior of the distribution of the test statistics: for a given non-centrality param-

eter θ, the heavier the tails, the smaller the difference between f1 and f0. In a γ-Subbotin location

model, Equation (10) yields |1−θ/x|γ ∼ 1− γθ/x as x →+∞. Thus |x|γ
(
1−|1−θ/x|γ

)
∼ γθxγ−1,

and the behavior of the likelihood ratio f γ
1/ f γ

0 is driven by the value of γ, as illustrated by Figure 2

for the Gaussian and Laplace location models with location parameter θ ∈ {1,2}.

If γ > 1, then lim+∞ f γ
1/ f γ

0 = +∞. Therefore, the slope of the cumulative distribution function

of the p-values is infinite at 0, and Condition (5) is not satisfied for the Subbotin model: α⋆ = 0 for
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Figure 2: Distribution functions G for one-sided p-values (black) and two-sided p-values (gray),

in Gaussian location models (left: Condition (5) is not satisfied), and Laplace location

models (right: Condition (5) is satisfied) for π0 =0, 0.5 and 0.75. The location parameter

θ is set to 1 in top panels and 2 in bottom panels. Inserted plot: zoom in the region

p < 2.10−4.

any θ and π0. This situation is illustrated by Figure 2 (left panels) for the Gaussian model (γ = 2).

In such a situation, for any target FDR level α, the asymptotic fraction of rejections by the BH(α)
procedure or by a plug-in procedure of the form BH(α/π̂0,m), where π̂0,m → π0,∞ in probability as

m →+∞, is positive by Lemma 27.

If γ = 1 (Laplace model, as illustrated by Figure 2, right panels), then the likelihood ratio of

the model is f γ
1/ f γ

0(x) = exp(|x|− |x−θ|). It is bounded as x →+∞, with limx→+∞ f γ
1/ f γ

0(x) = eθ.

Therefore, Condition (5) is satisfied for the Laplace location model. Specifically, we have α⋆ =
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π0/(π0 +(1−π0)g1(0)), with g1(0) = eθ for one-sided p-values, and g1(0) = coshθ for two-sided

p-values. Laplace-distributed test statistics appear as a limit situation in terms of criticality: within

the family of γ-Subbotin location models with γ ∈ [1,2], the Laplace model (γ = 1) is the only one

for which Condition (5) is satisfied.

5.2.2 STUDENT MODEL

For the Student model, Equation (12) yields that ( f1/ f0)(t) converges to sν(θ) as t → +∞ and

sν(−θ) as t →−∞, where sν(θ) = Hhν(−θ)/Hhν(0) is positive for any θ. Therefore, Condition (5)

is satisfied for one-sided and two-sided tests in the Student model (this had already been noted by

Chi (2007a) for one-sided tests). Figure 3 gives the distribution function of one- and two-sided

p-values in the Student model with parameters θ ∈ {1,2} and ν ∈ {10,50}, for π0 ∈ {0,0.5,0.75}.

Although criticality is much less obvious than for the Laplace model, the inserted plots which zoom

into a region where the p-values are very small (p < 2.10−4) do suggest for ν = 10 that the slope of

the distribution function has a finite limit at 0 for the Student model. As an illustration, we calculated

that the critical values for one-sided tests in the Student model for π0 = 0.75 for θ ∈ {1,2} are

respectively 0.173 and 0.015 for ν = 10, and 4.10−3 and 7.10−6 for ν = 50.

5.3 Two-Sided Tests

In this section we study consistency and convergence rates for two-sided tests.

5.3.1 CONSISTENCY

Let us first recall that by Proposition 1.2, we have for two-sided tests under a model satisfying

Assumption (1):

g1(t) =
1

2

(
f1

f0

(q0(t/2))+
f1

f0

(−q0(t/2))

)
, (13)

where q0 : t 7→ F−1
0 (1− t) tends to 0 as t → 1/2. A straightforward consequence of (13) is that

g1(1) = ( f1/ f0)(0). As f1 > 0, we have g(1) = π0 +(1−π0)g1(1)> π0. Therefore, Condition (8)

is not met, and the kernel estimators of π0 studied in Section 3 are not consistent for the estimation

of π0. Specifically, we have g1(1) = e−θ2/2 for Gaussian and Student test statistics, and g1(1) = e−θ

for Laplace test statistics.

5.3.2 CONVERGENCE RATES

Another consequence of (13) is that if for k≥ 1 the likelihood ratio f1/ f0 is k times semi-differentiable

at 0, then g is k times (left-)differentiable at 1. In particular, this holds for any k in the γ-Subbotin

location model with γ ∈ [1,2], which covers the Gaussian and Laplace cases. It also holds for

the Student model (as proved in Proposition 25). For these models, Corollary 17 entails that for

any k > 0, if π̂0,m is a kernel estimator of g associated with a kth order kernel with bandwidth

hm(k) = m−1/(2k+1)η2
m (where ηm → 0 and mηm →+∞ as m →+∞), then the corresponding plug-

in procedure BH(α/π̂0,m) converges in distribution at rate m−k/(2k+1)/ηm for any α greater than

α⋆
0 = g(1)α⋆

BH . These results are summarized in the last column of Table 2.

Let us now consider the modification of the Storey-λ estimator introduced in Section 3: π̂0,m =
π̂Sto

0,m(1− hm), with hm → 0 as m → +∞. By Corollary 17, the optimal convergence rate of the
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Figure 3: Distribution functions G for one-sided p-values (black) and two-sided p-values (gray) in

Student models with ν = 50 degrees of freedom (left) and ν = 10 (right). The location

parameter θ is set to 1 in top panels and 2 in bottom panels. Any Student model satisfies

Condition (5). Inserted plots: zoom in the region p < 2.10−4.

BH(α/π̂0,m) procedure is then determined by the order of the first non null derivative of g at 1. In

order to calculate this order, we use the following lemma:

Lemma 19 Under Assumption (1), the density function g1 of two-sided p-values under the alterna-
tive hypothesis satisfies:
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1. If f1/ f0 is semi-differentiable at 0, with left-derivative ℓ− and right-derivative ℓ+, then g(1)1 is
semi-differentiable at 1 and we have:

g(1)1 (1) =−ℓ+− ℓ−
4 f0(0)

. (14)

In particular, g(1)1 (1) = 0 if and only if f1/ f0 is differentiable at 0.

2. If f1/ f0 is twice differentiable at 0, then g(1)1 is twice differentiable at 1 and we have:

g(2)1 (1) =
1

4 f0(0)2

(
f1

f0

)(2)

(0) .

