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  ABSTRACT 

  Genomic selection aims to increase accuracy and to 
decrease generation intervals, thus increasing genetic 
gains in animal breeding. Using real data of the French 
Lacaune dairy sheep breed, the purpose of this study 
was to compare the observed accuracies of genomic 
estimated breeding values using different models (in-
finitesimal only, markers only, and joint estimation of 
infinitesimal and marker effects) and methods [BLUP, 
Bayes Cπ, partial least squares (PLS), and sparse PLS]. 
The training data set included results of progeny tests 
of 1,886 rams born from 1998 to 2006, whereas the 
validation set had results of 681 rams born in 2007 
and 2008. The 3 lactation traits studied (milk yield, 
fat content, and somatic cell scores) had heritabilities 
varying from 0.14 to 0.41. The inclusion of molecular 
information, as compared with traditional schemes, 
increased accuracies of estimated breeding values of 
young males at birth from 18 up to 25%, according to 
the trait. Accuracies of genomic methods varied from 
0.4 to 0.6, according to the traits, with minor differ-
ences among genomic approaches. In Bayes Cπ, the 
joint estimation of marker and infinitesimal effects had 
a slightly favorable effect on the accuracies of genomic 
estimated breeding values, and were especially ben-
eficial for somatic cell counts, the less heritable trait. 
Inclusion of infinitesimal effects also improved slopes 
of predictive regression equations. Methods that select 
markers implicitly (Bayes Cπ and sparse PLS) were 
advantageous for some models and traits, and are of 
interest for further quantitative trait loci studies. 
  Key words:    dairy sheep ,  genomic selection ,  Bayes 
Cπ ,  partial least squares 

INTRODUCTION

  Genomic selection (GS) aims at the improvement 
of accuracy of genetic indexes for young animals, thus 

allowing their early selection, a concomitant decrease 
in generation intervals, and new selection steps with 
potential favorable effect on selection intensities. Out-
performing traditional genetic evaluation of dairy spe-
cies is one of the main challenges of GS. Traditional 
evaluation warrants high selection accuracy for males 
and reliable EBV for traits with varying heritability, 
via progeny testing. However, progeny testing generates 
long generation intervals at high testing costs. 

  In dairy sheep, progeny testing is inserted into a 
pyramidal management of the population (Barillet, 
1997, 2007; Carta et al., 2009) with the breeders of the 
nucleus flock at the top, benefiting from pedigree and 
official milk recording, AI, and complementary natural 
mating. The genetic progress is then transferred to the 
commercial population, either through AI or natural-
mating rams born from AI sires (Barillet, 1997; Carta 
et al., 2009). The delay observed between the genetic 
gain in the nucleus and the commercial population in 
the Lacaune breed is around 5 to 7 yr (Barillet, 1997; 
Barillet et al., 2001). 

  In the 1980s, sheep schemes were applied to improve 
milk composition and milk yield using EBV based on a 
linear combination of fat and protein yields combined 
with fat and protein contents (Barillet et al., 2001). 
By 2006, genetic gains per year in the Lacaune breed 
were close to 6 L for milk yield and more than 0.1 
g/L for fat and protein content. Progeny testing was a 
key element with more than 400 rams tested per year 
in about 400 flocks (Barillet, 2007). In recent years, 
more interest has been given to functional traits, such 
as milkability, udder traits, reproduction, and genetic 
disease resistance (mastitis and scrapie resistance), to 
improve quality of products, animal health and welfare, 
and to limit costs of the dairy sheep industry and the 
recording system altogether. 

  By implementing GS, breeding organizations may 
create new opportunities: cost reductions of selection 
schemes with a substantial reduction on the genetic 
gains gap between the nucleus and the commercial 
flocks (Schaeffer, 2006), an increase of present rates of 
genetic progress, the improvement of the monitoring 
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and control of inbreeding rates, and new possibilities to 
include new traits as selection criteria (Colleau et al., 
2009). The dramatic decrease in the cost of whole-ge-
nome genotyping and sequencing of animals has made 
it possible to scan the entire genome of thousands of 
animals with high-density markers. Using marker infor-
mation allows capturing parts of total genetic variance 
unexplained by traditional genetic models, on hard-to-
measure, low-heritable, sex-limited, and postmortem 
traits (Goddard and Hayes, 2007; Hayes et al., 2009).

