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Evaporation from heterogeneous and sparse canopies is often represented by multisource models which take the form of electrical analogues based upon resistance networks.

. Agric For Meteorol 84: 187-205] as a basis, it is shown that the stomatal characteristics of the foliage (amphistomatous or hypostomatous) generate different formulations. New generic and more concise equations, valid in both configurations, are derived. The differences between the patch and layer approaches are outlined and the consequences they have on the composition and formulation of component fluxes are specified. Then, the issue of calculating the effective resistances of the single-layer model from multi-source representations is addressed. Finally, a sensitivity analysis is carried out to illustrate the significance of the new formulations.

Introduction

The energy transfers within heterogeneous and sparse canopies are often represented by multi-source models. The first models of this kind were designed for sparse canopies to separately account for vegetation and substrate (soil) contributions [START_REF] Shuttleworth | Evaporation from sparse crops-an energy combination theory[END_REF]; [START_REF] Choudhury | A four-layer model for the heat budget of homogeneous land surfaces[END_REF][START_REF] Shuttleworth | The theoretical relationship between foliage temperature and canopy resistance in sparse crops[END_REF]. Subsequently, more complex representations were proposed to account for heterogeneous canopies with various components (main vegetation, herbaceous substrate, bare soil) [START_REF] Dolman | A multiple-source land surface energy balance model for use in general circulation models[END_REF][START_REF] Huntingford | An intercomparison of single and dual-source vegetation-atmosphere transfer models applied to transpiration from Sahelian savannah[END_REF], but always keeping the Shuttleworth-Wallace model as a basis. In the "clumped" model of [START_REF] Brenner | The effect of clumping and stomatal response on evaporation from sparsely vegetated shrub-lands[END_REF], specially adapted to semi-arid shrub-lands, the substrate layer is divided into two sub-layers: one corresponds to the soil under the foliage and the other to the bare soil. The ERIN model of [START_REF] Wallace | Evaporation and radiation interception by neighbouring plants[END_REF] addresses the issue of evaporation in multi-species canopies through an extension of the Shuttleworth-Wallace model. From principles similar to those of [START_REF] Brenner | The effect of clumping and stomatal response on evaporation from sparsely vegetated shrub-lands[END_REF], [START_REF] Verhoef | A SVAT scheme describing energy and CO2 fluxes for multicomponent vegetation: calibration and test for a Sahelian savannah[END_REF] developed a multi-source model, where the substrate is divided into three sub-layers: grasses, herbs and bare soil.

The multi-source models are generally represented by resistance networks, which combine surface and air resistances within the canopy. They simulate fairly well evaporation provided appropriate parameterizations for component resistances are available. However, it appears that the writing of the total flux of evaporation from the component fluxes and the combination of elementary resistances differs depending on the authors and can lead to apparent inconsistencies and even inexact formulations. For instance, whereas in the first models (e.g. [START_REF] Shuttleworth | Evaporation from sparse crops-an energy combination theory[END_REF] the component fluxes of the multi-source representation are simply added, in the subsequent ones (e.g. [START_REF] Dolman | A multiple-source land surface energy balance model for use in general circulation models[END_REF]) they are weighted by the relative area of each source without clear justification. In line with the pioneering work of [START_REF] Wallace | Interactions in mixed-plant communities: light, water and carbon dioxide[END_REF] on the modelling of interactions in mixed-plant communities, the main goal of the current study is to carefully examine the formulation of these multisource models in order to clearly establish their common ground, the differences between them and the correct way to formulate them. This examination is made through the most emblematic ones [START_REF] Shuttleworth | Evaporation from sparse crops-an energy combination theory[END_REF][START_REF] Brenner | The effect of clumping and stomatal response on evaporation from sparsely vegetated shrub-lands[END_REF] and three particular issues will be addressed in relation to the main objective.

