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Stéphanie Huguet6, Marc Giband1,7, Claire Lanaud1

1 CIRAD, UMR AGAP, Montpellier, France, 2 University of CampinasLaboratory of Genomics and Expression, Campinas, SP, Brazil, 3 CSIRO Plant Industry, Canberra, ACT,

Australia, 4 Bayer BioScience N.V., Ghent, Belgium, 5 IRD, UMR RPB, Montpellier, France, 6 URGV, UMR INRA 1165, Evry, France, 7 EMBRAPA Algodão, Núcleo Cerrado da
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Abstract

Cotton (Gossypium) fiber is the most prevalent natural product used in the textile industry. The two major cultivated species,
G. hirsutum (Gh) and G. barbadense (Gb), are allotetraploids with contrasting fiber quality properties. To better understand
the molecular basis for their fiber differences, EST pyrosequencing was used to document the fiber transcriptomes at two
key development stages, 10 days post anthesis (dpa), representing the peak of fiber elongation, and 22 dpa, representing
the transition to secondary cell wall synthesis. The 617,000 high quality reads (89% of the total 692,000 reads) from 4
libraries were assembled into 46,072 unigenes, comprising 38,297 contigs and 7,775 singletons. Functional annotation of
the unigenes together with comparative digital gene expression (DGE) revealed a diverse set of functions and processes
that were partly linked to specific fiber stages. Globally, 2,770 contigs (7%) showed differential expression (.2-fold)
between 10 and 22 dpa (irrespective of genotype), with 70% more highly expressed at 10 dpa, while 2,248 (6%) were
differentially expressed between the genotypes (irrespective of stage). The most significant genes with differential DGE at
10 dpa included expansins and lipid transfer proteins (higher in Gb), while at 22 dpa tubulins, cellulose, and sucrose
synthases showed higher expression in Gb. DGE was compared with expression data of 10 dpa-old fibers from Affymetrix
microarrays. Among 543 contigs showing differential expression on both platforms, 74% were consistent in being either
over-expressed in Gh (242 genes) or in Gb (161 genes). Furthermore, the unigene set served to identify 339 new SSRs and
close to 21,000 inter-genotypic SNPs. Subsets of 88 SSRs and 48 SNPs were validated through mapping and added 65 new
loci to a RIL genetic map. The new set of fiber ESTs and the gene-based markers complement existing available resources
useful in basic and applied research for crop improvement in cotton.
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Introduction

The two major cultivated cotton species, Gossypium hirsutum (over

90% of world’s production) and G. barbadense (7%), are allotetra-

ploids with an AD (2n = 52) genome constitution. They originated

from an hybridization between an A genome (2n = 26) species

much like modern G. arboreum and G. herbaceum, and a D genome

(2n = 26) species similar to modern G. raimondii [1]. G. hirsutum

comprises cultivars of high yield potential and broad adaptability,

that produce fibers of acceptable processing quality suited to

general purpose textiles, while G. barbadense comprises cultivars of

medium to low yield but producing fibers of excellent quality,

being extremely long, fine and strong and suited to the premium

textile market. Cotton fibers are trichome-like single cells derived

from the epidermis of the outer seed coat [2]. Fiber morphogenesis

can be divided into four distinct, but overlapping stages: initiation,

elongation, secondary cell wall (SCW) synthesis, and maturation

(desiccation). During fiber elongation (3–20 days post anthesis,

dpa), the most rapid growth occurs around 10–12 dpa, while the

transition from primary to secondary wall deposition starts around

16–20 dpa, with cellulose synthesis as the major cellular process

thereafter [3]. Cotton fibers can elongate to 3–5 cm depending on

the species, rendering them one of the longest and fastest growing

cell types in the plant kingdom [2]. Mature and dry cotton fibers

contain about 90% cellulose, most of which comprises the

secondary cell wall. Cotton fiber has attracted the most attention

from functional genomics, as highlighted by the plethora of cotton

genes isolated from ovules at the pre-flowering stage through to

maturing fibers [4–6]. The development of Expressed Sequence

Tag (EST) collections and microarray platforms have also been

used to explore predominantly fiber expressed genes [7–9] and
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various gene functional categories have been assigned to some of

the different fiber development stages [10]. In terms of physiolog-

ical and cellular processes, cotton fiber elongation is the result of a

complex interplay between cell turgor and cell wall extensibility,

requiring the involvement of various transport, catabolic, biosyn-

thetic and signaling pathways [11]. High transcription factor

activity and expression of phytohormonal regulators are associated

with the early stages of fiber development [8,12]. Cellulose

synthesis is the predominant event in fiber cells in the SCW

synthesis stage, but this SCW stage has received relatively little

attention at the genome level because of the difficulties in working

with the highly vacuolated fiber cells at this stage [13]. Most of the

genomics research on cotton fiber has also been undertaken on G.

hirsutum and its different mutant types, such as the fiberless/lintless

and short fiber mutants (e.g., [12,14,15]). Relatively few

transcriptome studies have investigated the cellular mechanisms

and genes underlying the important fiber developmental and

phenotypic differences between the two major cultivated species G.

hirsutum and G. barbadense [16–18], despite these being important in

many cotton improvement programs. It has been reported

previously [18] that fiber development proceeds with relatively

similar timelines in representative accessions of Gh and Gb under

glasshouse conditions.

ESTs represent a valuable sequence resource for comprehensive

transcriptome analyses, genome annotation, accelerating gene

discovery, large-scale expression analyses, and for facilitating

breeding objectives by providing markers tagging specific genes,

such as EST-SSRs and SNPs. Currently, there are over 5 million

ESTs (including Sanger and 454 sequences, but excluding the

rapidly increasing amounts of Illumina short read data) of

Gossypium spp. in Genbank. Among the published EST libraries,

the majority are from ovules or developing fibers. Species

representation includes both tetraploid and diploid cotton,

although G. barbadense is well under-represented. Several significant

cotton EST assemblies have been released, including those by the

Gene Index Project (Cotton Gene Index Release 11.0 from

http://compbio.dfci.harvard.edu/tgi/plant.html), with 50,873

Tentative Consensus contigs and 67,119 singletons assembled

from over 354,000 Sanger ESTs, and by the project Comparative

Evolutionary Genomics of Cotton (http://cottonevolution.info/),

including the most recent hybrid assembly (Sanger and 454-

derived sequences), released under the acronym Cotton46, which

contains approximately 4.4 million Sanger and 454 EST reads and

comprises 44,900 contigs assembled from multiple Gossypium

species. At the time of this manuscript no completed assembly of

the tetraploid cotton genome sequence has been published,

although several sequencing projects are well underway [19] and

two sequence assemblies of the diploid D genome, G. raimondii have

recently been made public ([20] and http://www.phytozome.net/

cotton.php).

Transcript abundance information can be captured using a

variety of techniques ranging from RT-PCR through cDNA

microarray hybridisation to next-generation sequencing (NGS,

RNA-Seq) technologies. The increasing throughput of NGS

technologies, in particular, shows great potential for cost–effective

large-scale generation of ESTs and has already been used in

several plant species [21,22]. High-throughput transcriptome

sequencing has not only accelerated research in comparative

genomics and biodiversity studies, but can also be used to quantify

gene expression by counting individual sequence reads unambig-

uously mapped to the corresponding transcript [23] and is rapidly

replacing microarrays as the technique of choice for global gene

expression analysis. Recent examples of in-silico expression analysis

(also called digital gene expression, DGE, analysis) between

genotypes and across different biological states or treatments in

plants using NGS transcripts sequencing include Siraitia [24],

based on Illumina/Solexa sequencing, chestnut [25], olive [26],

eucalyptus [27], watermelon [28] and cucumber [29], all based on

454 sequencing. Some challenges still remain, particularly in

polyploid species like cotton with multiple closely related genomes,

but enhanced bioinformatic tools are being developed to expedite

some of the difficulties in assembling short reads to the appropriate

homoeologs [30,31].

We recently reported the development of an inter-specific G.

hirsutum x G. barbadense RIL population [32] which was used for

QTL mapping of fiber quality traits [33] as well as for the

mapping of expression QTLs (eQTLs) using cDNA-AFLP [34]

and microarray hybridization (manuscript in preparation) to

identify genes underlying fiber quality. In this study we further

characterize the fiber transcriptomes of the two parental genotypes

of that population. We used 454 pyrosequencing to characterize

cDNAs from developing fibers at two key developmental time-

points. A unigene set was assembled and annotated, and

differential DGE was assessed from the different time-point and

genotype representations of the reads within assembled contigs. As

a complementary approach, we conducted microarray-based

hybridization profiling using the cotton Affymetrix gene chip

and labeled cDNAs from the same two genotypes and compared

differentially expressed genes identified by the two platforms. The

454 unigenes were also mined for the presence of microsatellite

repeats and SNPs.

Results

EST Sequencing and Assembly of an Expanded
Gossypium Fiber Transcriptome

In this study we examined the transcriptomes of developing

fibers of two cotton accessions representing the most important

fiber producing Gossypium species, G. hirsutum and G. barbadense,

focusing on two key developmental stages, peak fiber elongation

and the onset of secondary cell wall biogenesis, i.e. 10 and 22 dpa

respectively. Detailed statistics for the four 454 EST libraries,

combining 2 species Gh and Gb and 2 fiber development stages, 10

and 22 dpa (referred to throughout as Gh10, Gb10, Gh22 and

Gb22) are given in Table 1. One of the 4 libraries, Gb22,

generated a lower number of reads of slightly higher mean length

(Table 1).

Before assembly, the individual reads were tagged, where

possible, relative to their putative sub-genomic origin based on

Blat analysis. In total 20% of all reads were tagged as ‘A’ or ‘D’

(around 70,000 in each category). This low percentage may relate

to the high similarity of both sub-genomes but also to an

insufficient coverage of the 2 diploid reference transcriptomes.

Reference-based assembly with MIRA using Gossypium EST

assembly Cotton46 as a reference resulted in a unigene set of

46,072 sequences, 38,297 contigs (representing 545,728 reads) and

7,775 singletons (Table 1). Files containing the sequences and

quality scores were deposited at the NCBIs (ref NCBI/SRA under

accession numbers SRA051396.1).