Lemma 19 may be applied to two-sided tests for γ-Subbotin location models, and for the Student

model. For the two-sided Gaussian model, f1/ f0 is C∞ near 0 and ( f1/ f0)
(2)(0) 6= 0. The same

holds for the two-sided Student model, as shown in Appendix A.2 (Proposition 25). For both mod-

els, Lemma 19 entails that g(1)(1) = 0 and g(2)(1) > 0. For two-sided Laplace test statistics, the

likelihood ratio f1/ f0 : t 7→ exp(|t −θ|− |t|) has a singularity at t = 0 but it is semi-differentiable

at 0 (and differentiable on (−∞,θ) \ {0}), with left and right derivatives at 0 given by ℓ− = 0

and ℓ+ = e−θ. Lemma 19 yields that g(1)(1) = −(1− π0)e−θ/2. In particular, letting k = 1 for

the Laplace model and k = 2 for the Gaussian and Student models, Corollary 17 yields that if

π̂0,m = π̂Sto
0,m(1−m−1/(2k+1)η2

m), where ηm → 0, then for any α > α⋆
0 = g(1)α⋆

BH , the FDP of the

BH(α/π̂0,m) procedure converges in distribution at rate m−k/(2k+1)/ηm toward π0α/g(1), where

g(1) = π0 +(1−π0)e−θ2/2 in the Gaussian and Student models, and g(1) = π0 +(1−π0)e−θ/2 in

the Laplace model. These rates are slower than those obtained at the beginning of this section for

kth order kernels because the latter do not require the derivatives of g of order l < k to be null at 1,

which implied that any k > 0 could be chosen (see Table 2 for a comparison).

5.4 One-Sided Tests

In this section we study consistency and convergence rates for one-sided tests.

5.4.1 CONSISTENCY

For one-sided tests, we have g1(t) = ( f1/ f0)(q0(t)). As limt→1 q0(t) =−∞, Condition (8) is met if

and only if the likelihood ratio ( f1/ f0)(t) tends to 0 as t →−∞. For the Student model, f1/ f0 tends

to sν(−θ)> 0 as t →−∞. This implies that Condition (8) is not satisfied in that model: π0 cannot be

consistently estimated using a consistent estimator of g(1), because g(1) = π0 +(1−π0)e−θ > π0.

For location models, we begin by establishing a connection between purity and criticality (Proposi-

tion 21), which is a consequence of the following symmetry property:

Lemma 20 (Likelihood ratios in symmetric location models) Consider a location model in which
the test statistics have densities f0 under H0, and f1 = f0(·−θ) under H1 for some θ 6= 0. Under
Assumption (1), we have

lim
−∞

f0

f1

= lim
+∞

f1

f0

.

For one-sided tests in symmetric location models, Lemma 20 implies the following result:
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Proposition 21 (Purity and criticality) Let g1 be the density of one-sided p-values under the al-
ternative hypothesis, and α⋆ the critical value of the multiple testing problem. Under Assumption (1)

and Assumption (2),

1. Condition (5) and Condition (8) are complementary events, in the sense that α⋆ = 0 if and
only if g1(1) = 0;

2. If lim+∞ f1/ f0 is finite, then α⋆ = π0/(π0 +(1−π0)g1(0)) and g(1) = π0+(1−π0)g1(1) are
connected by g1(0)g1(1) = 1.

Proposition 21 implies that contrary to two-sided location models, in which we always have g1(1)>
0, consistency may be achieved in one-sided location models using kernel estimators such as those

considered here, depending on model parameters. In particular, there is no criticality in the one-

sided Gaussian model, implying that Condition (8) is satisfied in that model: we have g(1) = π0,

and π0 can be consistently estimated using the kernel estimators of g(1) introduced in Section 3. In

the one-sided Laplace model, Condition (5) is satisfied, implying that Condition (8) is not satisfied

in that model: π0 cannot be consistently estimated using these kernel estimators of g(1).

5.4.2 CONVERGENCE RATES

For the one-sided Student model, Proposition 25 entails that g1 is C∞, and all its derivatives or order

greater than 1 are null at 1. Therefore, any k > 0, if π̂k
0,m denotes any of the two estimators studied

in Corollary 17 for a kth order kernel with bandwidth hm(k) = m−1/(2k+1)η2
m (where ηm → 0 and

mηm →+∞ as m →+∞), then the corresponding plug-in procedure BH(α/π̂k
0,m) converges in dis-

tribution at rate m−k/(2k+1)/ηm for any α greater than α⋆
0 = g(1)α⋆

BH . These results are summarized

in the first row of Table 2.

For the one-sided Laplace model, the distribution of the p-values satisfies G1(t) = 1−(1−t)e−θ

for t ≥ 1/2, see Lemma 22 in Appendix A. Therefore, for t ≥ 1/2, (1−G(t))/(1− t) is constant,

equal to g(1) = π0 +(1−π0)e−θ, as illustrated by the solid curves in the right panels of Figure 2.

Therefore, for any fixed λ ≥ 1/2, the Storey-λ estimator is an unbiased estimator of g(1), which

converges to g(1) at rate m−1/2. The same property holds for any kernel estimator of g(1) with a

fixed bandwidth. These results are summarized in the third row of Table 2.

In the Gaussian model however, the regularity of g1 near 1 is poor for one-sided tests: we have

g1(t) = exp

(
−θ2

2
−θΦ−1(t)

)
,

where Φ(= F0) denotes the standard Gaussian distribution function. As h → 0, Φ−1(1 − h) ≤√
2ln(1/h), implying that

g1(1−h)≥ exp

(
−θ2

2
−θ
√

2ln(1/h)

)
.

Therefore, g1 is not differentiable at 1, and the convergence rates of the kernel estimators of π0

studied in Section 3 are slower than m−1/3 in our setting. These results are summarized in the

second row of Table 2.

The difference between one- and two-sided tests in the Gaussian location model is illustrated

by Figure 4 for θ = 1, that is when testing N (0,1) against N (1,1). The density of two-sided p-

values has a positive limit at 1, and its derivative at 1 is 0, making it possible to estimate g(1) =
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Convergence rates

Model lim0 1/g1 g1(1) π̂Sto
0,m(1−hm(k)) ĝk

m(1)/ηm

1-sided Student sν(θ) sν(−θ) ≪ m−k/(2k+1)/ηm ≪ m−k/(2k+1)/ηm

1-sided Gaussian 0 0 ≫ m−1/3 ≫ m−1/3

1-sided Laplace e−θ e−θ m−1/2 m−1/2

2-sided Student (sν(θ)+ sν(−θ))/2 e−θ2/2 m−2/5/ηm ≪ m−k/(2k+1)/ηm

2-sided Gaussian 0 e−θ2/2 m−2/5/ηm ≪ m−k/(2k+1)/ηm

2-sided Laplace coshθ e−θ m−1/3/ηm ≪ m−k/(2k+1)/ηm

Table 2: Properties of one- and two-sided test statistics distributions in Student, Gaussian, and

Laplace models, and convergence rates of the kernel estimators studied. When the rate

depends on k, the value of k may be chosen arbitrarily large. ηm is a sequence such that

ηm → 0 and mηm →+∞ as m →+∞.