Currently, in dairy sheep, molecular information is 
being used in selection for scrapie resistance (genotypes 
of the PrP gene) and parentage testing (microsatellites 
and SNP). Quantitative trait loci fine mapping is being 
conducted after the detection of several QTL affect-
ing functional and productive traits (milk traits, SCC, 
nematode resistance, FA content in milk fat, and udder 
traits; Barillet, 2007; Gutiérrez-Gil et al., 2008; Carta 
et al., 2009).

The recently created International Sheep Genomic 
Consortium (ISGC; http://www.sheephapmap.org), a 
partnership among 20 countries, has developed genomic 
tools, such as the 60K SNP chip, thus bringing new 
perspectives for GS implementation by sheep breeding 
organizations. Astruc et al. (2010) points out that the 
French Lacaune dairy sheep breed has a large training 
population available to warrant accurate genomic EBV 
(GEBV). Simulation studies show that accuracies of 
GEBV are influenced by density of markers and refer-
ence population size, among other factors (e.g., Meu-
wissen et al., 2001). Studies in real populations yielded 
smaller accuracies than those reported in simulation 
studies (e.g., Legarra et al., 2008, in experimental pop-
ulations; de Roos, 2011, in commercial populations). To 
help clarify the effect of GS on real data, the purpose 
of this study was to compare several statistical models 
and methods by assessing the best accuracies of pre-
diction of daughter yield deviations (DYD) weighted 
by their effective daughter contribution (EDC) in the 
French Lacaune dairy sheep breed.

MATERIALS AND METHODS

Genotypes

All genotyped rams in the current study were 
from the Agence Nationale de la Recherche (ANR)-
SheepSNPQTL and Fonds Unique Interministériel 
(FUI)-Roquefort’in projects, both conducted at the 
UR631 Station d’Amélioration Génétique des Animaux 
(SAGA), Institut National de la Recherche Agronomique 
(INRA)-Toulouse, France, in close cooperation with the 
Lacaune associations of breeders responsible for the 
management of the breeding schemes. A total of 54,582 

SNP were available on 2,812 animals. Controls on mark-
ers were performed to check the quality of the SNP and 
the coherence between the sample identification and 
the pedigree information (Robert-Granié et al., 2011). 
The call rate procedure of 97% resulted in the exclu-
sion of 3,106 SNP. Autosomal SNP were checked for 
Hardy-Weinberg equilibrium, resulting in the exclusion 
of 2,630 SNP that did not meet the expected allele fre-
quencies. Imposed minor allele frequency requirements 
of 1% resulted in the additional exclusion of 4,841 SNP. 
Parent and progeny conflicts led to the exclusion of 
additional 76 SNP. After these quality controls, 43,929 
SNP were available for the statistical analyses. Geno-
types for individual SNP were coded as 0, 1, and 2, 
representing allele counts at each locus and assigned 
the number 5 when genotypes were missing. Missing 
values accounted for 0.18% of the total SNP available.

Animals, Phenotypes, and Pedigree Information

During quality controls, 166 animals were excluded 
by the call rate procedure, together with 79 animals 
that were excluded due to parent-progeny conflicts. 
Phenotypes on 2,567 rams were DYD weighted by 
their EDC and computed from total lactations of 
ewes (standardized to 165 d of lactation; Barillet et 
al., 2001; Baloche et al., 2011). Daughter yield devia-
tions are calculated from daughter averages corrected 
for environmental effects and the merit of their dams 
(VanRaden et al., 2009). The EDC takes into account 
the unequal distribution of phenotypes across herds 
and parities (Fikse and Banos, 2001). Three traits were 
considered, with varying heritabilities (Barillet, 2007): 
milk yield (h2 = 0.32), fat content (h2 = 0.41), and SCS 
(h2 = 0.14). The average numbers of daughters per ram 
were 70, 76, and 74 for milk yield, fat content, and 
SCS, respectively, and in accordance with the Lacaune 
breeding scheme. The pedigree file of 52,152 animals 
accounted for 10 generations of ancestors.

Rams for this study belong to the AI progeny test-
ing scheme and were born from 1998 to 2008. Data 
were split into 2 populations: a training population 
composed by 1,886 rams born between 1998 and 2006, 
and a validation population, comprising 681 rams born 
between 2007 and 2008. This sampling approach is well 
adapted to practical situations, although Amer and 
Banos (2010) and Olson et al. (2011) warned about the 
lack of complete independence between training and 
validation data.