There were on average 14.2 reads per contig and 2% of the

contigs had more than 100 reads (Table S1). Contig length was on

average 1,100 bp with 6,933 bp as a maximum (Figure 1). Sixty

two percent of all contigs were anchored to the contigs of the

reference assembly Cotton46 (shown with a ‘bb’ tag) by MIRA;

while 14,448 contigs (37%) were not anchored, suggesting that the

single pyrosequencing run detected a substantial fraction of new

fiber genes, thus providing deep coverage of the cotton fiber

transcriptome. Conversely, 27% of the contigs in the reference

Transcriptional Landscape of Cotton Fibers
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assembly Cotton46 were not represented in our libraries. This may

reflect the fact that the libraries used to assemble Cotton46 are

derived from fiber as well as non-fiber tissues.

Functional Annotation
The set of 38,297 contigs was Blast-searched against nr protein

database using Blast2GO: 25,532 had an annotation and 2,669

contigs (7%) showed no similarity. Summaries of the functional

categorization of contigs (89% were assigned a GO term) are

shown in Figure S1 (full details tabulated in Table S2). The overall

representation among the different functional GO terms was very

similar to earlier reported global transcriptome data in plants,

including cotton [35], with higher partitioning in the classes

binding and catalytic activity (category molecular function),

cellular and metabolic process (category biological process) and

cell and organelle (category cellular component). The results of the

GO enrichment analysis (performed in Blast2GO) between the

two stages of fiber development are shown in Figure 2, for contigs

Table 1. Statistics of sequencing and assembly data.

Pyrosequencing Library Gh10 Gb10 Gh22 Gb22 Total

Genotype GUA VH8 GUA VH8

Species G. hirsutum G. barbadense G. hirsutum G. barbadense

Stage 10 dpa 10 dpa 22 dpa 22 dpa

No. reads (trimmed) 175,657 197,383 194,251 124,580 691,871

No. bases (Mbp) 60,6 66,8 70,1 46,5 244

Mean length (bp) 345 338 361 373 353

No. reads ,100 bp 22,292 19,298 20,899 12,084 74,573

% 13% 10% 11% 10%

High quality reads 153,365 178,085 173,352 112,496 617,298

Assembly

No. contigs 25,773 25,729 24,932 21,362 38,297

No. reads in contigs 132,714 157,011 155,924 100,079 545,728

No. singletons 7,775

No. unigenes 46,072

Mean length (bp) 1,100

doi:10.1371/journal.pone.0048855.t001

Figure 1. Length distribution (bp) of the 38,297 contigs of the global 454 assembly.
doi:10.1371/journal.pone.0048855.g001
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showing differential DGE at 10 dpa (1,722 contigs) or at 22 dpa

(1,048 contigs) relative to the other stage and irrespective of species

of origin. Significantly more GO terms were enriched in the

contigs over-represented at 10 dpa compared to those enriched at

22 dpa (Figure 2), consistent with the difference in the total

number of contigs between these 2 categories. At 10 dpa,

numerous GO terms were over-represented in the cellular

component and biological process categories and to a lesser extent

in the molecular function category, while at 22 dpa, enrichment

was observed specifically for the carbohydrate metabolic process

(the second most enriched term, plasma membrane, was also

enriched at 10 dpa).

The comparison against the KEGG database [36] based on

Blast2GO annotation algorithm, showed that 11,848 contigs

(31%) had significant matches in the database with an enzyme

commission (EC) number corresponding to 147 different KEGG

pathways (Table S3).

Between-contig and within-contig annotation

data. Some annotation redundancy (424 proteins had hits with

10 or more contigs) was observed, with for example high numbers

of contigs annotated as alpha-tubulins (556 contigs), zinc finger

proteins (320), or DNA-binding proteins (238). Among proteins

with high representation were cellulose synthases (116) and lipid

transfer proteins (116), both known to be important in fiber

development. Redundancy may relate to: non-overlapping

sequence reads from long transcripts (probably minimized in our

case as we used a reference assembly), sequencing errors (454

sequencing technology is known to produce sequencing errors

around homopolymer stretches), splice variants, allelism, or simply

due to the fact that a number of genes occurred as different

members (multigene families) such as paralogs and homoeologs.

The 10 most abundantly expressed genes (.1,000 reads) are

presented in Table 2. Interestingly, the 1,363 reads annotated

FbLate-2 protein exclusively originated from 22 dpa fibers (no

read from the 10 dpa), with 3-times more from Gb than from Gh

(1028 vs 335), consistent with previous reports [7] where FbL2A

ranked first in terms of level of up-regulation in 24 dpa relative to

10 dpa fibers in Gh.

Fiber expressed transcription factors. The 1,116 Gossy-

pium hirsutum transcription factors, TF, present in the plant

transcription factor database TFDB (http://planttfdb.cbi.pku.edu.

cn/), representing 50 families, were used in a blastx search (E-

value $10–20) of TFs among our contigs. As a result 1,710 contigs

(or 4.4% of the 38,297 contigs) had a match with at least one

sequence of the TF database (Table S4). Most TF families (49 out

of 50) from the database were detected in our assembly, showing

they are expressed in fibers. The 9 most abundant families, in

terms of number of contigs, were MYB, MYB-related, bHLH,

bZIP, C3H, Dof, NAC, C2H2, and ERF. Together they

represented 48% of all TF annotations (Table S4) and were

essentially similar in occurrence to those reported in fibers of G.

hirsutum [12] or G. barbadense [35], or in other plant model

species [35]. However, in terms of total representation (number of

reads) the Dof family (DNA-binding with one zinc finger) was

surprisingly abundant. The contigs assigned to the Dof TF class,

which also included a majority of the actin annotations, had

comparatively more reads per contig; and represented 20% of

reads in the TF category (Table S4). Dof domain proteins are

plant-specific TF with critical roles in growth and development

[37], but have not yet been studied in any detail in cotton fiber.

Cell wall-related protein families expressed in

fibers. The database of plant cell wall biogenesis-related

proteins, Cell Wall Navigator, CWN (http://bioweb.ucr.edu/

Cellwall/) contains gene families that are involved in sugar

substrate generation and primary cell wall (PCW) metabolism

[38], with 4,591 sequences representing 35 major families. The

blastx search among our contigs was based on a fairly low

threshold (E-value $10–5) because the majority of sequences in

CWN were not from Gossypium spp. (14% from Arabidopsis and

from rice as major contributing species, and only 0.8% from

Gossypium). 2,997 of our contigs (or 8%) had a homolog in the

CWN database, corresponding to 4,070 hits (as some contigs hit

sequences in multiple CWN categories) and 75,519 individual

reads (or 14%) (Figure 3). The two most abundant cell wall

categories were glycosyl transferases (category 2.4 with 22% of the

cell wall-related contigs) and cell expansion (category 3.1, with

24% of the cell wall-related contigs), followed by nucleotide-sugar

inter-conversion enzymes (category 1.3), AGPs (category 4.5) and

glysosides hydrolases, including beta-galactosidases, BGAL, and

glycoside hydrolases, GH (category 3.3). Within the cell expansion

category the two sub-categories, expansins (3.1.1) and yieldins

(3.1.2) represented 2.9% and 20.5% of cell wall-related contigs,

respectively (Figure 3).

Changes in Gene Expression
As the cDNA libraries used in this study were not normalized,

differential DGE between libraries was assessed by read represen-

tation within contigs. In total, 4,828 different contigs were

differential (fold ratio $2 and P,0.05) between genotypes, fiber

development stages or sub-genomes (where known), or any

combination of these 3 factors. All possible pair-wise comparisons

are shown in Figure 4. The 289 most differentially-expressed genes

(fold change $20) together with their blastx annotations against nr

and Gossypium-specific protein databases are listed in Table S5.

Globally, more contigs showed an over-expression at 10 dpa as

compared to 22 dpa (1,722 compared to 1,048, Figure 4A). This

also holds true in Gh (1,067 for Gh10 compared to 581 for Gh22)

but not in Gb (556 for Gb10 compared to 577 for Gb22). Some of

the most interesting genes are presented below as either stage-

preferential or genotype-preferential markers (presented in Table

S5, including genes with higher representation and genes with fold

ratio $20).

Marker genes of fiber development. Gene(s) (contigs)

families displaying high differential expression in either the early

or late stage of fiber elongation, irrespective of genotypes, are

shown in Table 3. At the elongation stage these included

ribosomal proteins (40S and 60S), LTPs, and expansins, while at

the SCW stage these included beta tubulins, cellulose synthases

and sucrose synthases. In addition, some differential contigs

representing low-copy gene markers of the early stage included

vacuolar invertase (VIN) (Contig_26940_bb) over-expressed in

Gh10/Gh22, 3-ketoacyl-CoA reductase (step1_rep_c47717) over-

expressed in 10/22 and an acyltransferase (Contig_36761_bb)

(Table S5). Similarly, some differential gene markers of SCW (late

stage) included 1,3-beta-glucanases (Contig_4209_bb), chitinase-

like genes (Contig_9596_bb as 22.10 by 145-fold), FbLate-2

(Contig_46775_bb as 22.10 by 157-fold, Contig_44768_bb by

25-fold, and step1_rep_c47607 with 1363 reads exclusively from

22 dpa) and a Cobra-like4 protein (Contig_29232_bb as 22.10

by 75-fold) (Table S5).

Differential gene expression between

genotypes. Consistent over-expression bias in one genotype

relative to the other (irrespective of fiber development date) was

observed in the case of Gb for genes coding for 60S ribosomal

protein (52 contigs higher in Gb vs 1 higher in Gh), 40S ribosomal

protein (all 40 higher in Gb), GTP binding protein (all 11 higher in

Gb), proteasome (all 9 higher in Gb) and NADH ubiquinone

oxidoreductase (all 6 higher in Gb). The opposite trend, i.e. over-

Transcriptional Landscape of Cotton Fibers
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expression in Gh, was observed for cellulose synthase (18 higher in

Gh vs. 1 higher in Gb), sucrose synthase (all 8 higher in Gh),

Cobra-like4 protein (3 contigs higher by 14 to 22-fold in Gh), and

chitinase-like gene (Contig_33825_bb higher in Gh by 29-fold )

(Table S5). There were also 3 cases with an apparent interaction in

terms of observed DGE between the combination of genotype and

development stage: 1) Cobra-like4 protein, with 4 contigs all

higher in Gh22 than Gb22; 2), white-brown complex ABC

transporter, with 7 out of 8 contigs all higher in Gb22 than Gh22,

and 3) ABC transporter, with 2 contigs (out of 3) displaying reverse

trends in Gb and Gh, i.e. Gb22.Gb10 and Gh22,Gh10.