The first issue is linked to the stomatal characteristics of the canopy (amphistomatous versus hypostomatous leaves) and the impact they have on the basic equations of the multilayer representation. Although the Verhoef-Allen model accounts for differences in stomatal characteristics, the introduced modifications are not systematically applied in many other studies based on multi-source models. In the case of vineyard for example, several papers apply the Shuttleworth-Wallace model (Ortega-Farias et al. 2007;[START_REF] Zhang | An evaporation model for sparsely vegetated canopies under partial root-zone irrigation[END_REF][START_REF] Ortega-Farias | Parameterization of a two-layer model for estimating vineyard evapotranspiration using meteorological measurements[END_REF] or the clumped model [START_REF] Zhang | Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China[END_REF][START_REF] Poblete-Echeverria | Estimation of actual evapotranspiration for a drip-irrigated Merlot vineyard using a three-source model[END_REF] without correction for the hypostomatous characteristics. We propose here new generic formulations which are valid in both configurations (amphi-and hypo-stomatous).

The second issue deals with the distinction between the patch (or uncoupled) approach and the layer (or coupled) approach. As already explained by [START_REF] Lhomme | Comments on dual-source vegetation-atmosphere transfer models[END_REF] and [START_REF] Daamen | Modeling energy fluxes from sparse canopies and understorys[END_REF], the choice of a coupled or uncoupled model has significant consequences in the formulation of the basic equations. When a coupled (also called interactive or layer) model is used, component fluxes are strictly additive, whereas in an uncoupled (patch) model, component fluxes should be weighted by the relative area of each patch. This point will be addressed and discussed in relation to the clumped model of [START_REF] Brenner | The effect of clumping and stomatal response on evaporation from sparsely vegetated shrub-lands[END_REF].

The third issue addressed here occurs when the relative complexity of a multi-source model should be represented by a single-layer model, i.e., the "big leaf" model of Penman-Monteith. How should one combine the component resistances of the multi-source approach to calculate the effective resistances of the single-source? Since the aggregation procedures proposed in the literature are diverse and raise questions [START_REF] Were | Analysis of effective resistance calculation methods and their effect on modelling evapotranspiration in two different patches of vegetation in semi-arid SE Spain[END_REF], the problem will be discussed and solutions will be proposed.

The paper is divided into three main sections which examine successively the twolayer representation [START_REF] Shuttleworth | Evaporation from sparse crops-an energy combination theory[END_REF], the "clumped" or three-source model [START_REF] Brenner | The effect of clumping and stomatal response on evaporation from sparsely vegetated shrub-lands[END_REF] and the calculation of single-source effective resistances.

Numerical simulations and sensitivity analyses are presented in the last section to illustrate the interest of the new formulations.

A new and generic formulation of the two-layer model

The two-layer model of [START_REF] Shuttleworth | Evaporation from sparse crops-an energy combination theory[END_REF] represents the evaporation from a stand of vegetation composed of two main sources: a substrate (which can be bare soil or grass) and an upper canopy (main foliage). The corresponding resistance network is shown in Figure 1. The resulting formulation for total evaporation slightly differs depending on the distribution of stomata on the leaves. The amphistomatous case (stomata distributed on both sides of the leaves) is the case implicitly considered in the original formulation [START_REF] Shuttleworth | Evaporation from sparse crops-an energy combination theory[END_REF][START_REF] Shuttleworth | The theoretical relationship between foliage temperature and canopy resistance in sparse crops[END_REF]. More general equations are established here: they take into account the two possible patterns of stomatal characteristics (amphistomatous and hypostomatous).

In the two-layer model, total evaporation (λE) from the canopy is expressed as the simple sum of two components: λEf (foliage) and λEs (substrate): (2)
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The foliage boundary-layer resistance for water vapour is written similarly
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(3) However, since each leaf side is a heat source, the foliage boundary-layer resistance for sensible heat remains the same in both cases (amphistomatous or hypostomatous) and is defined as
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The hyperstomatous case (stomata only on the upper side of the leaves) is similar to the hypostomatous case and the corresponding expressions of bulk resistances are identical.

The combination equation (Penman-Monteith type) for the foliage takes the following form derived in Appendix A:
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For the substrate, resistances are always expressed per unit area of land surface and the boundary-layer resistance is assumed to be the same for sensible heat and water vapour.