π0 +(1−π0)e−θ2/2 at rate m−2/5, by Corollary 17. Conversely, the density of one-sided p-values

tends to 0 at 1, but is not differentiable: the true π0 can be estimated consistently, but the convergence

rate is slower.

6. Concluding Remarks

This paper studies asymptotic properties of a family of plug-in procedures based on the BH pro-

cedure. When compared to the BH procedure or to the Storey-λ procedure, the results for general

models obtained in Section 4 show that incorporating the proposed estimators of π0 into the BH pro-

cedure asymptotically yields (i) tighter FDR control (or, equivalently, greater power) and (ii) smaller

critical values, thereby increasing the range of situations in which the resulting procedure has pos-

itive asymptotic power. These improvements come at the price of a reduction in the convergence

rate from the parametric rate m−1/2 to a non-parametric rate m−k/(2k+1), where k is connected to the

order of differentiability of the test statistics distribution. As the results obtained for the proposed

modification of the Storey-λ estimator π̂Sto
0,m(1−hm) require stronger conditions (null derivatives of

g1) than for kernel estimators with a kernel of order k, we conclude that it is generally better to use

the latter class of estimators.

Our application of these results to specific models for the test statistics sheds some light on the

influence of the test statistics distribution on convergence rates of plug-in procedures:

• When the test statistics distribution is C∞ (which is the case for two-sided Gaussian test statis-

tics, and for Laplace and Student tests statistics), the obtained convergence rates are slower

than the parametric rate, but may be arbitrarily close to it by choosing a kernel of sufficiently

high order. The resulting estimators are not consistent estimators of π0, although the bias

decreases as the non-centrality parameter θ increases.

• When the regularity of the test statistics distribution is poor (such as in the one-sided Gaussian

model), the convergence rate of the FDP achieved by the plug-in procedures studied in this

paper is slower. The plug-in procedures studied are still asymptotically more powerful than

the BH procedure or the Storey-λ procedure, but the FDP actually achieved by the plug-in

procedures studied for a given m may be far from the target FDR level.
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N (0,1) vs N (1,1)

Figure 4: Density of one- and two-sided p-values under the alternative hypothesis for the location

model N (0,1) versus N (1,1). Inserted plot: zoom in the region [0.9,1], which is high-

lighted by a black box in the main plot.

Obtaining more precise conclusions in the context of a specific data set or application exceeds

the scope of the present paper, as it would require extending the obtained results to more realistic

settings such as the ones that are now described.

6.1 Extensions of the Multiple Testing Setting Considered

An interesting research direction would be to extend the multiple testing setting considered here to

more realistic assumptions. A typical example of application is the case of differential expression

analyses in genomics, which aim at identifying those genes whose expression level differs between

two known populations of samples. First, we have assumed that all null hypotheses are independent,

and that all true alternative hypotheses follow the same distribution. The independence assumption

is not realistic, as genes are known to interact with each other, in particular through transcriptional

regulation networks. Moreover, the degree of differential expression needs not be identical for all

genes under H1. As for the results on criticality that have been used in this paper, the proof given
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in Chi (2007a) essentially relies on the assumption that the p-values are independently and identi-

cally distributed. Therefore, it seems that these results could be extended to composite distributions

under H1, provided that the corresponding marginal distributions are still independently and identi-

cally distributed. Extending these results to settings where the independence assumption is relaxed

seems a more challenging question. As for the convergence results established in Section 4, their

proofs rely on the formalism laid down by Neuvial (2008). Therefore, these results could be ex-

tended to other dependency assumptions, or to composite distributions under H1 provided that the

convergence in distribution of the empirical distribution functions (Ĝ0,m,Ĝ1,m) holds under these

assumptions. In that spirit, the results of Neuvial (2008) have been extended to an equi-correlated

Gaussian model (Delattre and Roquain, 2011) and to a more general Gaussian model where the

covariance matrix is supposed to be close enough to the identity as the number of tests grows to

infinity (Delattre and Roquain, 2012).

Second, we have shown that the asymptotic properties of FDR controlling procedures are driven

by the shape and regularity of the test statistics distribution. In practice, the test statistics distribu-

tion depends on the size of the sample used to generate them. In differential expression analyses,

a natural test statistic is Student’s t, whose distribution depends on sample size through both the

number of degrees of freedom ν and a non-centrality parameter θ. In the spirit of the results of Chi

(2007b) on the influence of sample size on criticality, it would be interesting to study the conver-

gence rates of plug-in procedures when both the sample size and the number of hypotheses tested

grow to infinity.

6.2 Alternative Strategies to Estimate π0

The estimators of π0 considered in this paper are kernel estimators of the density g at 1. Therefore,

they achieve non-parametric convergence rates of the form m−k/(2k+1)/ηm, where k controls the

regularity of g near 1 and ηm → 0 slowly enough. An interesting open question is whether these

non-parametric rates may be improved. Other strategies for estimating π0 may be considered to

achieve faster convergence rates, including the following two:

• One-stage adaptive procedures as proposed by Blanchard and Roquain (2009) and Finner

et al. (2009) allow more powerful FDR control than the standard BH procedure without ex-

plicitly incorporating an estimate of π0: they are not plug-in procedures.

• Jin (2008) proposed an estimator of π0 based on the Fourier transform of the empirical char-

acteristic function of the Z-scores associated to the p-values. This estimator does not focus on

the behavior of the density near 1, and might not suffer from the same limitations as the esti-

mators studied here. This estimator was shown to be consistent for the estimation of π0 when

the Z-scores follow a Gaussian location mixture, but no convergence rates were established.

In a general semi-parametric framework where g1 is not necessarily decreasing, and its regularity

is not specified, Nguyen and Matias (2013) have recently proved that if the Lebesgue measure of

the set on which g1 achieves its minimum is null, then no consistent estimator of mint g(t) with a

finite asymptotic variance can reach the parametric convergence rate m−1/2. In our setting where

g1 is decreasing, the measure of the set on which g1 is minimum is indeed null, except if g1 is

constant on an interval of the form [t0,1]. For one-sided tests where g1(t) = ( f1/ f0)(F
−1
0 (1− t)),

this extreme situation arises if and only if the likelihood ratio is constant on an interval of the form

[x0,+∞). Among all models studied in Section 5, the only case in which this occurs is the one-sided
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Laplace model, where ( f1/ f0)(x) = exp(|x|−|x−θ|) = eθ for x ≥ θ > 0. The kernel estimators that

we have studied here do reach the rate m−1/2 in this case.