Differential fiber expression between homoeologs. The

proportion of reads unambiguously tagged as ‘A’ or ‘D’ was

around 20% (10% in each category), representing around 140,000

reads. Globally (Figure 4C), there was a slight, but not significant,

bias in favor of an origin from the D sub-genome as compared to

the A sub-genome (294/264). However, interestingly this trend in

favor of the D sub-genome was found significant in all individual

combinations, e.g. within genotypes and within fiber stages

(Figure 4C). Contigs showing the most significant biases (.20

fold) in either sub-genome (26 contigs in each case) are listed in

Table S5. The different cases where the A or D sub-genome biases

were observed but in opposite directions with respect to

development stage (32 contigs) or genotype (11 contigs) may

represent cases of subfunctionalization between the two genomes

[39,40], and deserve further investigation but is beyond the scope

of this article. Amongst the most interesting genes showing a sub-

genome bias was the E6 protein kinase, represented by 12 contigs

with A/D tags (7 with A-bias, none D-bias), including the 3 most

A-biased contigs (Contig_41402_bb, step1_rep_c48769, ste-

p1_rep_c47674 and step1_rep_c47626 with more than a 40 fold

expression difference between sub-genomes (Table S5).

Affymetrix Expression Data and Comparison with DGE
Probe hybridization intensity (mean of 2 replicates) variation

between fiber cDNAs at 10 dpa of Gh and Gb ranged between

210.5 and +7.8. In total, 3,697 genes displayed significant

(Bonferroni test, P,0.05) differential intensities (Table S6), with no

differences between the 2 genotypes in terms of numbers of genes

up- and down-regulated (1,836 up-regulated in Gb and 1,861 up-

regulated in Gh). Al-Ghazi, et al. [18] detected less (945)

differentially expressed genes at a similar fiber development stage

(11 dpa) using a 24K cDNA microarray, with different Gh and Gb

genotypes (Siokra V-15 and Pima S7, respectively) and showed a

slight bias in favor of up-regulated genes in Gh as compared to Gb

(549 Gh+ vs. 396 Gb+). The annotations (Blast2GO) of our

differentially regulated genes indicated that a significant number

(75) coded for ribosomal proteins, a majority of which (84%) had

higher expression in Gb than in Gh as was also observed through

DGE (52 contigs showing a Gb-bias vs. only one showing a Gh-

bias). Similarly, all but one of the 28 heat shock protein-annotated

genes were highly expressed in Gb than in Gh. There were two

chalcone synthase (CHS ) genes among genes most differentially

over-expressed in Gh, in agreement with Al Ghazi, et al. [18]. The

eleven differential (Gh vs. Gb) XETs were not consistently higher in

one species or the other (8 were higher in Gh and 3 higher in Gb).

Globally, the functional classification among GO terms of the

3,697 differentially expressed genes detected by Affymetrix arrays

corresponded well with the classification of the 454 unigenes for

this stage (not shown).

The 21,854 genes of the Cotton Affymetrix GeneChipH were

BLASTed against the 454 unigene set (Cdhit, 90% similarity).

Cross comparisons indicated that 9,979 contigs of the 454 unigene

shared sequence similarity with at least one gene of the Affymetrix

chip representing 2,915 different genes. Among the 543 contigs

that were in common between the platforms and that showed

significant differential expression between the 2 samples (eg 2

Figure 2. GO enrichment analysis between fiber development stages. The Gossip package of Blast2GO was used. Over representation of
functional classes are presented among contigs with significant DGE (over-expression) at 10 compared to 22 dpa (upper Figure) and at 22 compared
to 10 dpa (lower Figure). Significantly enriched GO terms (P,0.05) are highlighted, and the degree of color saturation of each node positively
correlates with the enrichment significance of the corresponding GO term. Box color represent significance ranging from white for least significant to
dark orange for most significant enrichment, arrows indicate hierarchical relationships.
doi:10.1371/journal.pone.0048855.g002

Table 2. Most highly abundant transcripts (contigs with .1,000 reads).

Contig No. reads Gh Gb 10 dpa 22 dpa Acc. Number* Annotation

step1_rep_c47611 2,355 1,294 1,061 1,065 1,290 AAO92753.1 GhH6 (arabinogalactan protein 2)

step1_rep_c47637 2,242 894 1,348 706 1,536 ADB54351.2 cytochrome c oxidase

step1_rep_c47617 1,971 1,088 883 1,193 778 AAB03081.1 E6 (protein kinase)

step1_rep_c47607 1,363 335 1,028 0 1,363 AAA84881.1 FbLate-2**

step1_rep_c47612 1,357 859 498 1,019 338 AAL67991.1 dehydration-induced protein RD22-like
protein

step1_rep_c47610 1,286 732 554 543 743 ABO47740.1 alpha-tubulin

step1_rep_c47608 1,221 502 719 940 281 AAG29777.1 lipid transfer protein 3 precursor

Contig_24629_bb 1,147 801 346 703 444 AAO18731.1 cysteine protease

step1_rep_c47623 1,096 349 747 420 676 ABO47736.1 alpha-tubulin

step1_rep_c47619 1,043 583 460 838 205 ABL86680.1 alpha-expansin

*Blastx were based on nr protein database; all accessions were from Gossypium species as ranked among 5 best hit scores except ADB54351 from Allium.
**the blastx annotation as FbLate-2 in G. barbadense ranked 11th (others were hypothetical protein), had 100% identity but only 25% coverage.
Number of reads of genotypes and fiber development stages are summed over 2 libraries each (Gh = Gh10+Gh22, Gb = Gb10+Gb22, 10 dpa = Gh10+Gb10, and
22 dpa = Gh22+Gb22).
doi:10.1371/journal.pone.0048855.t002
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species at 10 dpa), 403 or 74% displayed the same direction of

difference (242 genes with Gh.Gb in both platforms and

161 Gb.Gh in both platforms) while 140 showed a reverse sign

(55 Gb-bias in 454 vs. a Gh-bias on the GenChipH; and 85 Gh-bias

in 454 vs. a Gb-bias on the GenChipH). Overall the regression

(R2 = 0.14) between expression ratios between species using the

two platforms was not high, but was significant (P,0.05) (not

shown) and may reflect environmental differences between the two

locations in which the plants were grown.

Detection and Validation of Gene-derived SSR Markers
The ESTs generated in this project also served as a resource to

generate new gene-derived molecular markers. A total of 3,133

SSRs (2,930 different contigs containing 1 to 4 SSRs) with di- to

hexa-nucleotides repeats, and compound motifs (Table 4) (3,889

homopolymeric repeats not shown) were identified. Dinucleotide

repeats were identified in 1,016 cases, with the most frequent

repeats being AT/TA (48%), AG/TC (40%) and AC/TG (12%);

while the most frequent repeats among the 1,570 trinucleotide

repeats were AAG/TTC (30%), AGT/ATC (12%), ACT/ATG

(11%) and ACC/GGT (10%). Sequences of the 2,930 contigs were

blastn-searched (e-value cutoff 1e-20) against existing cotton SSR

resources in public databases (sequences retrieved from Cotton

Marker Database at http://www.cottonmarker.org/and supple-

mented with some in-house CIRAD data, totaling 16,593

sequences). Under fairly stringent conditions, only 412 of the

2,528 SSR-containing contigs had no match with an existing

sequence and hence are potentially novel. After trimming to

eliminate short sequences and sequences with repeats positioned

near the ends of contigs, 366 of these novel SSRs were further used

to design primers and of those 339 successfully met all design

criteria. The set of 339 putatively new and non-redundant EST-

SSRs and their primers will be submitted to public cotton marker

databases (CMD, CottonGen) under supplemental enumerations

in the series ‘‘mGhCIR’’, i.e. mGhCIR419 to mGhCIR757

(summarized in Table S7). We selected a set of 88 of those SSRs

(CIR419 to CIR506) for validation. All were successfully amplified

in the 2 parents Guazuncho 2 (Gh) and VH8-4602 (Gb). Thirty

three (38%) were polymorphic for at least one band between the

parents and were mapped in the RIL genetic map [32]. Forty

segregating loci were coded from 29 different EST-SSRs (11

segregated at 2 loci) and 35 new loci were integrated on the RIL

Figure 3. Number of contigs in the different cell wall-related gene categories. The gene categories definitions refer to the 2nd or 3rd

organization levels in Cell Wall Navigator, http://bioweb.ucr.edu/Cellwall/). Number of reads are indicated in square brackets.
doi:10.1371/journal.pone.0048855.g003

Transcriptional Landscape of Cotton Fibers

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e48855



genetic map using JoinMap (5 were unlinked) as detailed in Table

S8.

Detection and Validation of SNP Markers
The presence of sequence polymorphisms at a high frequency

within contigs was clearly highlighted from visual alignments of

454 reads (2 examples shown in Figure S2). Overall, among 9,188

contigs exceeding a 6x depth threshold for at least one genotype

were computationally mined for SNPs, 76,271 sequence variants

were found in 6,931 different contigs. The 2 most variable contigs

(205 and 162 SNPs) were both annotated as belonging to the

multigene family of ubiquitin proteins. Among SNPs showing a bi-

allelic pattern (99.7% of the total), transition mutations (A«G, or

T«C) were the most frequent type (61%) as compared to

transversion mutations (39%) as is commonly reported in plants

[41,42].