Consequently, the corresponding combination equation is simply written as
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where rs,s is the substrate resistance to evaporation and ra,s the aerodynamic resistance between the substrate and the source height. Expressing Dm as a function of Da (vapour pressure deficit at the reference height zr) leads to [START_REF] Shuttleworth | Evaporation from sparse crops-an energy combination theory[END_REF], Eq. ( 8))
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The general expression of total evaporation λE is obtained by introducing Eq. ( 7) into Eqs. ( 5) and (6). At this stage, two formulations of λE are possible: the one which follows the strict formalism of Shuttleworth and Wallace's original equations and an alternative one, considered as more synthetic, which is proposed hereafter.

a. Original formulation

If we respect the original formalism, the resultant equation is written as
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In these equations A represents the available energy for the whole stand (foliage and substrate): A = Af + As. The steps of the calculation are identical to those given in the original article of [START_REF] Shuttleworth | Evaporation from sparse crops-an energy combination theory[END_REF]. The coefficients Cf and Cs are simple combinations of the basic air and surface resistances. They are expressed as ( )
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The two-layer representation of sparse canopies does not have the same mathematical form for amphistomatous and hypostomatous canopies. Some adjustments should be made when passing from one type of canopy to another: the PMf and Rf terms undergo a change and it is easy to verify that when n = 1 (amphistomatous case), the original equations of [START_REF] Shuttleworth | Evaporation from sparse crops-an energy combination theory[END_REF] are retrieved. Additionally, we have to note that the partition of the original formulation into two "Penman-Monteith" type components (foliage and substrate) is not really well-designed insofar as each part has a relatively complex form and does not represent the respective component evaporation (foliage and substrate). This can be even confusing and misleading. An alternative and simpler formulation is proposed hereafter.

b. Alternative formulation

By differently collecting the terms in the basic equations (the details of the calculation are given in Appendix B) it can be shown that the total flux of evaporation can be written as
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In Eq. ( 16) λEp represents the potential evaporation from the sparse canopy expressed as
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The other terms are defined as follows:
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This new formulation of the two-layer model has three main advantages: (i) first it is more concise than the traditional one; (ii) it avoids the confusion generated by separate evaporation terms; (iii) it involves the "climatic demand" λEp, which can be convenient and useful in many applied studies [START_REF] Lhomme | Towards a rational definition of potential evaporation[END_REF]. We also note that Eq. ( 16) has correct asymptotic limits. If there is no substrate evaporation (As is zero and rs,s is infinite), Eq. ( 16) reduces to the conventional Penman-Monteith equation for a closed canopy with n = 1:
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A reformulated clumped model

Layer or patch approach?

As already mentioned, the choice between the two representations is critical in the sense that it leads to different manner of aggregating the elementary fluxes (simple sum or area weighted addition). The choice should be dictated by the way the aerodynamic resistance above the canopy (between zm and zr) is defined. If the patches of vegetation or bare soil are large enough to allow different aerodynamic resistances to be defined for each patch, an uncoupled representation should be chosen (see Fig. 2). On the other hand, if the different sources are close to each other and do not allow the definition of separate aerodynamic resistances, a layer approach should be preferred (see Fig. 1). [START_REF] Daamen | Modeling energy fluxes from sparse canopies and understorys[END_REF] explained: "the patch model is fully justified at the scale where a boundary layer is fully developed over each patch and edge effects between patches are insignificant, but as the size of the patches decreases this model may be less valid". From a turbulent transfer perspective, McNaughton and van den Hurk (1995) also showed that the coupled (interactive) model is a simplification of more complex and realistic Lagrangian models and consequently more widely applicable than the patch model.

The clumped model of [START_REF] Brenner | The effect of clumping and stomatal response on evaporation from sparsely vegetated shrub-lands[END_REF], which is similar to the multi-species canopy representation described by [START_REF] Wallace | Evaporation and radiation interception by neighbouring plants[END_REF], constitutes in fact a modified two-layer model analogous to the Shuttleworth-Wallace model: the layer representing the soil surface is divided into two sub-layers (soil under the foliage and bare soil) and the component fluxes mix together at canopy source height before experiencing the same aerodynamic resistance above the canopy (Fig. 3). It was used and reworked by [START_REF] Domingo | Evapotranspiration model for semi-arid shrub-lands tested against data from SE Spain[END_REF] and [START_REF] Were | Analysis of effective resistance calculation methods and their effect on modelling evapotranspiration in two different patches of vegetation in semi-arid SE Spain[END_REF][START_REF] Were | Aggregating spatial heterogeneity in a bush vegetation patch in semi-arid SE Spain: a multi-layer model versus a single-layer model[END_REF] for sparse bush vegetation in semi-arid Spain and by [START_REF] Zhang | Comparison of three evapotranspiration models to Bowen ratio-energy balance method for a vineyard in an arid desert region of northwest China[END_REF][START_REF] Zhang | An evaporation model for sparsely vegetated canopies under partial root-zone irrigation[END_REF] for vineyard in an arid region of China. Following the logic of the layer model, the total flux of evaporation emanating from the canopy should be written in a simple additive form
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with subscript i = f for the foliage, i = vs for the soil below the vegetation and i = bs for the bare soil. This form of the conservation equation differs from the one used in the original model of [START_REF] Brenner | The effect of clumping and stomatal response on evaporation from sparsely vegetated shrub-lands[END_REF] where the total flux of evaporation is written as an areaweighted form of the component fluxes
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F representing the fractional cover of the foliage. Although a formulation similar to Eq. ( 25)

