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Estimating front-wave velocity of infectious
diseases: a simple, efficient method applied
to bluetongue
Maryline Pioz1*, Hélène Guis2, Didier Calavas3, Benoît Durand4, David Abrial1 and Christian Ducrot1

Abstract

Understanding the spatial dynamics of an infectious disease is critical when attempting to predict where and how
fast the disease will spread. We illustrate an approach using a trend-surface analysis (TSA) model combined with a
spatial error simultaneous autoregressive model (SARerr model) to estimate the speed of diffusion of bluetongue (BT),
an infectious disease of ruminants caused by bluetongue virus (BTV) and transmitted by Culicoides. In a first step to
gain further insight into the spatial transmission characteristics of BTV serotype 8, we used 2007-2008 clinical case
reports in France and TSA modelling to identify the major directions and speed of disease diffusion. We accounted
for spatial autocorrelation by combining TSA with a SARerr model, which led to a trend SARerr model. Overall, BT
spread from north-eastern to south-western France. The average trend SARerr-estimated velocity across the country
was 5.6 km/day. However, velocities differed between areas and time periods, varying between 2.1 and 9.3 km/day.
For more than 83% of the contaminated municipalities, the trend SARerr-estimated velocity was less than 7 km/day.
Our study was a first step in describing the diffusion process for BT in France. To our knowledge, it is the first to show
that BT spread in France was primarily local and consistent with the active flight of Culicoides and local movements
of farm animals. Models such as the trend SARerr models are powerful tools to provide information on direction and
speed of disease diffusion when the only data available are date and location of cases.

Introduction
Understanding the spatial dynamics of an infectious dis-
ease is critical when attempting to predict where and how
fast the disease will spread. The use of simulation model-
ling for estimating the spread of infectious animal diseases
has now become common [1-4]. However, most of these
modelling approaches are complex, based on spatially
explicit, stochastic, state-transition or network models
[2,5-7] or on diffusion equations [8,9]. While such model-
ling approaches require precise knowledge on the model
parameters, available data on emerging animal diseases are
often restricted to case reports providing only date and
location. These limited data nevertheless can provide use-
ful information on the direction and speed of disease diffu-
sion and be used to estimate front-wave velocity of an
infectious disease. We illustrate an approach using a
trend-surface analysis (TSA) model combined with a

simultaneous autoregressive spatial error (SARerr) model
to estimate the speed of diffusion of bluetongue (BT).
BT is a non-contagious, infectious, viral disease of rumi-

nants caused by bluetongue virus (BTV) and transmitted
by biting midges (Culicoides) [10]. 24 serotypes of BTV
have now been described. Until recently, BT was thought
to be restricted to tropical regions and southern Europe
where competent Culicoides species vectors are present
[11]. The large-scale, BTV serotype 8 (BTV-8) epidemic in
north-western Europe in 2006-2008 consequently surprised
the veterinary community and caused major economic
losses [12]. Contrary to what was previously thought, the
abundant local Culicoides species in north-western Europe
are vector competent [13,14]. Disease progression was thus
rapid: 2 000 infected farms across Belgium, Germany, The
Netherlands, France, and Luxembourg in 2006 [12], more
than 30 000 farms in 2007 with an expansion in range to
Denmark, the United Kingdom, Switzerland, and the
Czech Republic [12,15].
While active flight of infected Culicoides is responsible

for local propagation of BT, the movement of viremic
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animals and passive flight of infected Culicoides carried
by the wind are responsible for long distance (>100 km)
dissemination of the infection [16]. Quantification of the
respective importance of local spread and long distance
dissemination of BT currently is lacking. Gerbier et al.
[17] suggested that the effect of wind was probably neg-
ligible for BT diffusion in 2006 and that local spread of
BTV-8 can be explained mainly by active flight of Culi-
coides. Moreover, Mintiens et al. [18] showed that con-
trol measures implemented on animal movements failed
to stop further spread of BTV because it is impossible
to limit vector movements. The authors, however, noted
that an absence of control measures probably would
have resulted in an even wider and faster spread.
In a first step to gain further insight into the spatial

transmission characteristics of BTV-8, we used 2007-
2008 clinical case reports in France and TSA combined
to spatial error modelling to identify the major direc-
tions and speed of diffusion of the BT epidemic.