Intra-genotype SNPs numbered 49,279 in Gh and 43,638 in Gb,

corresponding to a density of 1 SNP every 82 and 79 bp in Gh and

Gb, respectively. Such SNPs may either represent heterozygotes

(expected to be low in our case as both genotypes are essentially

inbred cultivars), or more likely to be variants between co-

assembled genes, such as paralogous or homoeologous genes (i.e.

sequence differences between genes of the 2 sub-genomes). The

latter type could not be extensively and computationally verified

[31,41] as the rate of tagging of reads for their sub-genome origin

was too low (,20%). However variation between homoeo-copies

was visually confirmed for around 100 among the 753 contigs that

had reads tagged for both sug-genome origins (example A in

Figure S2). In a subsequent comparison, we focused only on

positions covered with 6 or more reads of both genotypes

(corresponding to 2,257,950 bp) and detected 39,099 SNPs

(Figure 5). Among these SNP positions, 18,153 intra-genotypic

SNPs were present within both genotypes (case A in Figure 5) and

were interpreted as previously as polymorphisms between sub-

genomes, or homoeo-SNPs. Another 19,439 polymorphisms

occurred only in one genotype, Gh or in Gb, the other genotype

being monomorphic (cases B and C in Figure 5). These

polymorphisms represent inter-genotypic or allelic SNPs as they

differentiate the 2 genotypes. The 39,099 SNPs also contained an

additional 1,507 inter-genotypic polymorphisms that were mono-

morphic in both genotypes and for which it is assumed that only

one of the sub-genomes was being expressed per genotype (case D

Figure 4. Changes in expression of fiber genes for all possible pair-wise comparisons. Comparisons are contrasted between: A- fiber
development dates (10 vs. 22 dpa), B-genotypes (G. hirsutum and G. barbadense, Gh vs. Gb), and C-sub-genomic origin of reads (A sub-genome vs. D
sub-genome). Gene expression was assessed digitally according to the origins of reads within contigs. In each pair-wise comparison bar length is
proportional to the number of contigs showing differential over-expression (number of contigs also indicated in parentheses). Symbol ‘*’ indicates a
statistical difference (P0.05) for each pair-wise comparison using Fisher’s exact test. For example, within the A panel (all comparisons involving 10 vs.
22 dpa), the comparison Gh10_A vs. Gh22_A (164 vs. 102, significantly different) indicates that within G. hirsutum, there are 164 contigs for which the
A-tagged reads are more abundant ($2-fold) at 10 dpa than at 22 dpa; conversely 102 contigs have more abundant representation of A-tagged
reads at 22 dpa than at 10 dpa.
doi:10.1371/journal.pone.0048855.g004
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in Figure 5). The overall density that we obtained for inter-

genotypic SNPs differentiating our 2 genotypes (thus representing

potential markers) was of 1 position every 108 bp (20,946 SNPs in

total as the sum of cases B, C and D of Figure 5 from among

2.2 Mbp). All SNPs have been deposited in the SNiPlay database

and are publically available at http://sniplay.cirad.fr, as well as in

Table S9.

Forty eight triplets of primers (primer ‘F-Gua’, primer ‘F-VH8’

and primer ‘R’) covering a subset of the identified (allelic) inter-

genotypic SNPs were synthesized for genotyping individuals from

a RIL population [30] (Table S10). The 31 SNPs which amplified

correctly and displayed a polymorphism for at least one band,

resulted in 34 segregating bands (3 SNPs had 2 segregating bands).

A majority of SNPs (28 of the 34 loci) were hemilogous (coded as

dominant) where one parent has 2 alleles and the other has one

allele and 6 were truly allelic (coded as co-dominant); the

dominant-type of segregation is consistent with the proposed

interpretation for inter-genotypic variations (case B in Figure 5).

Thirty new EST-derived SNP loci were integrated into the RIL

genetic map using JoinMap (4 were unlinked) (Table S8).

Discussion

Advances in sequencing technologies now make it possible to

conduct large-scale transcriptome analyses that can expand the

catalogue of known expressed genes (particularly the less abundant

genes) and simultaneously monitor the expression of tens of

Table 3. Genes most differentially expressed between the 2 stages of fiber development.

Gene annotation Total contigs No. contigs No. contigs

10 dpa vs 22 dpa 22 dpa vs 10 dpa

10.22 dpa

60S ribosomal protein 307 68 1

40S ribosomal protein 200 49 0

Lipid transfer protein 119 11 1

GTP binding protein 92 11 0

proteasome 67 11 0

Histone (includes histone deacetylase 66 11 0

Alpha-expansin 65 8 0

proteasome (includes alpha and beta) 53 11 0

NADH ubiquinone oxidoreductase 41 9 1

14-3-3 protein 29 9 0

profilin 24 7 0

24-sterol c-methyltransferase 20 7 0

22.10 dpa

beta tubulins (include annotation « beta chain ») 143 1 10

cellulose synthase 116 0 11

proline-rich protein 81 0 5

endosomal protein 40 1 10

vacuolar H+-translocating inorganic pyrophosphatase 36 0 6

sucrose synthase* 22 0 8

*Brill, et al. [72] reported 4 isoforms, A–D, ‘new ‘C isoform with highest level at SCW synthesis stage, which corresponded (best blast hits) to 2 of the contigs,
Contig_19300_bb and Contig_56175_bb, which had the highest differential 22.10, with 67 and 103-fold.
doi:10.1371/journal.pone.0048855.t003

Table 4. Summary table of SSR mining in the contigs.

SSR type Total Frequency per repeat motif ($10%)

p2 1,016 AT (48%)-AG/CT (40%)-AC/GT (12%)

p3 1,570 AAG/CTT (30%)-AGT/ATC (12%)-ACT/ATG (11%)-ACC/GGT (11%)

p4 81 ACAT/ATGT (33%) - AAAT/TTTA (15%) - AAAC/GTTT (13%)

p5 21 AAGAG/CTCTT (14%)- AACTC/AGTTG (11%)

p6 112 ACTCGG/AGCCTG (25%) - AGGCTC/AGTCCG (23%)

compound 333 –

Total 3,133

The frequencies of the different repeat motifs are presented in brackets.
doi:10.1371/journal.pone.0048855.t004
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thousands of genes over time, different conditions, and in different

tissues or in different genotypes. Prior to this study, the total

number of EST sequences for Gossypium in GenBank (as of July

2011) had reached 5 million, including Sanger and 454 sequences

(over 125 million when including Illumina short reads), although

coverage of all species is not uniform. With the objective of

increasing our knowledge of the fiber transcriptomes of the two

main cultivated species G. hirsutum and G. barbadense, we sequenced

cDNAs of developing fibers at two key developmental stages on a

454 sequencing platform. The four libraries (2 genotypes and 2

stages) generated 244 Mb of sequences that could be assembled

into a unigene set of some 46,000 genes that contained over

14,000 new unigenes not present in the most extensive current

Gossypium EST assembly, Cotton46 (http://cottonevolution.info/).

Given that the number of genes in the cotton genome is estimated

to be in the range 40–50,000 [43], it can be assumed that the

assembled EST resources from this study (44,900 contigs in

Cotton46, plus the 14,000 non-anchored contigs from our

assembly) represent a substantial fraction of those genes, at least

those expressed in developing fibers (75–94% of genes of the

genome are thought to be expressed in cotton fibers [4]). Our data

therefore represent an improvement both in terms of depth as well

as of species representation of fiber ESTs, particularly for G.

barbadense. Before this project, Gb was represented by less than 3%

of Sanger sequences in Genbank even including a recent report

[35] that added 10,000 sequences, and around 30% overall

including all NGS reads. Although any analysis is yet to be

published, a National Science Foundation project on comparative

evolutionary genomics of cotton has also deposited a large amount

of Illumina short read fiber EST sequences at 10 and 20 dpa, but

for different genotypes of Gh and Gb (http://cottonevolution.info

or http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.

cgi?study = SRP001603) which will be complementary to our

data. Together these two studies will have improved the EST

representation across a broader spectrum of fiber development

time-points, particularly during the less-well documented SCW

deposition stage. Indeed, the majority of earlier cotton EST

libraries originated from ovules or fibers in the early stages of

elongation.

A Complex and Dynamic Gene Network during Cotton
Fiber Development

Although only a quarter of a 454 plate was sequenced for each

library, the depth of coverage achieved was sufficient to show the

complexity of the fiber transcriptome, and the significant changes

in transcription that occur during the switch from rapid fiber

elongation to SCW deposition in both Gossypium species. As in

previous studies [44] it was clear that a large proportion of the

genome must be active during fiber growth even during SCW

synthesis when almost a single biochemical process dominates the

cell’s output – cellulose synthesis. Despite the greater coverage of

genes afforded by the 454 platform relative to conventional Sanger

EST sequencing, the molecular processes underlying the growth of

the specialised fiber cell are still far from fully understood. A third

or more of the contigs encode proteins that still are of unknown in

function in any plant, and many have no corresponding matches

to any plant genes and may thus be unique to cotton fibers.

Annotation results, however, confirmed the timing and changes in

abundance of many key fiber development genes that had

previously been reported in the literature (e.g., [45]). A high

representation of some gene families was evidenced by the large

number of contigs with very similar annotations and by the

number of reads within those contigs, such as tubulins [46–48],

AGPs [49–51], E6 kinases [52–54], and actins [53,55,56] that are

Figure 5. Schematic partitioning of the 39,099 variant positions between intra- and inter-genotypic SNPs. Variant positions are
counted among contigs covered by the 2 genotypes and with at least 6 reads of both. The blue and brown bars symbolize the AT and DT sub-
genome co-assembled homoeo-copies. Genotypes are symbolized in plain (G. hirsutum) and dotted (G. barbadense) lines.
doi:10.1371/journal.pone.0048855.g005
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involved in the processes of PCW generation and expansion.

Several highly abundant transcripts that were represented by more

than 1000 reads in our assembly confirmed earlier reports of their

high abundance in growing fibers. The protein kinase E6

(‘pCKE6’ in reference) was among the most abundant mRNA

isolated from cotton fibers, and was detected throughout the

development of the fiber [52,54]. Its biological function still

remains unclear, as no discernible phenotypic changes in fiber

development were evidenced in transgenic cotton with reduced E6

protein levels [54]. Similarly, the proline-rich arabinogalactan

protein H6 (‘pCK-H6’ in reference) that was amongst the first

abundant proteins characterized in cotton fiber [57] was highly

represented in our 454 assembly and in all 4 libraries. The FbL2A

gene is a gene activated during late primary and early SCW

synthesis stages in fiber, when massive quantities of cellulose are

synthesized and deposited in the fiber [58]. It was highly abundant

in the 22dpa stage (the 44 contigs annotated as FbLate-2 were all

over-represented from 22 dpa libraries, ie 99% of the cumulative

number of 3,800 total reads). However, the exact role of FbL2 also

remains to be elucidated. Another abundant transcript in our

assembly encoded an RD22-like protein (referred as RDL) that has

been reported as showing a fiber-enriched expression pattern with

no expression in other tissues [53].

Among all the unigenes, 1,710 (4.4%), representing nearly

22,000 reads, had a blast hit against an existing Gossypium putative

transcription factor. The frequency of occurrence of TFs has been

reported for 2 other cotton EST libraries to be 10% in G. hirsutum

ovules [12] and 12.5% in developing fibers of G. barbadense [35],

but in both cases those libraries were normalized prior to

sequencing. All categories of the TF database were represented

in our libraries, with a higher representation of MYB, MYB-

related, bHLH, bZIP, C3H, Dof, NAC, C2H2, and ERF.