has been used by [START_REF] Dolman | A multiple-source land surface energy balance model for use in general circulation models[END_REF] and [START_REF] Verhoef | A SVAT scheme describing energy and CO2 fluxes for multicomponent vegetation: calibration and test for a Sahelian savannah[END_REF], we have to stress that this form of the equation is not concordant with the resistance network representing the model (Fig. 3). Given that all the component fluxes mix together at canopy source height and that a sole aerodynamic resistance is defined above the canopy, a layer approach should be preferred. We develop below the new equations of the clumped model when (i) the simple additive form of the conservation equation is used instead of the area weighted form and (ii)

when the stomatal characteristics of the foliage are taken into account.

New formulations

The component resistances should be expressed in a way similar to the two-layer 
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In fact, given the basic formalism (Ohm's law type) of component fluxes, dividing the resistances by the fractional areas is equivalent to multiplying the corresponding fluxes by the same quantity. In the original clumped model of [START_REF] Brenner | The effect of clumping and stomatal response on evaporation from sparsely vegetated shrub-lands[END_REF], where a mix of patch and layer approach is used, the surface and aerodynamic resistances of the substrates are logically expressed per unit area of land surface and consequently they are not divided by their relative area (F or 1-F). This is consistent with the patch formulation of Eq. ( 25), but as explained above, it is the approach itself which is questionable.

Each evaporation term can be expressed in the form of a Penman-Monteith equation (Eqs. ( 5) and ( 6)), n having the same significance as in the Shuttleworth-Wallace model (section 2). Replacing Dm by its expression as a function of Da (Eq. ( 7)) leads to the following
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The three coefficients C' are simple combinations of the component air and surface resistances and are detailed in Appendix C. We note that the modifications needed to take into account the stomatal characteristics of the canopy (through the parameter n) are exactly similar to the ones made to the Shuttleworth-Wallace model (Eq. ( 32) versus ( 10) and ( 57) versus ( 13)).

As for the Shuttleworth-Wallace model, it is possible to obtain an alternative formalism and to write more concisely the resultant expression of λE by collecting differently the terms of the equation (derivation similar to that described in Appendix B). With the coefficients P' defined in Appendix D, the equation equivalent to Eq. ( 16) in the two layer model is written in the clumped model as 
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where λEp represents the potential evaporation defined by Eq. ( 17). It can be verified that the asymptotic limits of this formulation are correct. When the vegetated part of the substrate tends to zero, rs,vs tends to infinite, ' vs P and Avs tends to zero and Eq. ( 33) transforms into Eq. ( 16).

Big leaf model: aggregation of component resistances

The problem to solve

In the modelling of surface fluxes at different scales, the canopy spatial heterogeneities are often averaged by using simpler representations. One way to proceed is by using a bulk-transfer approach based on a single-layer representation and the concept of kB -1 introduced by [START_REF] Owen | Heat transfer across rough surfaces[END_REF] and largely discussed since then [START_REF] Garratt | Momentum, heat and water vapour transfer to and from natural and artificial surfaces[END_REF]. However, this concept, which is defined as the logarithm of the ratio between momentum and heat roughness length, is questionable and considered as not perfectly sound from a physical standpoint [START_REF] Verhoef | Some practical notes on the parameter kB -1 for sparse canopies[END_REF][START_REF] Lhomme | Sensible heat fluxradiometric surface temperature relationship over sparse vegetation: parameterizing B -1[END_REF]. Another way to proceed is by calculating effective parameters. Presently, the problem to solve is how to correctly represent a heterogeneous canopy by a simple combination equation (Penman-Monteith model) in which the effective surface and air resistances are expressed from the component resistances of the multi-source model. The basic model [START_REF] Monteith | Evaporation and the environment[END_REF] is commonly written as
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where e s r is the effective surface resistance and ra is the aerodynamic resistance calculated between the mean source height of the canopy zm and the reference height zr (Fig. 4a). The original Penman-Monteith equation is strictly valid for a full covering canopy (big leaf model) and the surface resistance of the foliage is reduced to its stomatal component (expressed from leaf stomatal resistance as n rs,l /2LAI). The canopy boundary-layer resistance for sensible heat and water vapour is neglected or assumed to be incorporated in the aerodynamic resistance above the canopy (ra).