Materials and methods
Compilation of BT clinical cases
We used BT cases recorded by the Direction Générale
de l’Alimentation of the French Ministry of Agriculture,
Food and Fishing in 2007-2008 to assess front-wave
velocity. A case was defined as a bovine herd or an
ovine or goat flock in which BT was clinically suspected
and later confirmed by serological or virological ana-
lyses. Our analysis was performed on a municipality
basis (the smallest administrative unit in France). Cases
with missing date of record or location data were dis-
carded, leaving 33 042 cases in 12 620 municipalities
belonging to 82 departments (French administrative unit
of a median surface area of 5 985 km2). In 6.9% (n = 2
279) of these cases, the date of report was missing, how-
ever, the date of serological or virological confirmation
was available. We were able to include these cases by
extrapolating the date of report from the date of serolo-
gical or virological confirmation. We did so by consider-
ing the 30 263 clinical cases with both date of report
and date of confirmation, and verifying that the date of
report and date of serological or virological confirmation
were strongly correlated (r2 = 0.99) with a mean delay of
6 days (0-152), and 95% of the delay being lower than
19 days.
The data from the 33 042 clinical cases were then

reduced to the first report of a case for each municipality.
In the northern and central part of France, the French
entomological surveillance reported only 7, 2 and 31 Culi-
coides captured in the 39, 34 and 46 traps set in January,
February and March 2008, respectively (T. Balenghien,
unpublished). Based on these entomological data and
literature [13,19], we considered that Culicoides activity
was negligible from January to March, and thus excluded

these three months from the subsequent analyses. As clini-
cal signs of BT can be missed [16,20], the disease may pass
unnoticed in an infected herd over several weeks. To limit
the bias due to unnoticed cases, we discarded municipali-
ties with a very late first clinical case report in relation to
the first clinical case report in the department. To do so,
we estimated the mean length of a French department to
be 105 km. Based on a mean velocity of 10 km per week
[17], BT would pass through a French department within
75 days under optimal conditions. We added 75 more
days to allow infected Culicoides to reach less accessible
municipalities within the department. One hundred fifty
days would thus be the restrictive delay to consider. How-
ever, as BT transmission depends on Culicoides density
and activity, we took into account the month of the first
case report of the department to balance the period of
time during which we included municipalities depending
on the month of the first case report in the department.
The period of time during which we included municipali-
ties with their first cases in relation to the month of
the first case report in their department are presented
Figure 1. The curve represents the distribution of the
clinical cases reported per month over 2007-2008. The
horizontal lines show the period of time during which we
included the municipalities in each department depend-
ing on the month of the first clinical case report in the
department. When the first clinical case report of the
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Figure 1 Period of time during which we included municipalities
that reported their first clinical BTV-8 case. The curve represents
the distribution of the clinical cases reported per month over 2007-
2008, expressed in percentage compared to the month with the
highest number of cases, i.e., August. The percentage of clinical cases
represented on the vertical axis was thus 100% in August. The
horizontal lines under the graph symbolize the time period during
which we included the municipalities that reported their first clinical
case of BT, in relation to the month of report of the first clinical case in
the department. All observed situations are plotted. n represents the
number of departments. For example, the first horizontal line means
that for the two departments that reported their first clinical case in
April, we included in our dataset the departments’ municipalities that
reported their first clinical case from April to November (included).
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department occurred during the less favourable periods
for vector activity (i.e., in April and October), we included
municipalities for a longer period of time than when it
occurred during the months of the peak of Culicoides
activity (i.e., in July and August). In all, 1 627 municipali-
ties in 51 departments were considered as having a late
first case report and were discarded.
Our study consequently was based on 10 994 munici-

palities in 82 French departments which reported at
least one case of BT (Figure 2).

Trend-surface analysis
TSA is a least squares regression method used to study
diffusion processes in space and time [21]. A surface
pattern can be constructed by mapping the specific tim-
ing of events at each (X, Y) coordinate in two dimen-
sions. The general procedure is described in Unwin [22].
Briefly, the method uses a model with power series

polynomials, fitting linear, quadratic, cubic, and higher
order trend-surfaces to the data [21]. The shape and
flexibility of the trend surface are determined by the
order of the polynomial chosen as the model [23].
A first-order polynomial restricts the trends to a plane
through the data. Second-order polynomial models
allow for curvature over the entire data set, while
higher-order models allow for much more local curva-
ture in the fitted surface [24]. In health research, TSA is
a simple method which aims to capture the generalized
direction(s) and speed(s) of the propagating wave of an
infectious disease [24]. It previously has been used to
assess the front-wave velocity of rabies and plague and
to identify the pattern of disease diffusion [8,23-25].
In our study, a polynomial surface was fitted to the set

of spatially distributed times of first BT clinical case
detection across the 10 994 municipalities. The (X, Y)
coordinates of the municipality centroids were uploaded