Numerous MYB-related genes have been shown to regulate

Arabidopsis leaf trichome as well as cotton fiber development, and

have been the focus of intensive studies [45,59–63].

The developing cotton fiber, a single cell of the ovule epidermis

that can elongate up to 4–5 cm, represents a good model for the

study of plant cell expansion and wall biogenesis. Among enzyme

activities, many members of the cell wall-loosening expansin

family are known to be expressed during fiber elongation, while

cellulose synthesis is a predominant event in fiber cells in the SCW

synthesis stage. In this context we focused our annotation analysis

of the assembly against known cell wall-related proteins. The Cell

Wall Navigator database was used to assign cell wall related

annotations to 2,997 of the unigenes. Most cell wall-related genes

in our EST libraries, as expected, were glycosyl transferases and

cell expansion-related proteins, including expansins and yieldins.

The central process in cell wall polysaccharide biosynthesis occurs

through the action of a diverse array of glycosyltransferases [64],

although many have still to be assigned an exact biosynthetic

function. Yieldins, essentially represented in CWN by glycosyl

hydrolases (other carbohydrate-acting enzymes) and chitinases,

have been shown to participate in cell wall elongation in cowpea

hypocotyls [65] and are likely to have a similar role in the

extensive elongation of fiber cells.

Comparison of 2 Gossypium Species Transcriptomes at
the 2 Fiber Development Stages

We used the number of reads assembled in each specific contig

to estimate digitally the expression of particular genes in the 2

genotypes and 2 development dates. We observed significant

changes in gene expression between 10 dpa, at the peak of fiber

elongation and 22 dpa, at the onset of SCW synthesis. Globally,

the earlier stage was transcriptionally more complex than the later

stage. The 10 dpa libraries contributed a higher number of contigs

as compared to 22 dpa (33,750 vs. 30,658, +10%). This holds true

also by the respective numbers of differential contigs at these two

stages (Figure 4A), e.g. 1,722 contigs up-regulated at 10 dpa as

compared to 1,058 at 22 dpa, and by the GO enrichment analysis

(Figure 2) that showed many more ontology functional categories

to be over-represented at 10 dpa. The observation that fiber

elongation was a more active stage in terms of the abundance and

diversity of transcripts confirms our recent report that nearly 3

times (3,263 vs. 1,201) more eQTLs were mapped at 10 dpa as

compared to 22 dpa [34] in a fiber cDNA-AFLP experiment using

a RIL population derived from the same two genotypes. Al Ghazi,

et al. [18] noted that 20–30% more genes were more highly

expressed during fiber elongation (11 dpa) than during SCW

thickening (21 dpa) in their microarray analysis of two other

cultivars of Gb and Gh. Recent Affymetrix-based hybridizations

data reported twice more differentially expressed transcripts in

10 dpa-old fibers of Gh under drought stress as compared to

20 dpa (2,329 vs. 1,221) [9]. However, we also observed that the

10 dpa-bias was prevalent in Gh, with 1067 differential contigs for

Gh10 and 581 for Gh22, and not in Gb (Figure 4B). This latter

observation is possibly indicative of a time-lag difference in fiber

development between the 2 species, whereby fibers of Gb would be

transcriptionally active during a longer period as compared to Gh.

Such hypothesis is supported in the genotypic pair-wise compar-

isons (Gh compared to Gb in Figure 4B) by the significantly higher

number of over-expressed genes in Gb compared to Gh at 22 dpa

(667 for Gb22 compared to 443 for Gh22) with no difference at

10 dpa (566 vs. 543). Other reports [66,67] showed only minor

differences between 10 and 20 dpa in fibers in 2 Gh accessions.

Overall, the 454 data appear to provide a reliable representation

of the transcriptomes of elongating and maturing cotton fibers,

and in general, confirmed the involvement of known key enzymes

and structural proteins at each of the different fiber stages. Apart

from the cell wall-related genes mentioned above, such as expansin

in the earlier stage and cellulose and sucrose synthases in the later

stage; several other genes encoding enzymes involved in lipid

metabolism were activated during fiber elongation, such as LTPs

[68] or ketoacyl-CoA reductase [69]. This is consistent with the

requirement in developing fiber cells for additional membrane

synthesis, but also in signalling cascades involving lipids, partic-

ularly very long chain fatty acids [70] (Table S5). In the later stage,

apart from the accumulation of a series of well described cell wall-

related genes such as tubulins, cellulose and sucrose synthases

[71,72] and invertase [10,73–75], we observed differential

expressions for 1,3-beta-glucanase [16,18,76,77], chitinase-like

gene [4,35,51,78,79], and a Cobra-like4 protein [51,80] (Table

S5). Among the 116 contigs annotated as cellulose synthases, 11

showed differential expression relative to fiber development stage

(Table 3). In all cases expression at 22 dpa was higher that at

10 dpa. This observation is not completely in agreement with that

of Kim and Triplett [71] who showed that among 14 putative

CesA isoforms, some were expressed early in elongating fibers,

while others were expressed during SCW thickening or throughout

fiber development.Transcription factors with differential expres-

sion according to development stage (117 contigs among 2,770, or

4.2%) were equally shared between contigs up-regulated at 10 dpa

(59 contigs) and at 22 dpa (58 contigs), unlike an earlier report [12]

suggesting an up-regulation of TFs mainly during early stages of

fiber and ovule development.

As previously mentioned the two species studied have significant

differences in fiber quality at maturity, with the Gb variety having

fibers that are around 33% longer, 31% stronger and 29% finer

than those in the Gh variety [32,33]. It was expected that the
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magnitude of the phenotypic differences, that are considered

extremely large in terms of cotton breeding objectives, would also

be reflected in significant differences at the transcriptional level

during fiber development. A large number of genes (2,248 contigs,

or 6% among the 38,297) were differentially expressed between

the varieties irrespective of the stage of fiber development. Such

gene expression variation between Gh and Gb fibers had been

reported in Al Ghazi, et al. [18] where differential expression

between Gh and Gb decreased from approximately 19% (4513

genes differential among 24,000 cDNA probes) at 7 dpa, to 4%

(945 genes) at 11 dpa and 1% (258 genes) at 21 dpa. In the same

study, pathways related to secondary metabolism and pectin

synthesis were amongst the most differentially expressed between

Gh and Gb during the peak elongation stage. Although annotations

with secondary metabolism were abundant in a number of contigs

in our assembly, we did not observe such a genotypic difference in

our material in these GO categories. Different cellulose synthases

were noted to be quite stage-specific with high abundance at the

SCW stage and completely absent from the 10 dpa samples (at

22 dpa, the number of reads of CesA1, CesA2 and CesA7 in Gh/Gb

were 620/59, 383/30 and 415/22 respectively, with none in either

species at 10 dpa). Expression of these SCW-specific CesAs was

considerably lower in the Gb22 library. These results on CesAs are

illustrative of the overall difference between Gh and Gb in the

number of contigs showing differential DGE at 10 dpa and at

22 dpa, with significantly more differential genes in Gh10

compared to Gh22 and no difference between Gb10 and Gb22

(Figure 4B). It is possible that the two genotypes under the

conditions used here are not as synchronous in their progression

through fiber development as the genotypes in Al Ghazi, et al.

[18], and that the onset of SCW deposition is more delayed in the

Gb genotype such that a prolonged elongation period may account

for its longer and finer fibers.

Although limited to the elongation stage (10 dpa), the Affyme-

trix hybridizations confirmed the genotypic differences in expres-

sion between Gh and Gb. A first evidence of reproducibility

between the 2 techniques was provided by the fact that Blast2GO

categories corresponded well. Among the 543 genes in common

between the Affymetrix chip and the 454 unigene and that showed

differential expression, 403 (74%) followed a similar direction on

the 2 platforms, including 5 LTPs, 6 alpha- and 3 beta-tubulins,

and 2 endo-1-4-beta glucanases, all over-expressed in Gh (Table

S6).

The D-genome may have a Greater Contribution to Fiber
Development than Expected

In (allo)polyploids duplicated gene copies are partly free from

functional constraints and can evolve different evolutionary paths,

from pseudogenization, to neo- or sub-functionalization [39,40].

Since part of the 454 reads were tagged for their putative sub-

genomic origin, we were able to investigate sub-genomic

expression bias at least in those genes for which we could identify

both homoeologous copies. Interestingly, a preference for tran-

scription from the DT sub-genome homoeolog was observed

within genotypes and within fiber development stages (Figure 4C).

In terms of fiber development stage, twice as many contigs were

DT-genome biased at 22 dpa as compared to 10 dpa. This agrees

with Hovav, et al. [66] who used microarray hybridization to

compare expression of different homoeologs. They examined

expression of 1,500 pairs (AT- and DT-genome homoeologs) of

homoeologous genes, and showed that homoeolog contributions

were unequal with an overall bias towards DT-genome transcrip-

tion throughout fiber development, but particularly later in

development. In our cDNA-AFLP study [34] eQTLs at 10 dpa

had a slight A-bias with respect to their chromosome localization

(1,925 on AT chromosomes vs. 1,740 on DT chromosomes) while

the reverse held true at 22 dpa (627 vs. 748). These transcriptome-

based data emphasizing the contribution of the DT-genome in

fiber development tetraploid cotton support mapping experiments

of QTLs for fiber quality traits showing that both AT and DT

chromosomes from tetraploid cotton hosted QTLs and metaQTLs

[33,81]. Modern A-genome diploid species produce spinnable

fibers while D-genome species do not. Assuming that the same

remark could stand for the A and D ancestor diploids of

tetraploids, it could be that the A-sub-genome harbored favorable

fiber alleles prior to polyploid formation, whereas the D-sub-

genome would have come under selection after polyploid

formation and contributed new allelic diversity within the

domesticated tetraploid forms [82].

More Gene-based Markers for Marker-assisted Selection
in Cotton Breeding

Large-scale sequencing of ESTs has been a source of a

considerable number of gene-based markers, including EST-SSRs

which are now widely used in constructing linkage maps, diversity

analysis, etc. in many crop species including cotton (see different

cotton SSR projects reviewed in Cotton Marker Database, CMD,

at http://www.cottonmarker.org/): more than half of the 18,000

public Gossypium SSRs gathered so far in CMD were derived from

EST-SSRs. Gene-derived SNPs are also important sources of

useful molecular markers, especially in cotton where cDNA

sequencing has been extensive across a diverse array of germplasm

sources, although they have been used in only two instances for

genetic mapping [41,83]. In this study, 339 new EST-SSR and

close to 20,000 inter-genotypic polymorphisms (allelic SNPs),

represented among 3,150 different contigs, have been generated.