In the more common situation in which the measure of the set on which g1 vanishes (or achieves

its minimum) is null, the above negative result of Nguyen and Matias (2013) suggests that there

is little room for improving on the non-parametric convergence rates obtained in Propositions 14

and 15. We conjecture that it is not possible for consistent estimators of g(1) to reach a parametric

convergence rate in this setting.
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Appendix A. Calculations in Specific Models

In this section we perform calculations in location and Student models.

A.1 Location Models

Lemma 22 gives the distribution of the p-value under the alternative hypothesis for one-sided tests

in the Laplace model. The proof is straightforward, so it is omitted.

Lemma 22 (One-sided Laplace location model) Assume that the probability distribution function
of the test statistics is f0 : x 7→ 1

2
e−|x| under the null hypothesis, and f1 : x 7→ 1

2
e−|x−θ| under the

alternative, with θ > 0 (one-sided test). Then

1. The one-sided p-value function is

1−F0(x) =

{
1
2
e(−|x|) if x ≥ 0

1− 1
2
e(−|x|) if x < 0

;

2. The inverse one-sided p-value function is

(1−F0)
−1 (t) =

{
ln
(

1
2t

)
if 0 ≤ t ≤ 1

2

ln(2(1− t)) if 1
2
< t < 1

;

3. The cdf of one-sided p-values under H1 is

G1(t) =





teθ if 0 ≤ t ≤ e−θ

2

1− 1
4t e−θ if e−θ

2
≤ t ≤ 1

2

1− (1− t)e−θ if t ≥ 1
2

;
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4. The probability distribution function of one-sided p-values under H1 is

g1(t) =





eθ if 0 ≤ t ≤ e−θ

2
1

4t2 e−θ if e−θ

2
≤ t ≤ 1

2

e−θ if t ≥ 1
2

.

Proposition 23 (Concavity in two-sided γ-Subbotin models) If the test statistics follow a γ-Subbotin
distribution with γ ∈ [1,2], then the distribution function of the two-sided p-values under the alter-
native G1 is concave.

Proof [Proof of Proposition 23] Assumption (1) holds for Subbotin models. By Lemma 2, we

need to prove that the likelihood ratio f γ
1/ f γ

0 of the γ-Subbotin model with γ is such that h : x 7→
( f γ

1/ f γ
0)(x)+ ( f γ

1/ f γ
0)(−x) is non-decreasing on R+. The function h is differentiable on (0,+∞) \

{θ}, and its derivative is given by

h′(x) =

(
f γ
1

f γ
0

)′
(x)−

(
f γ
1

f γ
0

)′
(−x) ,

where (
f γ
1

f γ
0

)′
(y) =

(
sgn(y)|y|γ−1 − sgn(y−θ) |y−θ|γ−1

) f γ
1

f γ
0

(y) (15)

for any y ∈ R\{0,θ}. Let x > 0 such that x 6= θ, we are going to prove that h′(x)≥ 0. As f γ
1/ f γ

0 is

non-decreasing, both
(

f γ
1/ f γ

0

)′
(x) and

(
f γ
1/ f γ

0

)′
(−x) are non-negative. If

(
f γ
1/ f γ

0

)′
(−x) = 0, then

h′(x)≥ 0 as desired. From now on, we assume that
(

f γ
1/ f γ

0

)′
(−x) is positive. As θ > 0, (15) entails

that (
f γ
1/ f γ

0

)′
(x)

(
f γ
1/ f γ

0

)′
(−x)

=
xγ−1 − sgn(x−θ) |x−θ|γ−1

(x+θ)γ−1 − xγ−1

f1(x)γ

f1(−x)γ
,

where f1(x)γ > f1(−x)γ because −|x−θ|+ |x+θ|> 0. As
(

f γ
1/ f γ

0

)′
(−x)> 0, it is enough to show

that

xγ−1 − sgn(x−θ) |x−θ|γ−1 ≥ (x+θ)γ−1 − xγ−1 (16)

in order to prove that h′(x) ≥ 0. By the concavity of x 7→ xγ−1 on R+ for 1 ≤ γ ≤ 2, φ : x 7→
θ−1(xγ−1 − (x− θ)γ−1) is non-increasing on [θ,+∞]. Therefore, if x > θ we have φ(x) ≥ φ(x+ θ)
and (16) holds. If x < θ, then noting that for any a,b > 0 and ζ ∈ [0,1], aζ+bζ ≥ (a+b)ζ, we have,

for 1 ≤ γ ≤ 2, xγ−1 +(θ− x)γ−1 ≥ θγ−1 ≥ (x+θ)γ−1 − xγ−1, and (16) holds as well.

A.2 Student Model

In this section, we use the function series expansion of the Student likelihood ratio given in (11) to

study the regularity of this likelihood ratio.

1447



NEUVIAL

Lemma 24 (Derivative of the Student likelihood ratio) Let ν ∈ N
∗ and θ > 0. The likelihood ra-

tio f1/ f0 of the Student model with ν degrees of freedom and non-centrality parameter θ is C1 on
R, and for any t ∈ R,

(
f1

f0

)′
(t) = ν(ν+ t2)−3/2

+∞

∑
j=0

a1
j(ν,θ)ψ( j,ν)(t) , (17)

where a1
j(ν,θ) = ( j+1)a j+1(ν,θ) is such that (∑ j a1

j(ν,θ)) converges absolutely.

Proof [Proof of Lemma 24] As (∑ j a j(ν,θ)) converges absolutely and as ψ( j,ν) is differentiable on

R for any j ≥ 0 and bounded (by [-1,1]), the dominated convergence theorem ensures that f1/ f0 is

differentiable on R and that its derivative is given by:

(
f1

f0

)′
(t) =

+∞

∑
j=1

a j(ν,θ)ψ
′
( j,ν)(t) .

For t 6= 0, we have log
(
sgn(t) jψ( j,ν)(t)

)
= − j/2

(
log(1+ν/t2)

)
, whose derivative is given by

jν/(νt + t3), so that

ψ′
( j,ν)(t) = ψ( j,ν)(t)

jν

t(ν+ t2)
.