Statistical Models

Three models were used: marker effects only, in-
finitesimal genetic effects only (here, infinitesimal is 
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preferred over polygenic, which is sometimes used to 
represent genome-wide marker effects), and marker and 
infinitesimal effects estimated jointly. The idea was to 
assess whether or not a jointly estimated model would 
perform as well as a model considering marker or in-
finitesimal effects separately. Scenarios in each method 
also considered the restriction or not on the total num-
ber of markers having a potential effect on phenotypes.

Methods

Infinitesimal BLUP and Genomic BLUP. 
Breeding values were estimated by both Infinitesimal 
BLUP (I-BLUP; Henderson, 1973) and Genomic 
BLUP (G-BLUP; VanRaden, 2008; Goddard, 2009) 
methods, with the BLUPF90 software from Misztal et 
al. (2002), updated in 2010 to account for the genomic 
relationship matrix between markers and animals. In 
this software, it is possible to compute breeding values 
for genotyped and ungenotyped animals, and the rela-
tionships among genotyped animals are computed as

 Gw = wG + (1 – w) A22,  [1] 

where Gw is a matrix of relationships combining pedi-
gree and marker data, w is a weighting coefficient, and 
A22 is the matrix of pedigree relationships among geno-
typed animals, as obtained from the whole pedigree 
(Van Raden, 2008; Aguilar et al., 2011). The genomic 
matrix (G) was G = MM /f, where M is the incidence 
matrix of marker effects, corrected by the expected 
genotype frequencies, and f p pk k

k
= −( )∑2 1  is a func-

tion of allele frequencies at the SNP loci, where pk is the 
allele frequency of the kth SNP (Van Raden, 2008; 
Aguilar et al., 2011).

In I-BLUP predictions, the G matrix in equation [1] 
had a weight w of 1%, to reproduce the relationship ma-
trix A based on the pedigree information. In G-BLUP 
predictions, the weight for the G matrix in equation [1] 
was set to 99% to create the genomic relationship ma-
trix based on the marker information. Missing values 
are taken into account by the software which sets these 
missing marker genotypes to the average of the popula-
tion, thus not impairing genomic predictions.

Bayes Cπ.  Habier et al. (2011) and Sun et al. 
(2011) proposed the Bayes Cπ method, where the phe-
notypes y are a function of marker effects τ: y = 1μ + 
Zdτ + e, where μ is an overall mean, Z is an incidence 
matrix, d is a vector of indicator variables for implicit 
selection of markers, and e is a vector of uncorrelated 
residuals normally distributed, whose variance is in-
versely proportional to the EDC of each DYD. The 

distribution for d is a multivariate Bernoulli such that 
Pr(di = 1|π) = π, where di is the indicator variable of 
the ith SNP, π is the probability that the marker has 
an effect on the phenotype. The prior distribution of 
marker effects was normal with a common variance fol-
lowing an inverted chi-square distribution. Therefore, 
the marker variance στ

2( ) is common to all loci in con-
trast to the locus-specific variance assumed in the 
Bayes B approach by Meuwissen et al. (2001).

Genomic EBV of genotyped rams were obtained 
through GS3 software developed by Legarra et al. 
(2010). Posterior distribution of variances were com-
puted using a full Monte Carlo Markov chain of 100,000 
iterations, with a burn-in of 20,000 iterations. When π 
was estimated by the algorithm, its prior distribution 
was considered to be uniform.

Four different scenarios were considered in Bayes Cπ: 
1) a model with marker effects only and estimated π 
(NOPEDPIFREE); 2) a model with marker effects 
only and π = 10%, meaning that 10% of the total 
SNP would effectively explain all genetic variance 
(NOPEDPI10%); 3) a model with marker and infini-
tesimal effects and estimated π (PEDPIFREE); and 
4) a model with marker and infinitesimal effects and π 
= 10% (PEDPI10%).