Although it is expected that only a proportion of these markers will

be informative amongst diverse germplasm, they have extended

the repertoire of genic markers available in cotton for various

purposes. Sixty five new loci (35 SSRs and 30 SNPs) designed from

gene-based markers have enriched the genetic map that we had

previously developed for our RIL population.

Conclusion
In this research we describe a large-scale transcriptome analysis

from fibers of the two cultivated cotton species, G. hirsutum and G.

barbadense. An EST collection has been generated by 454 pyro-

sequencing of cDNA from the 2 species at 2 fiber development

stages, 10 and 22 days post anthesis. The assembled unigene set of

46,000 sequences (38,300 contigs and 7,700 singletons) has

expanded the catalogue of genes expressed during fiber elonga-

tion. As compared to EST resources presently in Genbanks, the

representation has been improved for the under-represented

species G. barbadense (as compared to G. hirsutum and to diploid

genomes) and for fibers in a more advanced stage of development

(22 dpa corresponding to transition from primary to secondary cell

wall synthesis). Comparative analysis of digitally-based and

hybridization-based expression data has provided evidence for

large differences in the abundance of transcripts for key genes

involved in a number of metabolic pathways potentially control-

ling fiber development, and thus potentially involved in explaining

the contrasting fiber characteristics of the 2 species.

Materials and Methods

All new data reported in this study had been deposited to

Genebank (see text for accessions numbers).
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Plant Material
cDNA libraries for sequencing were constructed from develop-

ing fibers from the two genotypes, Guazuncho 2 (G. hirsutum L.)

and VH8-4602 (G. barbadense L.), used as parents for different inter-

specific mapping populations including backcross (BC) and

recombinant inbred line (RIL) populations [32]. Four plants of

each genotype, further referred as Gh and Gb, were grown under

glasshouse conditions in Montpellier (France) as earlier described

[34]. Flowers were tagged on the day of anthesis. Boll locules

(containing seeds and fibers) from 2–5 bolls per plant were

collected at two dates, 10 or 22 dpa, between 10.00 am and

12.00 am and immediately frozen in liquid nitrogen and stored at

280uC till use. The two fiber developmental time points were

chosen as key stages corresponding to the phase of peak fiber

elongation (10 dpa) and rapid SCW synthesis stage (22 dpa).

cDNA Preparation and Sequencing
Four fiber cDNA libraries representing the two genotypes and

two stages of fiber development, were constructed from total RNA

extracted from pooled fiber samples of several bolls from two

plants as earlier described [34] following the protocol based on

MATAB and LiCl precipitation. RNA quality was checked on a

1.4% denaturing agarose gel. Total nucleic acids were quantified

by UV absorbance (DU530, Beckman Coulter, Fullerton, CA,

USA) and DNA contaminations were quantified by fluorescence of

the dye Hoechst 33258 with a Fluoroskan fluorimeter (Ascent,

Labsystems, Finland). Samples were DNaseI-treated, followed by a

phenol/chloroform extraction and a precipitation with Na-acetate

and ethanol. RNAs were resuspended in water and 5 mg of RNAs

were sent to GATC Biotech (Constanz, Germany, Inc.) for cDNA

sequencing, (http://www.gatc-biotech.com/en/sequencing/

transcriptomes.html ) without a normalization step, on a 454 GS

FLXTM Titanium genome sequencer (Roche, Inc.). A quarter-

plate sequencing run was performed for each of the four libraries

(referred as Gh10, Gb10, Gh22 and Gb22) according to GATC

Biotech proprietary methods.

EST Data Processing
Editing, trimming and assembly. Prior to their assembly

reads were labeled where possible according to their sub-genome

of origin by comparing each read against two separate EST

assemblies of the A and D sub-genomes that constitute the

polyploid cotton genome. ESTs (Sanger-only) from G. arboreum

(Ga, A sub-genome progenitor) and G. raimondii (Gr, D sub-

genome progenitor) were retrieved from Genbank and assembled

separately (CAP3, 95%, 100 bp overlap), resulting in 6,469 contigs

and 19,898 singletons for Ga and 8,650 contigs and 15,768

singletons for Gr. All reads were compared using Blat software

[84] against the two assemblies using default parameters. Reads

were assigned an ‘A’ or ‘D’ tag depending on the results of the

Blat. Tags with equal similarity against both progenitors or with

similarity with only one progenitor were labelled as unknown sub-

genome. This approach has been used previously and has allowed

the A and D copies to be assessed as separate entities, including in

terms of relative expression between homoeologs [66].

A global (all four libraries pooled) reference-based assembly was

made using MIRA software (default parameters for this type of

assembly) [85]. We used the public data of hybrid Sanger/454

cotton ESTs assembly Cotton46 from http://cottonevolution.

info/as reference.

Digital gene expression analysis. The comparison of the

number of EST reads (normalized to the overall number of reads

in each of the libraries) within contigs was used as an indicator of

the relative digital gene expression, DGE, and for comparing

different libraries. To access the differentially expressed genes we

used the R statistic described in Sketel et al. [86] and we accepted

the genes with p-value less than 0.05 and fold change greater than

2. In our case, pairwise comparisons were made possible between

genotypes (irrespective of fiber stage), fiber development stages

(irrespective of genotypes), and A/D sub-genomes, as well as for all

combinations of these factors, such as for example the relative

representation of A vs. D tags within the Gh genotype at 10 dpa.

Functional annotation. Gene ontology (GO) annotation of

the contigs (singletons not considered) were assigned using

Blast2GO [87,88] using a minimum E-value cutoff of 1e-6. We

also retrieved the EC numbers and constructed KEGG pathways

[36] based on the Blast2GO annotation algorithm. GO enrich-

ment analysis was implemented in the GOSSIP package of

Blast2GO using Fisher’s exact test (alpha = 0.05). Statistically

enriched functional classes were identified between the two stages

of fiber development, 10 and 22 dpa using the two sets of contigs

showing differential DGE between the two conditions, either over-

expressed at 10 or at 22 dpa, respectively.

Additionally, two targeted functional classifications were

undertaken to identify putative (i) cell wall-related proteins and

(ii) transcription factors. The Cell Wall Navigator, CWN [38]

database was used to retrieve sequences (4,767) of proteins that are

involved in plant cell wall biogenesis. Secondly Gossypium

transcription factors were retrieved from the Plant Transcription

Factor DataBase, Plant TFDB (1,116 Gossypium TFs present as

protein sequences downloadable at http://planttfdb.cbi.pku.edu.

cn/). The nucleotide sequences of the 454 contigs were then

blastx-searched against both protein sequences.

Microsatellite and SNP Identification
Identification of microsatellites, or Simple Sequence Repeats

(SSR), was performed using the MISA search tool [89] specifying a

minimum of 10 (mononucleotide), 6 (di-nucleotides motifs) and 5

repeats (tri- to hexa-nucleotides), and a maximum of 100 bases

interruption for compound repeats. Primers for detection of the

SSRs were designed using BatchPrimer3 [90].

Putative SNPs were mined from the global assembly of 454

cDNA sequences originating from the 2 genotypes. Due to the

potential co-assembly of copies from the constituent sub-genomes

of a polyploid genome, it is expected that different types of variants

would be recovered, such as true allelic variants between

genotypes, paralogs and heterozygotes, but also variants between

copies of the individual sub-genomes (also referred as homoeo-

SNPs) [31]. In the case of tetraploid AD cotton, the presence of

homoeologous variants from the AT and DT sub-genomes has long

been recognized and diagnosed through sequence alignment with

sequence resources from contemporary diploid A and D species

[41]. SNP mining was based on bio-informatic pipelines developed

locally, including a dedicated module for SNP discovery from Ace

assemblies such as those provided by the MIRA assembler.

Resulting SNPs, consensus alleles and sequences were finally

integrated in the SNiPlay database [91] (http://sniplay.cirad.fr/).

SNiPlay includes a searchable Web interface where all SNPs can

be queried using different criteria. Searches for sequence variants

only considered base changes (indels not considered), and was

conducted at 2 levels, within genotype and between genotypes. At

the intra-genotypic level, SNPs were called independently on the 2

genotypes if the following conditions were met: (1) coverage depth

of the given genotype was $6, and (2) the minor allele occurred in

at least 10% of the alleles examined and with a minimum of 2

occurrences. At the inter-genotypic level, only positions respecting

the 6x coverage depth for the 2 genotypes (i.e. 12x minimum) were

considered.
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Validation of SSRs and SNPs
We selected 88 SSRs for validation using DNAs from the two

genotypes. Polymorphic SSRs were then screened over DNAs of

the RIL population (140 individuals) derived from the same two

genotypes following our standard protocol [32]. Segregating

bands/loci were then integrated on the RIL genetic map using

JoinMap as previously described [32].

From the computationally mined putative inter-genotypic

SNPs, 100 were visually confirmed using Tablet [92], and 48

were selected based upon their clear allelic partitioning between

the two sequenced genotypes and secondly on their amenity for

designing diagnostic PCR primers. The protocol described in

Gaudet, et al. [93] was then followed with minor modifications for

genotyping the RIL mapping population by allele-specific PCR

and electrophoresis. The two forward allele-specific primers for the

2 genotypes were tailed with 5 or 15 bases (to make a 10 bp size

difference in the resulting PCR product), respectively, and 2

different destabilizing mismatches were introduced at position 24

at the 39 end. Primers were designed with Primer 3 (http://

primer3.sourceforge.net/). Oligo Analyzer V3.1 (http://www.

idtdna.com/analyzer/applications/oligoanalyzer/Default.aspx)

was then used to optimize the three primers reactions (less hairpin

loops and duplexes) and primer design was revised when

necessary. Genotyping and mapping conditions of SNPs were

similar to SSRs, except that the PCR was based on a touch-down

with a Tm from 65uC to 58uC (with a step of 3uC).