When a two-layer or clumped approach is considered, it is clear that the effective surface resistance ( e s r ) should be put in series with the aerodynamic resistance (ra) above the canopy. It is less clear, however, how the component surface and air resistances within the canopy should be combined into the effective surface resistance. [START_REF] Were | Analysis of effective resistance calculation methods and their effect on modelling evapotranspiration in two different patches of vegetation in semi-arid SE Spain[END_REF][START_REF] Were | Aggregating spatial heterogeneity in a bush vegetation patch in semi-arid SE Spain: a multi-layer model versus a single-layer model[END_REF], for instance, have tested with observed data of evaporation several aggregation procedures previously discussed by [START_REF] Blyth | Effective resistance to sensible and latent heat flux in heterogeneous terrain[END_REF]: in parallel or in series, weighted by the relative area F or not. The specific objective of this section is to examine this issue from a theoretical standpoint and to identify the correct way of physically combining the component resistances of multi-source models into the effective resistances of a single-layer model. The two-layer case will be thoroughly examined. Then, we will show how the equations can be extended to the clumped model.

General expressions for the two-layer model

The Penman-Monteith model results from the combination of two basic Ohm's law type formulations, one for sensible heat and the other for latent heat (Fig. 4b). Written with effective resistances they read
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Tm is air temperature at canopy source height, e h a r , is the effective resistance for sensible heat (which includes only air resistances within the canopy) and e v r is the one for water vapour (which includes air and surface resistances). Both resistances should be logically added to the aerodynamic resistance above the canopy (ra). Combining Eqs. ( 35) and ( 36 
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This set of equations constitutes the unique rationale to aggregate the elementary resistances within the canopy in order to calculate the effective resistances of a big-leaf model from a two-layer representation. Two remarks should be made, however. First, the effective resistance for water vapour e v r is a complex arrangement of air and surface resistances and does not allow air and surface components to be separated into two bulk resistances in series.

Second, the resultant combination equation does not have the common formalism of Eq. ( 34),

where the simple ratio of a surface resistance to an aerodynamic resistance appears in the denominator of the equation, allowing the effects of the air to be separated from those of the surface. Nevertheless, this simple ratio can be obtained if the air resistances within the canopy are neglected, as is the case in the original Penman-Monteith equation. This approximation can be justified since it is well known that evaporation depends much more on stomatal resistance and LAI than on internal air resistances. With this approximation the effective resistance for sensible heat e h a r , is equal to 0. This means that Eq. ( 37) transforms into Eq. ( 34) and the effective resistance for water vapour e v r becomes e s r defined as
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Decoupling surface and air resistances (2-layer model)

In order to obtain the familiar formalism of the big leaf model it is convenient to split the effective resistance for water vapour transfer e v r into two resistances put in series: one including only surface components and the other only air components:
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This assumption is physically valid to a first approximation if we consider that it roughly respects the path followed by water vapour in its transfer from the plant to the open air. In this case, the effective surface resistance e s r is logically defined as the sum of parallel resistances and obtained from Eq. ( 40). On the other hand, the effective aerodynamic resistance e v a r , can take two forms depending on the stomatal characteristics of the foliage.

In amphistomatous canopies, the same expression for the effective aerodynamic resistance (calculated as the sum of parallel resistances) can be applied simultaneously to sensible heat and water vapour: given by Eq. ( 38). Putting Eq. ( 41) into Eq. ( 37 
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Although this formulation is not perfectly sound from a physical standpoint, it is certainly more realistic than the one obtained by neglecting the air resistances within the canopy.