Partial Least Squares and Sparse Partial Least 
Squares. These methods are especially useful when the 
number of independent variables X (in our context, the 
incidence matrix for SNP) is larger than the number of 
observations and there is multicollinearity among X. 
Partial least squares (PLS) regression (Wold, 1966) 
combines features from and generalizes principal com-
ponent analysis (PCA) and multiple linear regressions. 
Its goal is to predict a dependent variable from a set 
of independent variables or predictors (X), which is 
achieved by extracting from the predictors a set of 
orthogonal factors called latent variables (Solberg et 
al., 2009; Colombani et al., 2010). To maximize the 
covariance between phenotypes and genotypes, several 
successive regressions are performed by projections 
onto latent variables to highlight biological effects. 
Sparse PLS (sPLS), developed by Lê Cao et al. (2009), 
performs simultaneous variable selection between geno-
types by introducing a lasso penalization on the pair 
of PLS loading vectors, which is the total number of 
SNP retained per latent variable (or per dimension). 
The mixOmics (previously called IntegrOmics) package 
for R, developed by Lê Cao et al. (2009), was used to 
obtain PLS and sPLS predicted phenotypes for geno-
typed rams. Missing values in the training data are nor-
mally taken into account by mixOmics. However, the 
subroutine for prediction of lamb phenotypes required 
complete genotypes. So, each individual SNP missing 
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value was replaced by the average value of the SNP 
codes. The imputation method did not have a strong 
effect on the predictions, as missing values in our data 
represented only 0.18% of the total SNP available (re-
sults not shown from a test on a subset of complete 
data, where some data were voluntarily deleted).

Criteria for Method Comparison

The predictive ability of methods, as suggested by 
Mäntysaari et al. (2010), was assessed in the validation 
population by 1) EDC weighted correlation between ob-
served DYD and predicted DYD and 2) EDC weighted 
regression slopes of observed DYD on predicted DYD.

Marker Contributions

Assessment of marker effects for Bayes Cπ was done 
by expressing the effects of the markers in genetic stan-
dard deviation units for each trait. For sPLS, it was 

done through variable importance in projection (VIP), 
which allows classification of SNP variables according 
to their relative importance in predicting the pheno-
types (Lê Cao et al., 2008). All VIP higher than 1 are 
considered as significant (Tenenhaus, 1998).

RESULTS AND DISCUSSION

Weighted correlations and regression slopes for all 
methods are shown in Tables 1 and 2, respectively.

Comparison Between Genomic Methods  
and Conventional Pedigree Method

All genomic methods had better predictive ability 
than I-BLUP (Table 1). Recall that we are computing 
EBV of lambs at birth, when only ancestor and collat-
eral phenotypes are available for I-BLUP. In this situa-
tion, it is expected that methods like G-BLUP improve 
accuracy because they also use ancestor and collateral 

Table 1. Correlations (ρ) between observed daughter yield deviations (DYD) and predicted DYD computed in the validation population of 681 
rams using methods infinitesimal BLUP (I-BLUP), genomic BLUP (G-BLUP), Bayes Cπ, partial least squares (PLS), and sparse PLS (sPLS) 
for milk yield (MY), fat content (FC), and SCS 

Trait

Method1

I-BLUP G-BLUP Bayes Cπ PLS sPLS

ρ ρ NOPEDPIFREE NOPEDPI10% PEDPIFREE PEDPI10% ρ Dim ρ Dim NSNP

MY 0.37 0.42 0.43 0.44 0.44 0.44 0.41 7 0.42 5 10,201
FC 0.46 0.56 0.57 0.57 0.57 0.57 0.56 12 0.56 11 35,014
SCS 0.39 0.44 0.46 0.46 0.47 0.46 0.43 6 0.43 6 28,954
1NOPEDPIFREE = marker effects only and estimated π; NOPEDPI10% = marker effects only and π = 10%, meaning that 10% of the total 
SNP would effectively explain all genetic variance; PEDPIFREE = marker and infinitesimal effects and estimated π; PEDPI10% = marker and 
infinitesimal effects and π = 10%; Dim = dimensions retained in the final model; NSNP = number of SNP selected in the final model.

Table 2. Regression slopes of observed on predicted daughter yield deviations( DYD) computed in the validation population of 681 rams using 
methods infinitesimal BLUP (I-BLUP), genomic BLUP (G-BLUP), Bayes Cπ, partial least squares (PLS), and sparse PLS (sPLS) for milk yield 
(MY), fat content (FC), and SCS 