Figure 2 French municipalities with at least one clinical case of BT reported in 2007-2008 (n = 10 994). Blank areas are areas where no
or incomplete clinical cases were reported. Paris is represented by a star. Four periods were defined based on the ecology of Culicoides and BTV
transmission rate: 1 July - 31 August, 1 September - 31 October, 1 November - 31 December, and 1 March - 30 June.
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into ArcGIS software v.9.1 (ESRI Inc.). Original geogra-
phical coordinates were expressed in meters, Lambert II
étendu. They were then translated into (X, Y) coordi-
nates with the origin adjusted to the area of BT intro-
duction. This area, referred to as the Area of First
Infection (AFI), was identified in Gerbier et al. [17] as
the border area between The Netherlands, Germany,
and Belgium (latitude = 2 669 013 m; longitude = 3 726
278 m). Retrospective preliminary reports on the first
BTV-8 outbreaks in Belgium and Germany indicated
that the first clinical signs appeared between 17 July and
5 August 2006 [16,26]. We therefore considered 17 July
2006 as the date of BT introduction in the AFI.
A model of the form t = b0 + b1X + b2Y + b3X

2 + b4XY +
b5Y

2 + ε was used to estimate linear and quadratic surfaces
by least squares. In this model, t is the number of days to
the BT introduction in 2006, bi are the fitted parameters,
X and Y are the geographic coordinates of the municipality
centroids adjusted to the area of BT introduction in Europe,
and ε represents the error term. The main caveat for signifi-
cance testing in TSA is that spatial autocorrelation in the
residuals is almost always present to a certain extent by the
nature of the spatial data [22]. In our study, residuals of the
TSA models showed autocorrelation (Moran’s I statistic =
0.3894, p < 0.001). Among the numerous methods available
to deal with spatial autocorrelation, autoregressive models
incorporate spatial autocorrelation using neighbourhood
matrices. These matrices specify the relationship between
the response values (in the case of Conditional Autoregres-
sive CAR models) or residuals (in the case of Simultaneous
Autoregressive SAR models) at each location i and those at
neighbouring locations j [27]. SAR models can take three
different forms depending on where the spatial autoregres-
sive process is believed to occur [27]. The spatial error
model (SARerr) assumes that the autoregressive process
occurs only in the error term, and neither in response nor
predictor variables. The lagged response model (SARlag)
assumes that the autoregressive process occurs in the
response variable, and the lagged-mixed model (SARmix)
assumes that the spatial autocorrelation affects both
response and predictor variables. Kissling and Carl [28]
tested the performance of the three different SAR model
types (SARerr, SARlag, and SARmix) and ordinary least
squares (OLS) regression. They showed that SARerr models
were the most reliable SAR models and that they per-
formed well in all cases (independent of the kind of spatial
correlation induced and whether models were selected by
minRSA, R2 or AIC), whereas OLS, SARlag and SARmix

models showed weak type I error control and/or unpredict-
able biases in parameter estimates. Based on this conclusion
we thus chose SARerr model to account for the spatial auto-
correlation observed in the model residuals.
The neighbourhood relationship is formally expressed

in a n × n matrix of spatial weights (W), with elements

(wij) representing a measure of the connection between
locations i and j. Details on SAR models are provided
elsewhere [see [27-29]]. Briefly, the usual ordinary least
squares regression model Y = b Xi + ε is complemented
by a term (lWμ), which represents the spatial structure
(lW) in the spatially dependent error term (μ) [27]. The
SARerr model thus takes the form Y = b Xi + lWμ + ε
where l is the spatial autoregression coefficient. We
combined TSA with a spatial error simultaneous autore-
gressive (SARerr) model to account for spatial autocorre-
lation in the residuals [27,28]. This combination,
hereafter referred to as trend SARerr model, leads to a
model that takes the form

t = β0 + β1X + β2Y + β3X2 + β4XY + β5Y2 + λWμ + ε.