As ψ( j,ν)(t) ∼
t→0

(t/
√

ν) j, we have ψ( j,ν)(0) = 0, ψ′
( j,ν)(0) = 0, and ψ′

( j,ν) is continuous at 0. Equa-

tion (17) follows by noting that ψ( j+1,ν)(t)/ψ( j,ν)(t) = t/
√

t2 +ν, and that (∑ j a1
j(ν,θ)) converges

absolutely by Stirling’s formula.

Lemma 24 entails the following result:

Proposition 25 (Regularity of the Student likelihood ratio) Let ν∈N
∗ and θ> 0. The likelihood

ratio f1/ f0 of the Student model with ν degrees of freedom and non-centrality parameter θ is has
the following properties:

1. f1/ f0 is C∞ on R;

2. For any k ∈ N
∗, we have ( f1/ f0)

(k) (t)→ 0 as |t| →+∞;

3. ( f1/ f0)
(2)(0) 6= 0.

Proof [Proof of Proposition 25]

1. By (24), the function series in ( f1/ f0)
′ has the same form as f1/ f0; therefore, the result easily

follows by induction.

2. By (24), Leibniz formula entails that the successive derivatives of f1/ f0 are linear com-

binations of products of function series of the same form as f1/ f0 by derivatives of t 7→
(ν+ t2)−3/2. The result follows by the dominated convergence theorem, as all the derivatives

of t 7→ (ν+ t2)−3/2 tend to 0 as |t| →+∞;

3. The result follows by differentiating (17) at 0.

1448



ASYMPTOTICS OF KERNEL-BASED ADAPTIVE FDR CONTROLLING PROCEDURES

Proposition 26 (Concavity in the two-sided Student model) The distribution function G1 of two-
sided p-values in the Student model satisfies (2).

Proof [Proof of Proposition 26] By Lemma 2, we need to prove that the likelihood ratio f1/ f0 of the

Student model is such that t 7→ ( f1/ f0)(t)+ ( f1/ f0)(−t) is non-decreasing. Equation (17) yields

for t ∈ R

(
f1

f0

)′
(t)+

(
f1

f0

)′
(−t) = ν(ν+ t2)−3/2

+∞

∑
j=0

a1
j(ν,θ)

(
ψ( j,ν)(t)−ψ( j,ν)(−t)

)
, (18)

with ψ( j,ν)(t)− ψ( j,ν)(−t) = (1 − (−1) j)(t/
√

ν+ t2)− j. Therefore, as a1
j(ν,θ) > 0, (18) yields

( f1/ f0)
′(t)+( f1/ f0)

′(−t)≥ 0, which concludes the proof.

Appendix B. Asymptotics of a Modification of the Storey-λ Estimator

This section gathers the proofs of the asymptotic properties of the estimator π̂Sto
0,m(1− hm) stated in

Section 3.

Proof [Proof of Proposition 13]

1. We demonstrate that π̂Sto
0,m(1−hm) may be written as a sum of m independent random variables

that satisfy the Lindeberg-Feller conditions for the Central Limit Theorem (Pollard, 1984).

Let Zm
i = 1Pi≥1−hm , where the Pi are the p-values. Zm

i follows a Bernoulli distribution with

parameter 1−G(1−hm). Letting

Y m
i =

Zm
i −E [Zm

i ]√
mhm

,

we have ∑m
i=1Y m

i =
√

mhm

(
π̂Sto

0,m(1−hm)−E

[
π̂Sto

0,m(1−hm)
])

. The (Y m
i )1≤i≤m are centered,

independent random variables, with VarY m
i =VarZm

i /(mhm)=G(1−hm)(1−G(1−hm))/(mhm),
which is equivalent to g(1)/m as m →+∞. Therefore,

lim
m→+∞

m

∑
i=1

E
[
(Y m

i )2
]
= g(1) .

Finally we prove that for any ε > 0,

lim
m→+∞

m

∑
i=1

E

[
(Y m

i )21|Y m
i |>ε

]
= 0 .
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As Zm
i ∈ {0,1} and E [Zm

i ] ∈ [0,1], we have (Y m
i )2 ≤ 1/(mhm), and

m

∑
i=1

E

[
(Y m

i )21|Y m
i |>ε

]
≤ 1

hm
E

[
1|Y m

1 |>ε

]

=
1

hm
P(|Y m

1 |> ε)

≤ 1

hm

VarY m
1

ε2

by Chebycheff’s inequality. As mhm →+∞ and VarY m
1 ∼ g(1)/m as m →+∞, the above sum

therefore goes to 0 as mhm → +∞. The Lindeberg-Feller conditions for the Central Limit

Theorem are thus fulfilled, and we have

m

∑
i=1

Y m
i  N (0,g(1)) ,

which concludes the proof.

2. As G(λ) = π0λ+(1−π0)G1(λ), we have, for any λ < 1,

1−G(λ)

1−λ
= π0 +(1−π0)

1−G1(λ)

1−λ
.

Therefore, the bias is given by

E
[
π̂Sto

0,m(λ)
]
−π0 = (1−π0)

1−G1(λ)

1−λ
.

A Taylor expansion as λ → 1 yields

1−G1(λ) =
k

∑
l=0

(−1)lg(l)1 (1)

(l +1)!
(1−λ)l+1 +o

(
(1−λ)l+1

)

= (1−λ)g1(1)+
(−1)kg(k)1 (1)

(k+1)!
(1−λ)k+1 +o

(
(1−λ)k+1

)

as g(l)1 (1) = (1−π0)
−1g(l)(1) = 0 for 1 ≤ l < k. Therefore, if hm → 0 as m →+∞, we have

E
[
π̂Sto

0,m(1−hm)
]
−g(1) = (1−π0)

(−1)kg(k)1 (1)

(k+1)!
hk

m +o
(

hk
m

)
,

which concludes the proof, as (1−π0)g
(k)
1 (1) = g(k)(1).

Proof [Proof of Proposition 14] By Proposition 13, the asymptotic variance of π̂0,m(1−hm) is equiv-

alent to g(1)/(mhm), and the bias is of order hk
m. The optimal bandwidth is obtained for hm propor-

tional to m−1/(2k+1), because this choice balances variance and squared bias. The proportionality

constant is an explicit function of k, π0, g1(1), and g(k)1 (1). By definition, the MSE that corresponds
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to this optimal choice is twice the corresponding squared bias, that is, of order m−2k/(2k+1), which

completes the proof of (1). To prove (2), we note that

√
mhm (π̂0,m −g(1)) =

√
mhm (π̂0,m −E [π̂0,m])+

√
mhm (E [π̂0,m]−g(1)) ,

where π̂0,m denotes π̂0,m(1−hm) to alleviate notation. The first term (variance) converges in distri-

bution to N (0,g(1)) by Proposition 13 (1) as soon as
√

mhm → +∞. The second term (bias) is of

the order of
√

mhmhk
m =

√
mh2k+1

m by Proposition 13 (2). Taking hm(k) = h⋆m(k)η
2
m, where ηm → 0,

we have mh2k+1
m → 0, which ensures that the bias term converges in probability to 0.