Method1

Trait2

MY FC SCS

b SE Interval b SE Interval b SE Interval

I-BLUP 0.93 0.09 [0.75; 1.11] 0.88 0.07 [0.75; 1.01] 0.93 0.08 [0.76; 1.09]
G-BLUP 0.85 0.07 [0.71; 0.99] 0.86 0.05 [0.76; 0.96] 0.85 0.07 [0.72; 0.99]
Bayes Cπ
NOPEDPIFREE 0.93 0.07 [0.78; 1.08] 0.90 0.05 [0.80; 1.00] 0.88 0.06 [0.76; 1.01]
NOPEDPI10% 0.94 0.07 [0.80; 1.09] 0.89 0.05 [0.79; 0.99] 0.88 0.07 [0.75; 1.01]
PEDPIFREE 0.99 0.08 [0.83; 1.14] 0.93 0.05 [0.83; 1.03] 0.94 0.07 [0.80; 1.07]
PEDPI10% 1.00 0.08 [0.84; 1.16] 0.92 0.05 [0.82; 1.02] 0.92 0.07 [0.79; 1.06]
PLS 0.90 0.08 [0.75; 1.06] 0.84 0.05 [0.75; 0.94] 0.83 0.07 [0.70; 0.97]
sPLS 0.91 0.08 [0.76; 1.06] 0.81 0.05 [0.72; 0.90] 0.82 0.07 [0.68; 0.95]
1NOPEDPIFREE = marker effects only and estimated π; NOPEDPI10% = marker effects only and π = 10%, meaning that 10% of the total 
SNP would effectively explain all genetic variance; PEDPIFREE = marker and infinitesimal effects and estimated π; PEDPI10% = marker and 
infinitesimal effects and π = 10%.
2b = regression slope; interval = b ± 2 SE.
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information, plus the additional SNP information used 
to compute the actual proportion of DNA shared by 
animals instead of the expected average relationship 
used in I-BLUP.

Interestingly, methods that do not use pedigree infor-
mation, like PLS, sPLS, and NOPED implementations 
of Bayes Cπ, were also better than I-BLUP. Partial 
least squares and sPLS methods outperformed I-BLUP 
in our study and these results are similar to those in 
French dairy cattle studies (Colombani et al., 2010). 
However, superiorities of PLS and sPLS over the infini-
tesimal approach reported here for sheep are higher (up 
to +21.7% for fat content in Table 1) than those found 
in French dairy cattle.

Superiority of genomic methods over I-BLUP de-
pended on traits. For instance, G-BLUP outperformed 
I-BLUP, with correlations being 15% higher for milk 
yield, 21% higher for fat content, and 12% higher for 
SCS. For all traits, the extra accuracy provided by 
genomic data was not observed by chance, as shown 
by a significant (P < 0.01) reduction of mean square 
errors when G-BLUP was added as a second covari-
ate to the reference I-BLUP prediction model. These 
improvements are consistent with validation results of 
GS in cattle breeds (Hayes et al., 2009; Croiseau et al., 
2010; Fritz et al., 2010). In these applications, there 
is not a clear relative advantage of genomic indexes 
for low-heritability traits. However, the extra accuracy 
provided by genomic methods allows selecting young 
animals for traits with low heritability.

Comparison Among Genomic Methods

In terms of correlations, G-BLUP, PLS, and sPLS 
methods did not show important differences. This is 
a rather interesting result, as G-BLUP considers to-
tal marker effects as sums of individual SNP effects, 
whereas in contrast, PLS finds linear combinations 
among SNP, thus building multiple SNP latent vari-
ables whose correlation with phenotypes is maximized. 
It is important to mention that latent variables incor-
porate information regarding the similarities and dis-
similarities between individuals or original variables, 
although PLS and sPLS methods do not consider the 
distribution of marker variances explicitly.

The maximum correlation between phenotypes and 
genotypes was rapidly reached by PLS and sPLS meth-
ods, with few latent variables built (7, 12, and 6 dimen-
sions for milk yield, fat content, and SCS, respectively; 
Figure 1). The low number of dimensions retained il-
lustrates the good ability of both methods to capture 
the variability included in the genotypic information. 
The fact that correlations for G-BLUP, PLS, and sPLS 

methods are not far apart highlights the robustness of 
PLS approaches.

Bayes Cπ (all scenarios considered), as compared 
with G-BLUP, showed, on average, gains in correlations 
of 3.3% for milk yield, 2.3% for fat content, and 5.2% 
for SCS. Scenarios including infinitesimal and marker 
effects allowed estimation of infinitesimal and marker 
variances, whereas our G-BLUP application is solved 
with a fixed weight w of 99% to compute the relation-
ship matrix using equation [1]. These results suggest 
that G-BLUP might be improved by the use of inter-
mediate weights in equation [1]. Comparisons between 
Bayes Cπ, PLS, and sPLS methods gave similar results 
for fat content, whereas for milk yield and SCS, PLS 
and sPLS had a slightly lower performance.