We estimated the best trend SARerr model using R soft-
ware v.2.10.1 [30] and the spdep package [31]. We used a
row standardized spatial weights matrix with a neighbour-
hood distance of 80 km. The neighbourhood distance of
80 km was chosen based on biological hypothesis as recom-
mended by Dormann et al. [27]. The neighbourhood
distance reflects the maximal distance at which the date of
the first BT clinical case in a municipality influences the
date of the first BT clinical case in surrounding municipali-
ties. Based on the Commission Regulation No 1266/2007
the BT restricted zone, which represents the maximal dis-
tance at which contamination can occur from a BT infected
farm, was defined as a 70-km radius around the infected
farms. 70 km could thus be chosen as the neighbourhood
distance to use in the spatial weights matrix. However, the
minimal distance at which all municipalities of our dataset
had at least one neighbour was 80 km. To avoid the pro-
blem of some areal entities having no neighbours [32] we
chose a neighbourhood distance of 80 km, which is close to
the 70-km radius of the restricted zone (see Additional file
1 for a description of the spatial weights matrix). Moran’s I
value, a measure of autocorrelation, and correlograms were
calculated with the functions moran.test from the spdep
package and correlog from the ncf package [33], respec-
tively. Correlograms, which plot Moran’s I values on the
y-axis against geographic distance in the x-axis, allow the
assessment of the spatial autocorrelation pattern with
increasing distance. As recommended by Kissling and Carl
[28], we computed two model selection statistics, the
Akaike’s Information Criterion (AIC) [34] and the mini-
mum residual autocorrelation (minRSA). The latter was
obtained by summing up the absolute Moran’s I values in
the first 80 distance classes of the correlogram [28]. The
final model was chosen to minimize both AIC and minRSA
based on backward selection. We considered that two
nested models differing by less than 2 AIC points received
identical support from the data. In such a situation, the
model with less parameters was preferred [34].
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To evaluate the selected model, a deviance-based
pseudo-R2 (in the following simply referred to as R2)
was calculated as the squared Pearson correlation
between predicted and observed values [28]. R2 provides
a measure of goodness of fit of the model. Observed
Moran’s I values, computed using the residuals from the
trend SARerr model, provide a measure of the spatial
autocorrelation in the model residuals [32,35].
The model predicted a date of the first clinical case

occurrence in each contaminated municipality. These
dates were then contoured using a contouring and splin-
ing function in the Spatial Analyst extension of ArcGIS
software v.9.1 (ESRI Inc.). We used 30-day intervals for
the contour lines so that each band would represent a
month, which would facilitate comparison of disease
spread between periods of time.
The velocities of the travelling waves of BT were cal-

culated using the best-fit surface model. This model was
used to derive partial differential equations ∂t/∂X and
∂t/∂Y [24]. Substituting the specific (X, Y) coordinates
observed for a case into these equations allowed the X
and Y geometric vectors contributing to the slope of the
travelling wavefront (i.e., its magnitude) to be described
[36]. For each municipality, we summed the X and Y
geometric vectors to obtain a resultant slope vector with
magnitude and direction. The inverse of the slope is the
velocity or speed of diffusion of the epidemic at each
municipality location in kilometers per day. The larger
the velocity vector, the faster the speed of diffusion [24].

Results
Data description
The date of the first clinical case of BTV-8 was consid-
ered as relevant for 10 994 municipalities in 82 depart-
ments. Descriptive statistics are provided in Table 1.
The average number of municipalities per department
was 415 (range: 102-894) with an average number of
contaminated municipalities per department of 134
(1-533). The percentage of contaminated municipalities
per department varied from 0.2 to 94% with a median
value of 25.5% (Figure 3).

The trend SARerr model
Based on backward selection from the full quadratic
trend SARerr model we selected the model with the low-
est AIC and minRSA (Table 2). All the trend SARerr