Appendix C. Extension of Neuvial (2008) to the Unconditional Setting

In this section, we show that the results obtained by Neuvial (2008) in the original (conditional)

setting of Benjamini and Hochberg (1995) also hold in the unconditional setting considered here,

at the price of an additional term in the asymptotic variance due to the fluctuations of the random

variable π0,m. We start by stating a lemma which provides a lower bound on the critical value of

plug-in procedures. It is is a consequence of Proposition 10(1).

Lemma 27 Let αm be a sequence of (possibly data-dependent) levels that converges in probability
to α∞ ∈ (0,1) as m → +∞. If α∞ < α⋆

BH , then the threshold τ̂m(αm) of the BH(αm) procedure
converges in probability to 0 as m →+∞. If the convergence of αm to α∞ holds almost surely, then
the convergence of τ̂m(αm) to 0 holds almost surely as well.

Proof [Proof of Lemma 27] Assume that αm converges to α∞ in probability, with α∞ < α⋆
BH . Let

ε > 0, we are going to show that there exists an integer N > 0 such that for a large enough m, the

number of rejections of the BH(αm) procedure is less than N with probability greater than 1−ε. Let

ᾱ = (α∞ +α⋆
BH)/2. As αm

P→ α∞ < ᾱ, there exists an integer M such that for any m ≥ M, αm ≤ ᾱ

with probability greater than 1− ε/2. As ᾱ < α⋆
BH , Proposition 10(1) entails that the number of

rejections by the BH(ᾱ) procedure is bounded in probability as m →+∞; that is, there exist two in-

tegers N and M′ such that for m ≥ M′, the number of rejections of the BH(ᾱ) procedure is less than

N with probability greater that 1− ε/2. Thus, for any m ≥ max(M,M′), the number of rejections of

the BH(αm) procedure is less than N with probability greater that 1− ε. The proof for the almost

sure convergence in the case when αm converges to α∞ almost surely is similar.

We follow the proof technique introduced by Neuvial (2008), by writing the empirical threshold

of a given FDR controlling procedure (and its associated FDP) as the result of the application of

a threshold function of the empirical distribution of the observed p-values. As the regularity of

the threshold functions involved has already been established by Neuvial (2008), the result is a

consequence of the fact that the p-value distributions under the null and the alternative hypotheses

(as defined below) satisfy Donsker’s theorem in the current unconditional setting. This Donsker’s

theorem has been established by Genovese and Wasserman (2004, Theorem 4.1). For a ∈ {0,1} and

t ∈ [0,1], we let Γ̂a,m(t) = m−1 ∑m
i=1 1Ha true and Pi≤t .

Proposition 28 (Genovese and Wasserman 2004) As m →+∞, we have:
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1.
√

m

((
Γ̂0,m(t)
Γ̂1,m(t)

)
−
(

π0t
(1−π0)g1(t)

))
 

(
W0

W1

)
,

where (W0,W1) is a two-dimensional, centered Gaussian process with covariance function
γ(s, t) defined for any (s, t) ∈ [0,1]2 by

γ(s, t) =

(
π0s∧ t −π2

0st −π0s(1−π0)G1(t)
−π0t(1−π0)G1(s) (1−π0)G1(s∧ t)− (1−π0)

2G1(s)G1(t)

)
;

2. √
m
(
Ĝm −G

)
 W ,

where W
(d)
= W0+W1 is a one-dimensional, centered Gaussian process with covariance func-

tion (s, t) 7→ G(s∧ t)−G(s)G(t).

Note that Γ̂0,m = π0,mĜ0,m and Γ̂1,m = (1− π0,m)Ĝ1,m, where (Ĝ0,m,Ĝ1,m) are the empirical

distribution functions of the p-values under H0 and H1, respectively. The results of Neuvial (2008)

have been obtained by directly considering the convergence of the process (Ĝ0,m,Ĝ1,m) instead of

(Γ̂0,m, Γ̂1,m), because π0,m was deterministic in the conditional setting (see Neuvial 2009, Theorem

3.1). The results established in Neuvial (2008) (in particular Theorem 3.2) can be translated to

the unconditional setting just by replacing the processes π0Z0 and π1Z1 in Neuvial (2008) by the

processes W0 and W1 defined in Proposition 28, and consequently, the process Z = π0Z0 +π1Z1

by W=W0 +W1.

Therefore, the asymptotic properties of the BH procedure and Storey’s procedure (that is,

BH(·/π̂Sto
0,m(λ)) in the unconditional setting can be obtained by adapting the proof of the corre-

sponding theorems (Theorems 4.2 and 4.15) in Neuvial (2008):

Corollary 29 (BH procedure, unconditional setting) For any α ≥ α⋆
BH , we have

1. The asymptotic distribution of the threshold τ̂m(α) is given by

√
m(τ̂m(α)− τ∞(α)) N

(
0,

G(τ∞(α))(1−G(τ∞(α)))

(1/α−g(τ∞(α)))2

)
;

2. The asymptotic distribution of the associated FDPs is given by

√
m(FDPm(τ̂m(α))−π0α) N

(
0,(π0α)2

(
1

π0τ∞(α)
−1

))
.

The asymptotic properties of the BH Oracle procedure are simply obtained by applying Corollary

29 at level α/π0.

Corollary 30 (Storey-λ procedure, unconditional model) For any λ ∈ [0,1), and α ∈ [0,1], let

τ̂0,λ
m (α) = T Sto(λ)(Ĝm) be the empirical threshold τ̂0,λ

m (α) of Storey’s procedure at level α, and
τ0,λ

∞ (α) = T Sto(λ)(G) be the corresponding asymptotic threshold. Then,

1. α⋆
Sto(λ) = π0 (λ)α⋆

BH is the critical value of Storey’s procedure;
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2. For any α > α⋆
Sto(λ):

(a) The asymptotic distribution of the threshold τ̂0,λ
m (α) is given by

√
m
(

τ̂0,λ
m (α)− τ0,λ

∞ (α)
)
 

τ0,λ
∞ (α)

π0 (λ)/α−g(τ0,λ
∞ (α))

{
W(τ0,λ

∞ (α))

τ0,λ
∞ (α)

+
1

α

W(λ)

1−λ

}
,

where W is a centered Gaussian process with covariance function (s, t) 7→ G(s∧ t)−
G(s)G(t);

(b) The asymptotic distribution of the associated FDPs is given by

√
m
(

FDPm(τ̂
0,λ
m (α))−π0α/π0 (λ)

)
 N

(
0,σ2

λ

)
,

where

σ2
λ =

(
π0α

π0 (λ)

)2
{

1

π0τ0,λ
∞ (α)

+2
τ0,λ

∞ (α)∧λ

τ0,λ
∞ (α)(1−G(λ))

− 1

1−G(λ)

}
.