Overall, genomic methods yielded correlations com-
parable to previous results, which depended on the 
amount of data available. Hayes et al. (2009) found 
a correlation of 0.60 using 4,369 significant SNP on 
protein content in dairy cattle milk and the Bayes A 
method with a validation population of 637 animals. 
This result is consistent with the correlation of 0.57 
found for fat content in the current study, with 681 
rams used as validation population, and with marker 
effects estimated by Bayes Cπ NOPEDPI10%, which 
limits the number of markers having effects to 10% of 
total SNP (4,392 SNP; Table 1).

Inclusion of Infinitesimal Effects

Minor changes were perceived across Bayes Cπ sce-
narios (i.e., models that jointly estimated marker and 
infinitesimal effects did not perform clearly better than 
models that only considered marker effects, in terms 
of correlations; Table 1). Including infinitesimal effects 
into a marker model improved slightly the correlations 
in low-heritable traits such as SCS: gains in correla-
tions of PEDPIFREE over NOPEDPIFREE were 1% 
for milk yield and 1.4% for SCS. A similar advantage 
was observed in scenarios with π fixed at 10%, where 
gains in correlations for PEDPI10% reached 1.1% for 
SCS over NOPEDPI10%. Results suggest that for low-
heritable traits such as SCS, the inclusion of pedigree 
and marker information might bring additional contri-
bution on predictions, which are neglected when con-
sidering only 1 source of information.

Olson et al. (2011) report results for milk yield and 
SCS on Holstein cattle using GEBV that combine 
parent averages with individual genomic indexes in a 
context of national genetic evaluations. The number 
of data in their study was substantially higher than 
ours (8,022 Holstein bulls vs. 1,896 rams, for training; 
2,653 Holsteins bulls vs. 681 rams, for validation) and 
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the model they used could be roughly compared with 
our Bayes Cπ PEDPIFREE model. Thus differences 
in accuracies were expected and ours were lower for 
milk yield (0.44 vs. 0.63) and for SCS (0.47 vs. 0.53). 
Inclusion of parent average in further estimations of 
GEBV for Lacaune dairy sheep might be a good option 
and might improve our results for statistical approaches 
not benefiting from pedigree information, such as PLS 
or sPLS.

Estimates of Marker and Infinitesimal Variances

The 4 Bayes Cπ scenarios provided posterior distri-
butions for the individual marker variance στ

2( ) and for 
the proportion π of markers with effects on phenotypes, 
which allowed us to approximate the genetic variance 
due to markers as 2 1 2π p pk k

k
−( )∑ στ , following Gianola 

et al. (2009) and assuming linkage equilibrium among 
marker genotypes. Variances of marker and infinitesi-
mal effects estimated in the 4 Bayes Cπ scenarios are 
presented in Figure 2, where all estimated variances are 
expressed as percentage of the marker variance esti-
mated in the NOPEDPIFREE scenario.

Models including the infinitesimal effects (Bayes Cπ 
PEDPIFREE and PEDPI10% scenarios) yielded higher 
variances of genetic origin than those estimated in 

simple marker models (+11 to +17% according to 
traits; Figure 2). The estimation of π had no effect on 
the results because the Bayes Cπ algorithm was able to 
compute total marker variance but it could not disen-
tangle π and the variance of individual markers. Inspec-
tion of results of samples generated by the Bayes Cπ 
MCMC procedure revealed a negative correlation be-
tween π and the individual marker variances: when the 
generated π is high, the individual marker variance is 
low, and vice versa, such that the estimate of total 
marker variance remained stable in different samples. 
For instance, posterior means (and their coefficients of 
variation) in the NOPEDPIFREE model for fat con-
tent were 0.20 (106%) for π, 0.01 (64%) for στ

2 , and, 
much less variable, 14.86 (8%) for the total marker 
variance.

When models included the infinitesimal effect, the 
variance due to markers decreased by about 30%. It is 
unclear whether this is an advantage (control of spuri-
ous marker effects) or a disadvantage (redundancy be-
tween infinitesimal and marker effects) of these models. 
In any case, the effect in prediction accuracy was small.