models had lower AIC values and less spatial autocorre-
lation in the residuals (lower minRSA) than the simple
TSA model, which did not account for spatial autocor-
relation. Adding the spatial autocorrelation term to the
TSA model also improved the model fit. Models m0
and m5 were similar in terms of AIC and minRSA
(Table 2), but m5, which did not include a first order
parameter for X, had the highest R2 and the lowest
Moran’s I. Moreover, the values of the coefficients of
m0 and m5 were similar (see Additional file 2), differing
by less than 0.008, and the value of the estimate of the
first order parameter for X in m0 was -0.0690, standard
error = 0.0388, with a statistically non-significant
p-value = 0.076. Based on these results we selected the
model m5. This model provided an increase in R2 from
0.85 to 0.96. Correlograms for the residuals of the TSA
model and the selected trend SARerr model are showed
in Figure 4. Although positive autocorrelation at small
distances (less than 40 km) was still present in the resi-
duals of the trend SARerr model, autocorrelation was
greatly reduced in comparison to the TSA model. Mor-
an’s I values and minRSA decreased by 93% and 78%,
respectively (Table 2).
The residuals of the final trend SARerr model had a
mean non significantly different from zero (-2.1 e-12,
95% Confidence Interval (CI): -0.605-0.605) and a bell-
shaped distribution (Figure 5a). To identify areas of ear-
lier or later than predicted diffusion, the residuals of the
final model were categorized into classes of residual
values and plotted on the map of France (Figure 5b). An
area of negative residual values (faster than predicted
diffusion) in dark blue followed by an area of positive
residual (slower than predicted diffusion) values in red
are visually apparent in the centre of France. Overall,
the difference between the predicted and observed date
of the first clinical case occurrence was less than
30 days for 79% of the municipalities.
We used the final trend SARerr model to estimate

the day of the first clinical case occurrence in each
contaminated municipality, based on the geographic
coordinates of the municipality centroids (Table 3).
The contoured trend-surface map (Figure 6) of the
predicted time of occurrence illustrates the general
direction and movement of the diffusion of BT in
France in 2007-2008, month by month. Contour lines
that are far apart indicate that the disease spread
rapidly through an area while lines close together indi-
cate slow progression. The direction of diffusion is
given by the front of the contour lines [24]. Overall,
BT spread from north-eastern (introduction from

Table 1 Descriptive statistics of the data used for fitting
a trend SARerr model of BT spread in France in 2007-
2008, based on clinical cases of BTV-8

variable min max average median

X -743.9 168.2 -208.4 -197.8

Y -868.2 26.3 -339.6 -328.5

t 270 715 491 556

X and Y are the geographic coordinates (in km) of the municipality centroids
adjusted to the area of BT introduction, t is the number of days to the BT
introduction in 2006 (excluding 90 days corresponding to the period from
1 January to 31 March), min and max, are the minimum and maximum values,
respectively.
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Belgium and Germany) to south-western France. The
disease spread slower during the less favourable
months for Culicoides activity (Figure 6): November-
December and April to July. The same pattern of dis-
ease spread was observed in 2007 and 2008 with the
faster spread of BT occurring in August-October.

Estimated velocity from the trend SARerr model
The average estimated velocity across the country was
5.6 km/day. However, velocities varied according to areas
and time period (Figure 6). Overall, estimated velocities of
BT spread varied between 2.1 and 9.3 km/day (Figure 7).
For 9192 municipalities (84%), trend SARerr-estimated
velocities were lower than 7 km/day. 2% of the municipali-
ties had an estimated velocity strictly lower than 3 km/day,
which is the value commonly admitted of maximal active
dispersal of Culicoides by flight [37].

Discussion
We used a trend-SARerr model to assess the velocity of
BTV-8 spread across France between 2007 and 2008 and
compare the respective importance of local spread and
long distance dissemination. The average estimated velocity
of BT was 5.6 km/day, or 39.2 km/week. In line with our
results, the velocity of BT spread in Sardinia during the
Italian BTV-2 outbreak was about 30 km/week [38]. Our
estimation is higher than the findings of Gerbier et al. [17],
who found a 10-15 km/week rate of spread, during the
early stage of the BTV-8 epidemics in The Netherlands,
Germany, and Belgium. The difference could be due to the
methods used in the two studies: whereas we corrected for
spatial autocorrelated residuals, Gerbier et al. did not.
Interestingly, we found a mean velocity of 11.9 km/week, a
similar value than the findings of Gerbier et al. [17], when
we did not corrected for spatial autocorrelation in the

Figure 3 Percentage of contaminated municipalities per department. Contaminated municipalities are municipalities where at least one
clinical case of BT due to the BTV-8 serotype was observed. A rate of 100% would indicate that a clinical case of BTV-8 was observed in all the
municipalities of a department.
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model residuals. The difference in the average estimated
velocity of BT could also be related to the heterogeneity of
landscape, host density, and altitude of our study area, as
well as the broad range of period of time considered in our
analysis. Indeed, we studied the speed of BT diffusion
across France during two years whereas Gerbier et al. [17]
focused only on the early stage of the epidemics, from 17
August to 15 September 2006, in a limited homogeneous
rectangular area of 90 × 75 km.