Note that Corollary 30 with λ = 0 recovers Corollary 29.

Appendix D. Asymptotic Properties of Plug-in Procedures

This section gathers the proofs of Section 4.

D.1 Proof of Theorem 16

We denote by ρ̂0
m(α) the proportion of rejections, and by ν̂0

m(α) the proportion of incorrect rejections

by the plug-in procedure BH(α/π̂0,m) (among all m hypotheses tested). They may be written as

ρ̂0
m(α) = Ĝm(τ̂

0
m(α)) = τ̂0

m(α)π̂0,m/α and ν̂0
m(α) = π0,mĜ0,m(τ̂

0
m(α)), respectively. The following

Lemma shows that the convergence rate of (̂τ0
m(α), ν̂

0
m(α), ρ̂

0
m(α)) for a large enough α is driven by

the convergence rate of π̂0,m. In order to alleviate notation, we omit the “(α)” in τ̂0
m, ρ̂0

m, ν̂0
m, τ0

∞, ρ0
∞,

ν0
∞ in the remainder of this section. Moreover, FDPm(τ̂

0
m(α)) will simply be denoted by F̂DP

0

m.

Lemma 31 Let π̂0,m be an estimator of π0 such that π̂0,m → π0,∞ in probability as m →+∞. Define
α⋆

0 = π0,∞α⋆
BH , and let α > α⋆

0. Then, under Assumption (2), we have, as m →+∞:

1. τ̂0
m converges in probability to τ0

∞ as m → +∞, with g(τ0
∞) < π0,∞/α. If the convergence of

π̂0,m to π0,∞ holds almost surely, then that of τ̂0
m to τ0

∞ holds almost surely as well;

2. Further assume that
√

mhm (π̂0,m −π0,∞) converges in distribution for some hm such that hm =
o(1/ ln lnm) and mhm → +∞ as m → +∞. Then (τ̂0

m, ν̂
0
m, ρ̂

0
m) converges at in distribution at

rate 1/
√

mhm, with



τ̂0
m

ν̂0
m

ρ̂0
m


−




τ0
∞

ν0
∞

ρ0
∞


=

τ0
∞/α

π0,∞/α−g(τ0
∞)




1

π0

g(τ0
∞)


(π0,∞ − π̂0,m)(1+oP (1)) ,

where ν0
∞ = π0τ0

∞ and ρ0
∞ = G(τ0

∞) = π0,∞τ0
∞/α.
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Proof [Proof of Lemma 31] For 1., we assume that the convergence of π̂0,m to π0,∞ holds in prob-

ability. If it also holds almost surely, then the convergence of τ̂0
m to τ0

∞ is almost sure as well. The

sketch of the proof is inspired by van der Vaart (1998, Lemma 21.3). Let ψF,ζ : t 7→ t/ζ−F(t) for

any distribution function F and any ζ ∈ (0,1]. As Ĝm(τ̂
0
m) = π̂0,mτ̂0

m/α and G(τ0
∞) = π0,∞τ0

∞/α, we

have ψG,α/π0,∞
(τ0

∞) = 0 and ψ
Ĝm,α/π̂0,m

(τ̂0
m) = 0. The proof relies on the following property:

(a) ψG,α/π0,∞
(τ̂0

m) converges in probability to 0 = ψG,α/π0,∞
(τ0

∞);

(b) ψG,α/π0,∞
is locally invertible in a neighborhood of τ0

∞, with ψ̇G,α/π0,∞
(τ0

∞)> 0.

To prove (a), we note that

−ψG,α/π0,∞
(τ̂0

m) = G(τ̂0
m)−π0,∞τ̂0

m/α

= (G− Ĝm)(τ̂
0
m)+(Ĝm(τ̂

0
m)− π̂0,mτ̂0

m/α)+(π̂0,m −π0,∞)τ̂
0
m/α .

The first term converges to 0 almost surely, the second one is identically null, and the third one

converges in probability to 0 as π̂0,m converges in probability to π0,∞, and τ̂0
m ∈ [0,1]. Item (b) holds

as G in concave (by Assumption (2)) and α/π0,∞ > α⋆
BH , where α⋆

BH = limu→0 u/G(u) is the critical

value of the BH procedure (see Neuvial 2008, Lemma 7.6 page 1097 for a proof of the invertibility).

Combining (a) and (b), τ̂0
m converges in probability to τ0

∞, and ψ̇G,α/π0,∞
(τ0

∞) = π0,∞/α−g(τ0
∞)

is positive, which proves the first item. For the second item, we only give the proof for τ̂0
m, as the

proofs for ν̂0
m and ρ̂0

m are similar. The idea of the proof is that the fluctuations of Ḡm = Ĝm −G, the

centered empirical process associated with G, are of order 1/
√

m by Donsker’s theorem (Donsker,

1951); thus, these fluctuations are negligible with respect to the fluctuations of π̂0,m −π0,∞, which

are assumed to be of order 1/
√

mhm with hm → 0. We have

G(τ̂0
m)−G(τ0

∞) = (G(τ̂0
m)− Ĝm(τ̂

0
m))+(Ĝm(τ̂

0
m)−G(τ0

∞))

=−Ḡm(τ̂
0
m)+(π̂0,mτ̂0

m/α−π0,∞τ0
∞/α)

because Ĝm(τ̂
0
m) = π̂0,mτ̂0

m/α and G(τ0
∞) = π0,∞τ0

∞/α. Therefore,

G(τ̂0
m)−G(τ0

∞) =−Ḡm(τ̂
0
m)+

π̂0,m

α
(τ̂0

m − τ0
∞)+

π̂0,m −π0,∞

α
τ0

∞ .

As τ̂0
m

P→ τ0
∞ as m → +∞, we also have G(τ̂0

m)−G(τ0
∞) = (τ̂0

m − τ0
∞)(g(τ

0
∞)+ oP (1)) by Taylor’s

formula. Hence we have

(
g(τ0

∞)− π̂0,m/α+oP (1)
)
(τ̂0

m − τ0
∞) =−Ḡm(τ̂

0
m)+(π̂0,m −π0,∞)τ

0
∞/α .