Affymetrix Hybridizations and Expression Data
Plants from the two parental genotypes, Guazuncho 2 and

VH8-4602 were cultivated under glasshouse conditions in

Canberra, Australia. Total RNA was extracted from 11 dpa-old

fibers of the 2 genotypes with two independent replicates of each,

using the protocol from Wan and Wilkins [94]. Pooled RNA from

4 plants was checked for quality and quantity using an Agilent

Bioanalyser 2100 (Agilent Technologies, Santa Clara, CA, USA,

http://www.home.agilent.com) following the manufacturer’s rec-

ommendations. The RNA was sent to the Australian Genome

Research Facility Ltd. (http://www.agrf.org.au, Melbourne,

Victoria, Australia) for labeling and hybridization to the

Affymetrix GenechipH Cotton Genome Array (21,854 genes)

(Affymetrix, http://www.affymetrix.com/). The data were nor-

malized with the gcrma algorithm [95], available in the

Bioconductor package [96]. To determine differentially expressed

genes, we performed a two group t-test that assumes equal

variance between groups. The variance of the gene expression per

group is a homoscedastic variance, where genes displaying

extremes of variance (too small or too large) were excluded. The

raw P values were adjusted by the Bonferroni method, which

controls the Family Wise Error Rate (FWER) [97]. A gene was

declared differentially expressed if the Bonferroni P-Value was less

than 0.05. All these steps were performed on an Affymetrix

analysis pipeline at INRA-URGV, Evry, France. The raw.CEL

files were imported in R software for data analysis. All raw and

normalized data are available through the CATdb database

(AFFY_COTTON_2011_12, [98]]) and from the Gene Expres-

sion Omnibus (GEO) repository at the National Center for

Biotechnology Information (NCBI) [99], accession number

GEO:GSE36876.

Supporting Information

Figure S1 Gene Ontology classification of the global 454
cDNA assembly. The level 2 of classification was used. Pooled

data from 2 genotypes and 2 fiber development dates were

analyzed. The number of contigs is indicated in parentheses.

(TIF)

Figure S2 Two exemplary contigs (Tablet screenshots)
displaying the presence of SNPs. A- Example of intra-

genotypic SNPs in Contig_46738_bb (75 reads, 1770 bp). Shown

is region 509–560 bp with 8 homoeo-SNPs: reads at all 8 positions

are unambiguously tagged as belonging to the A and to the D sub-

genomes respectively: - 515 bp (allele T for A the sub-genome/

allele C for the D sub-genome), - 521 bp (G/A), - 524 (C/T), - 530

(A/G), - 535 (T/G), - 544 (C/T), - 547 (T/C), and –556 (A/G). B-

Example of inter-genotypic SNPs in Contig_5257_bb (191 reads,

1750 bp). Shown is region 406–462 bp with one SNP between the

2 genotypes in position 423 (G/A): all reads with allele G originate

from Gb and all reads with allele A originate from Gh.

(DOC)

Table S1 Distribution of the number of reads in unigenes.

(DOC)

Table S2 Results of the level 2 and 3 GO term assignment by

Blast2GO.

(XLS)

Table S3 Ten most represented KEGG pathways (number of

sequences).

(XLS)

Table S4 Frequency of the putative transcription factor

categories found among the 38,297 contigs.

(DOC)

Table S5 List of 289 contigs with highest digital differential

expression. The values higher than 20-fold expression change are

highlighted in yellow color. Differential expression is calculated

among either of 7 pairwise comparisons: Gb10/Gb22, Gb10/

G10, Gb22/Gh22, Gh10/Gh22, Gb/Gh, 10/22 or Ga/Gr

(Gb = G. barbadense, Gh, G. hirsutum, Ga = G. arboreum of A-genome,

and Gr = G. raimondii of D-genome; 10 and 22 refer to fiber

development stages in days post anthesis, dpa). The blastx

annotations are made against both unspecified non redundant

protein database and Gossypium taxid as database.

(DOC)

Table S6 List of 3,697 differential genes detected from

Affymetrix hybridizations. Comparison between Guazuncho 2

(Gh) and VH8-4602 (Gb) and for fibers at 10 dpa: mean intensities

over 2 replicates and Blast2GO annotation.

(XLS)

Table S7 Primer sequences of the 339 new non redundant EST-

SSRs (series mGhCIR419 to mGhCIR757).

(XLS)

Table S8 Mapping results of EST-SSR and EST-SNP markers.

Chromosome localization of segregating loci are indicated (‘‘unl’’

indicates an unlinked locus in JoinMap software).

(DOC)

Table S9 Sequences of the 39,099 inter-genotypic SNPs. SNPs

are representing allelic polymorphisms between Guazuncho 2 (G.

hirsutum) and VH8-4602 (G. barbadense). Sequences are provided in

the Illumina submission format, with 60 flanking bp on each side

of SNP. SNP names include contig name in the assembly and SNP

position in the unpadded alignment.

(XLS)

Table S10 Sequences of the 48 triplets of primers used for SNP

genotyping, including SNP name as used in mapping, Contig id,
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product size as from EST assembly (may differ from PCR product

size from genomic DNA).

(XLS)
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23. Torres TT, Metta M, Ottenwälder B, Schlötterer C (2010) Gene expression

profiling by massively parallel sequencing. Genome Research 18: 172–177.

24. Tang Q, Ma X, Mo C, Wilson I, Song C, et al. (2011) An efficient approach to
finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital

gene expression analysis. BMC Genomics 12: 343.

25. Barakat A, DiLoreto DS, Zhang Y, Smith C, Baier K, et al. (2009) Comparison
of the transcriptomes of American chestnut (Castanea dentata) and Chinese

chestnut (Castanea mollissima) in response to the chestnut blight infection. BMC

Plant Biology 9: 51.

26. Alagna F, D’Agostino N, Torchia L, Servili M, Rao R, et al. (2009) Comparative

454 pyrosequencing of transcripts from two olive genotypes during fruit

development. BMC Genomics 10: 399.

27. Villar E, Klopp C, Noirot C, Novaes E, Kirst M, et al. (2011) RNA-Seq reveals

genotype-specific molecular responses to water deficit in eucalyptus. BMC

Genomics 12: 538.

28. Guo S, Liu J, Zheng Y, Huang M, Zhang H, et al. (2011) Characterization of

transcriptome dynamics during watermelon fruit development: sequencing,

assembly, annotation and gene expression profiles. BMC Genomics 12: 454.

29. Guo S, Zheng Y, Joung JG, Liu S, Zhang Z, et al. (2010) Transcriptome

sequencing and comparative analysis of cucumber flowers with different sex

types. BMC Genomics 11: 384.

30. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev

Genet 12: 671–682.

31. Kaur S, Francki MG, Forster JW (2012) Identification, characterization and

interpretation of single-nucleotide sequence variation in allopolyploid crop

species. Plant Biotechnol J 10: 125–138.

32. Lacape J-M, Jacobs J, Arioli T, Derijcker R, Forestier-Chiron N, et al. (2009) A

new inter-specific, Gossypium hirsutum x G. barbadense, RIL population: towards a

unified consensus linkage map of tetraploid cotton. Theoretical and Applied

Genetics 119: 281–292.

33. Lacape J-M, Llewellyn D, Jacobs J, Arioli T, Becker D, et al. (2010) Meta-

analysis of cotton fiber quality QTLs across diverse environments in a Gossypium

hirsutum x G. barbadense RIL population. BMC Plant Biology 10: 132.

34. Claverie M, Souquet M, Jean J, Forestier-Chiron N, Lepitre V, et al. (2012)

cDNA-AFLP based genetical genomics in cotton fibers. Theoretical and Applied

Genetics 124: 665–683.

35. Yuan D, Tu L, Zhang X (2011) Generation, annotation and analysis of first

large-scale expressed sequence tags from developing fiber of Gossypium barbadense

L. PLoS ONE 6: e22758.

36. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for

integration and interpretation of large-scale molecular data sets. Nucleic Acids

Research 40: D109–114.

37. Yanagisawa S (2004) Dof domain proteins: plant-specific transcription factors

associated with diverse phenomena unique to plants. Plant and Cell Physiology

45: 386–391.

38. Girke T, Lauricha J, Tran H, Keegstra K, Raikhel N (2004) The Cell Wall

Navigator database. A systems-based approach to organism-unrestricted mining

of protein families involved in cell wall metabolism. Plant Physiology 136: 3003–

3008.

39. Chaudhary B, Flagel LE, Stupar RM, Udall JA, Verma M, et al. (2009)

Reciprocal silencing, transcriptional bias and functional divergence of home-

ologs in polyploid cotton (Gossypium). Genetics 182: 5303–5517.

40. Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants.

Current Opinion in Plant Biology 8: 135–141.

41. Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA (2012)

Development and mapping of SNP assays in allotetraploid cotton. Theoretical

and Applied Genetics 124: 1201–1214.

42. Maughan PJ, Yourstone SM, Byers RL, Smith SM, Udall JA (2010) Single-

nucleotide polymorphism genotyping in mapping populations via genomic

reduction and next-generation sequencing: proof of concept. The Plant Genome

3: 166–178.

43. Rabinowicz PD, Citek R, Budiman MA, Nunberg A, Bedell JA, et al. (2005)

Differential methylation of genes and repeats in land plants. Genome Research

15: 1431–1440.

44. Hovav R, Udall JA, Chaudhary B, Hovav E, Flagel LE, et al. (2008) The

evolution of spinnable cotton fiber entailed prolonged development and a novel

metabolism. PLoS Genet 4: 1–9.

45. Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early

events in cotton fibre development. Annals of botany 100: 1391–1401.

46. Whittaker DJ, Triplett BA (1999) Gene-specific changes in alpha-tubulin

transcript accumulation in developing cotton fibers. Plant Physiology 121: 181–

188.

47. Li XB, Cai L, Cheng NH, Liu JW (2002) Molecular characterization of the

cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiology

130: 666–674.

Transcriptional Landscape of Cotton Fibers

PLOS ONE | www.plosone.org 15 November 2012 | Volume 7 | Issue 11 | e48855



48. Feng JX, Ji SJ, Shi YH, Xu Y, Wei G, et al. (2004) Analysis of five differentially

expressed gene families in fast elongating cotton fiber. Acta Biochim Biophys Sin

(Shanghai) 36: 51–56.

49. Huang GQ, Xu WL, Gong SY, Li B, Wang XL, et al. (2008) Characterization of

19 novel cotton FLA genes and their expression profiling in fiber development

and in response to phytohormones and salt stress. Physiol Plant 134: 348–359.