The range of the estimated velocities suggests that BT
transmission in France was primarily local: 84% of the con-
taminated municipalities had an estimated velocity lower
than 7 km/day, and none above 10 km/day. Regarding
long-range dissemination, Culicoides can be passively
dispersed overseas over long distances (> 100 km) by pre-
vailing wind [39-41]. Hendrickx et al. [39] developed wind
models which suggested that long-distance spread over
land of Culicoides by prevailing wind could have allowed
the BT epidemics to cover large distances at a rate of
15 km/day. Here, with no velocity above 10 km/day, such
long-range dispersal of infected Culicoides by wind was
probably uncommon and had a negligible effect on BT
spread. Considering that the flight range of Culicoides is
short and most species disperse only at about 3 km from
their breeding sites [37,42], active flight of Culicoides from
farm to farm can not be the only factor explaining the local
spread of BT. Indeed, the estimated velocity was less than
3 km/day for only 222 (2%) contaminated municipalities.
Consequently, other factors must have facilitated the local
diffusion of BT in France.
Several hypotheses can be proposed to explain these

findings. The first hypothesis is that wind, besides facilitat-
ing the long-range dispersal of Culicoides, could have also
increased the local dispersal of infected vectors [37,40,43].
Flight and orientation depends on the speed and direction
of wind [43], but studies have shown that Culicoides prefer
to shelter and cease almost all activity at wind speeds
above 3 m/s or 10.8 km/h [37]. Interestingly, Bishop et al.
[43] showed in Australia that high frequencies of wind
speed above 8 km/h slowed the dispersion of Culicoides
brevitarsis. Consequently, by stopping Culicoides activity,
wind speeds above 3 m/s decrease local dispersal of
infected vectors, whereas lower wind speeds could slightly

Table 2 Summary characteristics from the trend SARerr
model selection of BT spread in France in 2007-2008,
based on clinical cases (n = 10 994 municipalities)

model np AIC minRSA R2 observed Moran’s I

TSA 6 115 121 26.5 0.85 0.3894

m0 8 107 730 5.9 0.92 0.0285

m1 7 107 740 5.9 0.92 0.0298

m2 7 107 750 6.0 0.92 0.0319

m3 7 107 750 6.0 0.92 0.0309

m4 7 107 740 5.9 0.92 0.0299

m5 7 107 730 5.9 0.96 0.0282

m6 5 107 780 6.0 0.92 0.0345

Model selection was based on Akaike Information Criterion (AIC) and
minimum residual spatial autocorrelation (minRSA). A measure of model fit
and spatial autocorrelation in the model residuals are given as R2; and
observed Moran’s I, respectively. np is the number of parameters. m0 to m6
are the trend SARerr models, TSA model values are given for comparison. The
selected trend SARerr model is m5.

TSA: t = b0 + b1X + b2Y + b3X
2 + b4XY + b5Y

2 + ε.

m0: t = b0 + b1X + b2Y + b3X
2 + b4XY + b5Y

2 + lWμ + ε.

m1: t = b0 + b1X + b2Y + b3X
2 + b4XY + lWμ + ε.

m2: t = b0 + b1X + b2Y + b4XY + b5Y
2 + lWμ + ε.

m3: t = b0 + b1X + b2Y + b3X
2 + b5Y

2 + lWμ + ε.

m4: t = b0 + b1X + b3X
2 + b4XY + b5Y

2 + lWμ + ε.

m5: t = b0 + b2Y + b3X
2 + b4XY + b5Y

2 + lWμ + ε.

m6: t = b0 + b1X + b2Y + lWμ + ε.

Figure 4 Correlograms of the residuals from the TSA model (left) and the selected trend SARerr model (right). Correlogram plots Moran’s
I values on the y-axis against geographic distance in km in the x-axis. Moran’s I has an expected value near zero for no spatial autocorrelation,
with negative and positive values indicating negative and positive autocorrelation, respectively.
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Figure 5 Residual values of the final trend SARerr model. a) Histogram of residual values. b) Map of residual values. Blank areas are
municipalities that were not included in our dataset because of incomplete information or the absence of clinical cases. Paris is represented by
a star. Areas of highest negative residual values (in dark blue) indicate a faster than predicted diffusion, while areas of highest positive residual
(in red) indicate a slower than predicted diffusion.
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increase the distance of local dispersal. Further analysis
should investigate the wind patterns observed over the
study area.
A second hypothesis is that dispersal distances may

differ between Culicoides species. The maximal distance

of active dispersal have only be estimated for North-
American species: 3.2 km in 24 h for Culicoides missis-
sippiensis [44], 4.8 km in 24 h for Culicoides mohave
[45] and 5.6 km in 24 h for Culicoides variipennis [42].
Higher average distance of dispersal of the European
species compared to the North-American ones could
explain the velocities of BT spread estimated in our
study. It will be important to determine whether disper-
sal capacities of European species are greater than the
North-American species to support or invalidate this
hypothesis.
Thirdly, local movements of infected animals may have

facilitated BT diffusion around the contaminated farm
units and have slightly increased the velocity of BT