Now because π̂0,m converges in probability to π0,∞, we have

g(τ0
∞)− π̂0,m/α = (g(τ0

∞)−π0,∞/α)(1+oP (1)).

By 1, we have π0,∞/α > g(τ0
∞), so that for sufficiently large m:

τ̂0
m − τ0

∞ =
Ḡm(τ̂

0
m)

g(τ0
∞)−π0,∞/α

(1+oP (1))+
τ0

∞/α

g(τ0
∞)−π0,∞/α

(π̂0,m −π0,∞) .
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Finally, we note that as ‖Ḡm‖∞ ∼ c
√

ln lnm/m (by the Law of the Iterated Logarithm) and hm =
o(1/ ln lnm), we have Ḡm(τ̂

0
m) = oP

(
1/
√

mhm
)
. Moreover,

√
mhm (π̂0,m −π0,∞) converges in distri-

bution, so that the term (π̂0,m −π0,∞)τ
0
∞/α dominates the right-hand side. Finally, we have

τ̂0
m − τ0

∞ =
τ0

∞/α

g(τ0
∞)−π0,∞/α

(π̂0,m −π0,∞)(1+oP (1)) ,

which concludes the proof for τ̂0
m.

Proof [Proof of Theorem 16] 1. is a consequence of Lemma 27 combined with Lemma 31(1); 2.(a)

is a consequence of Lemma 27(2). Let us prove 2.(b). By Lemma 31, we have

√
mhm

((
ν̂0

m

ρ̂0
m

)
−
(

ν0
∞

ρ0
∞

))
 ξ∞

(
π0

g(τ0
∞)

)
X ,

where X ∼ N (0,s2
0) and

ξ∞ =
τ0

∞/α

π0,∞/α−g(τ0
∞)

.

Recall that F̂DP
0

m = ν̂0
m/(ρ̂

0
m ∨m−1). We begin by noting that for a large enough m, we have ρ̂0

m >
1/m almost surely. This is a consequence of the fact that (i) ρ̂0

m = Ĝm(τ̂
0
m) = π̂0,mτ̂0

m/α, with τ̂0
m

bounded away from 0 (by 1.), and (ii) π̂0,m converges to π0,∞ ≥ π0 > α. As a consequence, the

factor m−1 may be omitted in F̂DP
0

m for a large enough m; the FDP may then be written as F̂DP
0

m =
γ(ν̂0

m, ρ̂
0
m), where γ : (u,v) 7→ u/v for any u ≥ 0 and v > 0. γ is differentiable for any such (u,v),

with derivative γ̇u,v = (1/v,−u/v2) = 1/v(1,−u/v). In particular, recalling that ν0
∞ = π0τ0

∞ and

ρ0
∞ = G(τ0

∞) = π0,∞τ0
∞/α, we have

γ̇ν0
∞,ρ

0
∞
=

α

τ0
∞π0,∞

(
1,−π0α

π0,∞

)
. (19)

As γ(ν0
∞,ρ

0
∞) = π0α/π0,∞, the Delta method yields

√
mhm

(
F̂DP

0

m − π0α

π0,∞

)
 N

(
0,w2

)
,

with w = s0ξ∞ γ̇ν0
∞,ρ

0
∞

(
π0

g(τ0
∞)

)
.

By (19), we have γ̇ν0
∞,ρ

0
∞

(
π0

g(τ0
∞)

)
= α2π0

τ0
∞π2

0,∞
(π0,∞/α−g(τ0

∞)), which implies that w = s0π0α/π2
0,∞.
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D.2 Consistency, Purity and Criticality

Proof [Proof of Lemma 20] We note that

f1(x)

f0(x)
=

f0(x−θ)

f0(x)
by definition of a location model

=
f0(−x+θ)

f0(−x)
by Assumption (1)

=
f0(−x+θ)

f1(−x+θ)
,

which concludes the proof, as θ is a fixed scalar.

Proof [Proof of Proposition 21] We have α⋆
BH = limt→0 1/g(t), where g = π0 +(1−π0)g1 and

g1(t) =
f1

f0

(
−F−1

0 (t)
)
.

Therefore, as limt→0 F−1
0 (t) = +∞, the result is a consequence of Lemma 20.

D.3 Regularity of g1 for Two-Sided Tests in Symmetric Models

Proof [Proof of Lemma 19]

1. We make the additional assumption that there exists η > 0 such that f1/ f0 is differentiable

on Vη = [−η,η] \{0}, and that its derivative tends to ℓ− as u → 0− and ℓ+ as u → 0+. This

assumption makes the proof simpler, and it holds in the models considered in this paper.

However, the result still holds (and is simpler to state) without this extra assumption. By

Proposition 1, we have under Assumption (1)

g1(t) =
1

2

(
f1

f0

(q0(t/2))+
f1

f0

(−q0(t/2))

)
,

where q0(t/2) = F−1
0 (1 − t/2) maps Qη = [2(1− F0(η)),1) onto (0,η]. Therefore, g1 is

differentiable on Qη and satisfies, for any t in Qη:

g(1)1 (t) =
1

2

{(
f1

f0

)′
(q0(t/2))−

(
f1

f0

)′
(−q0(t/2))

}
× 1

2
q′0(t/2)

=− 1

4 f0(q0(t/2))

((
f1

f0

)′
(q0(t/2))−

(
f1

f0

)′
(−q0(t/2))

)
. (20)

As t → 1, q0(t/2) → 0+, (20) implies that g1 is differentiable at 1 with derivative given by

(14).

2. Similarly, we prove the result with the extra assumption that f1/ f0 is twice differentiable in a

neighborhood of 0. Then (20) entails that g1 is itself twice differentiable in a neighborhood
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of 1. Writing g(1)1 (t) = a(t)b(t), with

{
a(t) = 1/(4 f0(q0(t/2)))

b(t) =−( f1/ f0)
′ (q0(t/2))+( f1/ f0)

′ (−q0(t/2))
,

we have g(2)1 (t) = a′(t)b(t)+ a(t)b′(t). As q0(1/2) = F−1
0 (1/2) = 0 , we have b(1) = 0, so

that g(2)1 (1) = a(1)b′(1), where a(1) = 1/(4 f0(0)) and

b′(t) =
1

2 f0(q0(t/2))

((
f1

f0

)(2)

(q0(t/2))+

(
f1

f0

)(2)

(−q0(t/2))

)
.

Thus b′(1) = 1/(2 f0(0))×2( f1/ f0)
(2)(0), which concludes the proof.
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