50. Liu D, Tu L, Li Y, Wang L, Zhu L, et al. (2008) Genes encoding fascilin-like

Arabinogalactan proteins are specifically expressed during cotton fiber

development. Plant Molecular Biology Reporter 26: 98–113.

51. Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, et al. (2010)

Phylogenetically distinct cellulose synthase genes support secondary wall

thickening in arabidopsis shoot trichomes and cotton fiber. Journal of Integrative

Plant Biology 52: 205–220.

52. John ME, Crow LJ (1992) Gene expression in cotton (Gossypium hirsutum L.) fiber:

cloning of the mRNAs. Proc Natl Acad Sci USA 89: 5679–5773.

53. Li C-H, Zhu Y-Q, Meng Y-L, Wang J-W, Xu K-X, et al. (2002) Isolation of

genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-

PCR. Plant Science 163: 1113–1120.

54. John ME (1996) Structural characterization of genes corresponding to cotton

fiber mRNA, E6: reduced E6 protein in transgenic plants with antisense gene.

Plant Molecular Biology 30: 297–306.

55. Yang YW, Bian SM, Yao Y, Liu JY (2008) Comparative proteomic analysis

provides new insights into the fiber elongating process in cotton. J Proteome Res

7: 4623–4637.

56. Li XB, Fan XP, Wang XL, Cai L, Yang WC (2005) The cotton ACTIN1 gene is

functionally expressed in fibers and participates in fiber elongation. Plant Cell

17: 859–875.

57. John ME, Keller G (1995) Characterization of mRNA for a proline-rich protein

of cotton fiber. Plant Physiology 108: 669–676.

58. Rinehart JA, Petersen MW, John ME (1996) Tissue-specific and developmental

regulation of cotton gene FbL2A. Demonstration of promoter activity in

transgenic plants. Plant Physiology 112: 1331–1341.

59. Cedroni ML, Cronn RC, Adams KL, Wilkins TA, Wendel JF (2003) Evolution

and expression of MYB genes in diploid and polyploid cotton. Plant Mol Biol 51:

313.

60. Walford SA, Wu Y, Llewellyn D, Dennis ES (2011) GhMYB25-like: a key factor

in early cotton fiber development. The Plant Journal 65: 785–797.

61. Loguercio LL, Zhang JQ, Wilkins TA (1999) Differentiated regulation of six

novel MYB-domain genes defines two distinct expression patterns in

allotetraploid cotton (Gossypium hirsutum L.). Molecular and General Genetics

261: 660–671.

62. Wang S, Wang JW, Yu N, Li CH, Gou JY, et al. (2004) Control of plant

trichome development by a cotton fiber MYB gene. The Plant cell 16: 2323–

2334.

63. Suo J, Liang X, Pu L, Zhang Y, Xue Y (2003) Identification of GhMYB109

encoding a R2R3 MYB transcription factor that expressed specifically in fiber

initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochim Biophys

Acta 1630: 25–34.

64. Scheible WR, Pauly M (2004) Glycosyltransferases and cell wall biosynthesis:

novel players and insights. Current Opinion in Plant Biology 7: 285–295.

65. Okamoto-Nakazato A, Takahashi K, Katoh-Semba R, Katou K (2001)

Distribution of yieldin, a regulatory protein of the cell wall yield threshold, in

etiolated cowpea seedlings. Plant and Cell Physiology 42: 952–958.

66. Hovav R, Udall JA, Chaudhary B, Rapp R, Flagel LE, et al. (2008) Partitioned

expression of duplicated genes during development and evolution of a single cell

in a polyploid plant. Proc Natl Acad Sci USA 105: 6191–6195.

67. Rapp RA, Haigler CH, Flagel L, Hovav RH, Udall JA, et al. (2010) Gene

expression in developing fibers of Upland cotton (Gossypium hirsutum L.) was

massively altered by domestication. BMC Biology 8: 139.

68. Ji S-J, Lu Y, Feng J-X, Wei G, Li J, et al. (2003) Isolation and analyses of genes

prefentially expressed during early cotton fiber development by subtractive PCR

and cDNA array. Nucleic Acids Research 31: 2534–2543.

69. Qin YM, Ma Pujol F, Shi YH, Feng JX, Liu YM, et al. (2005) Cloning and

functional characterization of two cDNAs encoding NADPH-dependent 3-

ketoacyl-CoA transferase fromd developing cotton fibers. Cell Research 15:

465–473.

70. Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, et al. (2007) Saturated

very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation

by activating ethylene biosynthesis. Plant Cell 19: 3692–3704.

71. Kim HJ, Triplett BA (2007) Cellulose synthase catalytic subunit (Cesa) genes

associated with primary or secondary wall biosynthesis in developing cotton

fibers (Gossypium hirsutum). World Cotton Research Conference 4, Lubbock, TX.

Available: http://icac.org/meetings/wcrc/wcrc4/presentations/data/papers/

Paper1764.pdf. Accessed 2012 Oct 23.

72. Brill E, van Thournout M, White RG, Llewellyn D, Campbell PM, et al. (2011)

A novel isoform of sucrose synthase is targeted to the cell well during secondary

cell wall synthesis in cotton fiber. Plant Physiology 157: 40–54.

73. Zhao PM, Wang LL, Han LB, Wang J, Yao Y, et al. (2010) Proteomic

identification of differentially expressed proteins in the Ligon lintless mutant of
upland cotton (Gossypium hirsutum L.). J Proteome Res 9: 1076–1087.

74. Wang L, Li XR, Lian H, Ni DA, He YK, et al. (2010) Evidence that high activity

of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation
through osmotic dependent and independent pathways, respectively. Plant

Physiology 154: 744–756.
75. Sergeeva LI, Keurentjes JJ, Bentsink L, Vonk J, van der Plas LH, et al. (2006)

Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by

QTL and mutant analysis. Proc Natl Acad Sci USA 103: 2994–2999.
76. Ruan YL, Llewellyn D, Furbank RT (2001) The control of single-celled cotton

fiber elongation by developmentally reversible gating of plasmodesmata and
coordinated expression of sucrose and K+ transporters and expansin. The Plant

cell 13: 47–60.
77. Shimizu Y, Aotsuka S, Hasegawa O, Kawada T, Sakuno T, et al. (1997)

Changes in levels of mRNAs or cell-call-related enzymes in growing cotton

fibers. Plant and Cell Physiology 38: 375–378.
78. Zhang D, Hrmova M, Wan CH, Wu C, Balzen J, et al. (2004) Members of a

new group of chitinase-like genes are expressed preferentially in cotton cells with
secondary walls. Plant Molecular Biology 54: 353–372.

79. Tu LL, Zhang XL, Liang SG, Liu DQ, Zhu LF, et al. (2007) Genes expression

analyses of sea-island cotton (Gossypium barbadense L.) during fiber development.
Plant Cell Reports 26: 1309–1320.

80. Nicol F, Hofte H (1998) Plant cell expansion: scaling the wall. Current Opinion
in Plant Biology 1: 12–17.

81. Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee P, et al. (2007) Meta-
analysis of polyploid cotton QTL shows unequal contributions of subgenomes to

a complex network of genes and gene clusters implicated in lint fiber

development. Genetics 176: 2577–2588.
82. Paterson AH, Saranga Y, Menz M, Jiang C, Wright RJ (2003) QTL analysis of

genotype x environment interactions affecting cotton fiber quality. Theoretical
and Applied Genetics 106: 384–396.

83. Yu J, Kohel R, Fang D, Cho J, Van Deynze A, et al. (2012) A high-density

simple sequence repeat and single nucleotide polymorphism genetic map of the
tetraploid cotton genome. Genes Genomes Genetics 2: 43–58.

84. Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Research 12:
656–664.

85. Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE, et al. (2004) Using
the miraEST assembler for reliable and automated mRNA transcript assembly

and SNP detection in sequenced ESTs. Genome Research 14: 1147–1159.

86. Stekel DJ, Git Y, Falciani F (2000) The comparison of gene expression from
multiple cDNA libraries. Genome Research 10: 2055–2061.

87. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, et al. (2008)
High-throughput functional annotation and data mining with the Blast2GO

suite. Nucleic Acids Research 36: 3420–3435.

88. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, et al. (2005) Blast2GO:
a universal tool for annotation, visualization and analysis in functional genomics

research. Bioinformatics 21: 3674–3676.
89. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases

for the development and characterization of gene-derived SSR-markers in barley
(Hordeum vulgare L.). Theoretical and Applied Genetics 106: 411–422.

90. You FM, Huo N, Gu YQ, Luo MC, Ma Y, et al. (2008) BatchPrimer3: a high

throughput web application for PCR and sequencing primer design. BMC
Bioinformatics 9: 253.

91. Dereeper A, Nicolas S, Le Cunff L, Bacilieri R, Doligez A, et al. (2011) SNiPlay:
a web-based tool for detection, management and analysis of SNPs. Application

to grapevine diversity projects. BMC Bioinformatics 12: 134.

92. Milne I, Bayer M, Cardle L, Shaw P, Stephen G, et al. (2010) Tablet–next
generation sequence assembly visualization. Bioinformatics 26: 401–402.

93. Gaudet M, Fara AG, Sabatti M, Kuzminsky E, Mugnozza GS (2007) Single-
reaction for SNP genotyping on agarose gel by allele-specific PCR in black

poplar (Populus nigra L.). Plant Molecular Biology Reporter 25: 1–9.

94. Wan CY, Wilkins TA (1994) A modified hot borate method significantly
enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal

Biochem 223: 7–12.
95. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003)

Exploration, normalization, and summaries of high density oligonucleotide array
probe level data. Biostatistics 4: 249–264.

96. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004)

Bioconductor: open software development for computational biology and
bioinformatics. Genome Biol 5: R80.

97. Ge H, Dudoit S, Speed TP (2003) Resampling-based multiple testing for
microarray data hypothesis. Test 12: 1–44.

98. Gagnot S, Tamby JP, Martin-Magniette ML, Bitton F, Taconnat L, et al. (2008)

CATdb: a public access to Arabidopsis transcriptome data from the URGV-
CATMA platform. Nucleic Acids Research 36: D986–990.

99. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, et al. (2007) NCBI
GEO: mining tens of millions of expression profiles–database and tools update.

Nucleic Acids Research 35: D760–765.

Transcriptional Landscape of Cotton Fibers

PLOS ONE | www.plosone.org 16 November 2012 | Volume 7 | Issue 11 | e48855