In fact, the higher variances of genetic origin in the 
models including infinitesimal effects had a favorable 
effect on the correlations between observed DYD and 
predicted DYD in the training population (i.e., when 
infinitesimal effects were included, correlations for all 

Figure 1. Changes in correlations yielded by the partial least squares (PLS) method according to the number of latent variables considered in 
the final model. Values of correlations are represented as squares (milk yield), triangles (SCS), and dots (fat content, FC). Correlations between 
observed daughter yield deviations (DYD) and predicted DYD were weighted by effective daughter contributions (EDC).
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traits were higher than 0.99) and always higher than 
correlations obtained via markers-only models. In the 
validation population, inclusion of infinitesimal effects 
improved the accuracy of GEBV for SCS and the slope 
for all traits (Tables 1 and 2).

Marker Selection

The methods Bayes Cπ and sPLS select markers 
during the estimation process. Marker selection could 
be helpful to explain, specifically for each trait, parts 
of the genetic variances not explained by infinitesimal 
models. In the current study, pre-selection of markers 
did not show a clear advantage (Tables 1 and 2), sug-
gesting that the advantage of such approach may be 
trait dependent.

Partial least squares and sPLS performed very simi-
larly across traits, although in sPLS, a restriction exists 
on the total number of SNP retained per dimension. 
Looking at sPLS results and keeping 5, 13, and 15% of 
all markers for milk yield, fat content, and SCS, respec-
tively, to represent the total genetic variation explained 
by markers, revealed results that were very close to 
those of G-BLUP.

Sparse PLS analysis can be compared with Bayes 
Cπ NOPEDPI10% and PEDPI10%, where π is fixed at 
10%. For milk yield, whereas Bayes Cπ NOPEDPI10% 

yielded a correlation of 0.44 with 4,393 SNP, sPLS cor-
relations reached 0.42 with 10,201 SNP (results shown 
in Table 1). For fat content and SCS, sPLS results 
yielded similar correlations to other methods but with 
a higher number of SNP retained per dimension in the 
final model. In this context, only a larger group of SNP, 
all with little effects, could explain part of the total 
genetic variance.

Marker Contributions

Marker effects along the genome are illustrated in 
Figure 3 (Bayes Cπ results; absolute values of effects in 
units of genetic standard deviation of each trait) and 
Figure 4 (sPLS results expressed as VIP). In Bayes Cπ, 
the 4 scenarios studied (π fixed or not and inclusion 
or not of infinitesimal effects; Figure 3) pointed to the 
same chromosome regions affecting each trait, but dis-
persion patterns of estimates of marker effects changed 
according to the model. This is clearly illustrated in 
the SCS analyses (plots in the right of Figure 3), where 
several chromosome regions have estimated effects over 
0.03 genetic standard deviations in the PIFREE sce-
narios, whereas only 1 region reaches that threshold 
in both PI10% scenarios. Including infinitesimal ef-
fects decreased further the dispersion of marker effects 
(PEDPIFREE vs. NOPEDPIFREE and PEDPI10% vs. 

Figure 2. Variances of marker and infinitesimal effects in the 4 scenarios of Bayes Cπ expressed as the percentage of the marker variances 
estimated in the scenario with marker effects only and estimated π (NOPEDPIFREE). NOPEDPI10% = marker effects only and π = 10%, 
meaning that 10% of the total SNP would effectively explain all genetic variance; PEDPIFREE = marker and infinitesimal effects and estimated 
π; PEDPI10% = marker and infinitesimal effects and π = 10%.
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Figure 3. Absolute marker effects expressed as genetic standard deviations across all scenarios of Bayes Cπ for milk yield (on the left side), fat content (in the middle), and 
SCS (on the right side). NOPEDPIFREE = marker effects only and estimated π; NOPEDPI10% = marker effects only and π = 10%, meaning that 10% of the total SNP would 
effectively explain all genetic variance; PEDPIFREE = marker and infinitesimal effects and estimated π; PEDPI10% = marker and infinitesimal effects and π = 10%.
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NOPEDPI10% scenarios for SCS in Figure 3). For the 
other traits, the choice of the model was less critical: for 
fat content, the effects in PIFREE were more variable 
than those yielded by the PI10% scenario, and for milk 
yield differences among scenarios were less visible.

Variable importance in projection coefficients using 
the sPLS method for milk yield show that by selecting 
23% of the total SNP (10,201 pre-selected SNP) most 
SNP with important effects on the trait have been cap-
tured. These results also show that the group of SNP 
with strong effects on milk yield (VIP >2; Figure 4) 
contributes with similar weights and its distribution is 
homogeneous along the genome.