Table 3 Final trend SARerr model selected to explain the
spread of BT across France in 2007-2008

Predictor Estimate Standard Error p

intercept 368.49 411.53 0.3706

Y -0.1169 0.03717 0.0017

X2 3.0587 × 10-4 0.44053 × 10-4 < 0.0001

Y2 1.3306 × 10-4 0.46477 × 10-4 0.0042

XY -3.2511 × 10-4 0.64416 × 10-4 < 0.0001

Figure 6 Contour lines showing the trend SARerr-predicted date of first clinical case occurrence of BT. A 30-day interval was used for the
contour lines.
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spread. Livestock are regularly moved within farms
between pastures. However, little is known in literature
on these movements. In France cattle farms have a mean
surface area of 0.77 km2, which results in a mean radius
of 0.5 km if we consider the farm as a circle. Brunschwig
et al. [46] reported that in France dairy cows are moved
in a 0.5 km radius around the farm, while beef cattle are
regularly moved in a 5 km radius, and occasionally as far
as 20 km from the farm. Regarding farm-to-farm cattle
movements, in Great Britain Mitchell et al. reported a
mean straight-line distance of 58 km with 43% of the
movements occurring within less than 20 km [47], in
Portugal 80% of the cattle trade movements were local
(< 40 km) [48], and in Sweden 87% of the cattle move-
ments were to farms within 100 km [49]. Overall, these
studies showed that a large part of the cattle movements
between farms occurs at distance less than 100 km.
Restrictions on farm animals movements were imple-
mented in France following the Directive 2000/75/EC,
which defined the restricted zone for BT as a 150 km
radius around the BT contaminated farm. In October
2007 the Commission Regulation No 1266/2007 reduced
the restricted zone to a 70-km radius around the con-
taminated farms. While regulations on animal transport
prevented any movements from the restricted zone to
the non-restricted zones, movements between farms
could occur within the restricted zone and may thus
partly explain the range of observed velocities.
Finally, wild ungulates may also play a role in BT diffu-

sion because i) high seroprevalence have been reported
in cervid species, ii) similar patterns were reported in
domestic herd and wild ungulates, and iii) experimental
infections suggested that wild ungulates could be infec-
tious to Culicoides. BTV antibodies have been reported
in various wild cervid species in Europe [50-54]. In
France, in 2008-2009 a mean BTV seroprevalence rate of
41% and 1% was found in red deer (Cervus elaphus) and

roe deer (Capreolus capreolus), respectively [55]. In red
deer seroprevalence rates varied from 8 to 70% according
to the study areas. In Spain Ruiz-Fons et al. [50] found a
seroprevalence rate of 22% in red deer and 5% in roe
deer and Garcìa et al. [54] reported a seroprevalence rate
of 66% in red deer. Furthermore, in Spain similar spatial
and temporal BTV patterns were observed in red deer
and livestock [50,54]. Moreover, the detection of BTV in
skin samples of experimentally infected red deer suggests
that they could be infectious to Culicoides [53]. Overall,
red deer, in which BTV-infection does not induce a sig-
nificant mortality [51], may serve as reservoir hosts.
Movements of wild ungulate species could thus play a
role in BT spread [54].
Although our data does not allow us to distinguish the

effects of flight of Culicoides from the effects of short
range movements of farm animals or wild ungulates (or
any combination of the three) on BT spread, our results
clearly show that BT diffusion in France was primarily
local. Few measures were available in France to control
the spread of the infection until the summer of 2008.
While BTV-8 vaccines became available in the spring of
2008, and progressively were used in the second part of
the year to protect livestock, regulations on animal trans-
port probably were the most valuable measure in limiting
the spread of BT through long-range dissemination [11].
TSA is one of numerous methods that can be used in

the analysis of change over space. It mainly has been
used in geological studies but we encourage researchers
who are interested in a simple method to estimate the
direction and speed of an infectious disease spread based
solely on the geographical location and date of cases.
However, investigators must be aware of the limitations
of the method. A disadvantage of TSA is that predictions
or extrapolations outside the area and time of study are
not accurate and should not be made [21]. In our study,
residual values of the TSA model showed high level of
autocorrelation (Figure 4), but by combining the TSA
model with a spatial error model, the observed Moran’s I
value decreased by 93%. The residuals of the trend SARerr

model remained slightly positively autocorrelated at small
distances (< 40 km). This may be due to i) the large data-
set or ii) the omission of spatially patterned explanatory
variables [27,32,56,57]. Indeed, Koenig stated [58]: “With
large datasets, statistically significant values can be
obtained even though the absolute degree of correlation
is small; whether such low spatial autocorrelation is bio-
logically significant or not must be considered on a case-
by-case basis”. Moreover, positive autocorrelation in the
residuals at small distances can be observed when envir-
onmental factors associated to small-scale variations in
the explained variable are omitted [56]. This paper shows
that with simple epidemiological data (geographic coordi-
nates and date of clinical cases), the TSA method enables
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Figure 7 Distribution of velocities of BT spread estimated from the
trend SARerr model. Velocities were estimated in the 10 994 French
municipalities in which a clinical case were reported in 2007-2008.
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to estimate and map the spread of a disease [24,36]. This
first step can then be completed by modelling the effect
of a wide range of environmental variables on the esti-
mated velocities. Overall, both our large dataset (10 994
municipalities) and the use of geographic coordinates
may explain the slightly autocorrelated residuals of the
trend SARerr model. However, because i) TSA was speci-
fically developed to fit spatial data, and ii) the remaining
autocorrelation is small, we believe that it did not bias
the estimated velocities. Unwin [22] noted that if the
sample size is sufficiently large, and provided one avoids
using a higher-order surface model, the TSA method is
robust enough to allow some violation of the least-
squares regression assumptions. Furthermore, the model
was not use as a predictive tool to extrapolate the date of
the first clinical case occurrence in other areas or at dif-
ferent periods of time. Overall, with a R2 value of 0.96,
and 79% of the municipalities for which the difference
between the predicted and observed date of the first clini-
cal case occurrence was less than 30 days, our model
fitted the data well.
Another limitation of the TSA method is that interpreta-

tion at the edges of the map should be made with caution
[24]. Residuals at the edges of the study area presented
extreme positive and negative values (Figure 5b). The
same pattern of extreme residual values also occurred
around a geographical area in the centre of France where
no or very few municipalities were included in our dataset,
which induced an edge effect in the centre of the study
area. The absence of BT infected municipalities in this
area was due to the absence of, or to incomplete data on,
clinical cases linked with low livestock densities. The trend
SARerr model had problems handling such areas with no
or few data and this led to areas with extreme residual
values.
The pattern of autocorrelation in residual values can

however be used to indicate heterogeneities in disease
spread. Residuals should always be examined and lead
to questions of why the disease occurred at a particular
location earlier or later than predicted by the model
[24]. In our case, most areas with extreme residual
values in the centre of France (in red and dark blue in
Figure 5b) correspond to the geographic areas where BT
spread was very low immediately prior to and after the
vector-free period (January to March 2008).
The 10 994 municipalities included in the study did not

represent an exhaustive sample of municipalities with BT-
infected animals. Indeed, some municipalities with clinical
cases but incomplete data were excluded from the analysis,
and we did not consider municipalities where they were
no clinical cases but where seropositive farm animals were
reported. However, while the case detection system based
on clinical suspicion underestimated the real impact of the
epidemic, it indicated a correct spatial trend [59].

In conclusion, TSA modelling procedure, combined
with a spatial error model to limit the effect of autocorre-
lated residuals, is a powerful tool to provide information
on the direction and speed of disease diffusion when the
only data available are case date and location. Our study
was a first step in describing the diffusion process for BT
in France and showed that the spread of BT was primar-
ily local. The next step in the spatial analytic process is to
understand why BT spread the way it did. This will be
achieved by using logistic regression to investigate the
correlation between ecological factors, i.e., landscape
pattern, farm animal density, meteorological conditions,
and velocity of spread.

Additional material

Additional file 1: Description of the row standardized spatial
weights matrix with the neighbourhood distance of 80 km.

Additional file 2: Estimates, standard errors and p-values of m0 and
m5 spatial models.
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