In contrast with milk yield results, the sPLS method 
retained almost all SNP in the analysis for fat content. 
Here, VIP coefficients show that the distribution of 
SNP effects along the genome is heterogeneous, clearly 
suggesting that small genes contribute by having effects 
on fat content.

In Figure 4, VIP coefficients for SCS show that 1) 
1 SNP has a very strong effect (VIP >10), 2) some 
SNP have strong effects (VIP >2), and 3) most SNP 
have very small effects (VIP <2). The SNP effects are 
heterogeneously spread along the genome, the group 

of SNP with stronger effects all contributing with dif-
ferent weights and many small genes contributing to 
SCS phenotypes. This may explain why many SNP per 
dimension were retained in sPLS for SCS.

Although the scale of the graphs for each method 
is different and they are not directly comparable, in 
Bayes Cπ and in sPLS very similar results on marker 
effect plots can be seen (Figure 3 vs. Figure 4). The 
markers that showed strong effects were retrieved and 
will be validated in the protocol of QTL detection of 
SCS. This preliminary result, where effects of chromo-
some regions are estimated simultaneously, may help to 
decrease the number of candidate genomic regions to be 
studied in QTL detection.

Regression Slopes

Regression slopes are used to validate genomic evalu-
ation by comparison between the observed and expected 
regression coefficients (Mäntysaari et al., 2010). An ex-
pected coefficient of 1 should be expected if individuals 
in the validation data are unselected. In our study, the 
validation data included 84% of all rams entering the 
AI centers before progeny testing, with EBV averages 

Figure 4. Variable importance in projection (VIP) coefficients yielded by the sparse partial least squares (sPLS) method for milk yield (on 
the left side), fat content (in the middle), and SCS (on the right side). 



2732 DUCHEMIN ET AL.

Journal of Dairy Science Vol. 95 No. 5, 2012

for all traits not different from those of ungenotyped in-
dividuals. This was reflected in slopes around 1 yielded 
by some of the methods compared here (Table 2). In 
cattle studies, Olson et al. (2011) reported expected 
and realized slopes lower than those in Table 2 when 
genotyped bulls of the validation set were selected. In 
Table 2, the reference method I-BLUP yielded slopes 
close to 1, especially for milk yield and SCS. Within the 
genomic methods, upper bounds of confidence intervals 
were always less than 1 for G-BLUP and always larger 
than 1 for the Bayes Cπ method when infinitesimal 
and marker effects estimated jointly (PEDPIFREE and 
PEDPI10%).

CONCLUSIONS

This first study on genomic selection in the Lacaune 
dairy sheep shows that molecular markers can be effec-
tively used to improve current selection methods. Ac-
curacies of GEBV for males at birth can be improved 
from +18 to +25% according to traits. These results 
were obtained with a reference population of about 
2,500 proven rams and about 44,000 SNP. Accuracies 
in future implementations should be higher due to an 
increase of the size of the reference population and the 
inclusion of all the historical information used in the 
present routine of genetic evaluation. Enough selection 
accuracy would lead to an early selection of males, 
with a concomitant reduction of generation intervals. 
Expected additional genetic gain and economic advan-
tages in sheep will be lower than in dairy cattle due 
to smaller generation intervals and lower maintenance 
costs of dairy rams. Implementation of Bayes Cπ (all 
scenarios considered) yielded maximum accuracies of 
0.44 for milk yield, 0.57 for fat content, and 0.46 for 
somatic cells. The other methods yielded comparable 
accuracies. Nonetheless, the Bayes Cπ method remains 
costly in computing time among the methods consid-
ered. The PLS and sPLS methods show robustness 
in genomic EBV, as maximization of covariances be-
tween phenotypes and markers could be reached with 
few latent variables. Inclusion of infinitesimal effects 
in the prediction model had little effect on accuracies 
and it was trait dependent, with favorable results for 
the computation of GEBV for SCS. Also, inclusion of 
infinitesimal effects led to better slopes of regressions of 
observed DYD on predicted DYD. Implicit selection of 
markers had little effect on accuracies and its advantag-
es depended on the method used to choose the markers. 
Comparison of regions detected with the whole-genome 
approaches used in the present study and those found 
by QTL detection approaches will continue in the ongo-
ing SheepSNPQTL and Roquefort’in projects.
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