The hypostomatous case is more complicated since the effective aerodynamic resistance for water vapour e v a r , differs from the one for sensible heat e h a r , . For the two-layer model these effective aerodynamic resistances are respectively calculated as
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Following steps similar to those developed in Appendix A, the combination equation in the hypostomatous case writes as
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It is not possible to obtain the simple ratio of a surface resistance divided by an aerodynamic resistance. The decoupling of surface and air resistances does not allow obtaining a "strict" Penman-Monteith formalism.

Extension to the clumped model

The equations developed for the two layer model can be easily extended to the clumped model by splitting the substrate component into its two sub-components of area F (vegetated soil) and 1-F (bare soil) (see section 3.1). The resistances expressed per unit area of substrate being denoted by the upper-script 1, Eqs. ( 38) and ( 39) should be rewritten with
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When the air resistances within the canopy are disregarded, 1/rs,s in Eq. ( 40) should be replaced by Eq. ( 47) in which air resistances ( 1,vs a r and 1 ,bs a r ) are put to zero. When surface and air resistances are decoupled, Eqs. ( 43) and ( 44) should be similarly modified by expressing 1/ra,s as in Eq. ( 46). The formulations developed in section 4 are based upon a strict physical background with different levels of approximation and should be preferred to the empirical combinations tested by [START_REF] Were | Analysis of effective resistance calculation methods and their effect on modelling evapotranspiration in two different patches of vegetation in semi-arid SE Spain[END_REF][START_REF] Were | Aggregating spatial heterogeneity in a bush vegetation patch in semi-arid SE Spain: a multi-layer model versus a single-layer model[END_REF].

Sensitivity analysis

Numerical simulations were undertaken to assess the sensitivity of evaporation to some incorrectness or approximations in the formulation of multi-source representation. For the sake of convenience the analysis was carried out on the basis of the two-layer model. The parameterizations used to formulate available energy and component air resistances are given in Appendix E. Calculations are made for a canopy with a height (zh) equal to 1 m under the following meteorological conditions at a reference height of 2 m above the canopy: Rn = 400 W m -2 , Ta = 25 °C, Da = 10 hPa, ua = 2 m s -1 . These values were already used by [START_REF] Shuttleworth | Evaporation from sparse crops-an energy combination theory[END_REF] in the sensitivity analysis of their model.

Amphistomatous versus hypostomatous leaves

In section 2 it was shown that the formulation of the two-layer model differs depending on whether the canopy is amphistomatous or hypostomatous. The practical problem arises when the common formulation (strictly valid for an amphistomatous foliage) is applied to a hypostomatous one. Our simulation consisted in comparing for a hypostomatous canopy the "true" evaporation rate λE0, calculated using the right formulae (Eqs. ( 8) or ( 16) with n = 2), with the "erroneous" evaporation rate λE', calculated with the equations valid for an amphistomatous one (putting n = 1), except for the bulk stomatal resistance (Eq. ( 2)), which logically should be calculated as hypostomatous (n = 2). The error is generated in fact by an under-estimation of foliage boundary-layer resistance for water vapour ra,f,v (Eq. ( 3)): its hypostomatous value being twice its amphistomatous value (for instance, for LAI = 3, 166 s m -1 against 83 s m -1 ). Fig. 5 illustrates the corresponding error made on the evaporation rate as a function of LAI for different values of leaf stomatal resistance (rs,l) and substrate resistance (rs,s). Under the standard conditions specified above, the relative error, calculated as δλE = (λE'-λE0)/λE0, is around 10 % for LAI greater than 1, which is not negligible and justify the use of different formulations.

Effective resistances

The aim of the exercise is to compare the evaporation rate calculated using the big leaf model and different approximations for the effective resistances with the "true" evaporation rate (λE0) calculated using the two-layer model. The simulations are made here for an amphistomatous canopy. Three levels of approximation are considered: (1) λE1 is calculated by the general expressions (Eqs. ( 37), ( 38), ( 39)), which are supposed to be the most accurate ones; (2) λE2 is obtained by the expressions derived by neglecting the air resistances within the canopy (Eqs. ( 34), ( 40)); (3) λE3 when surface and air resistances are decoupled (Eqs.

(42), ( 38), ( 40)). In each case, a relative error (δλEi) is calculated as in section 5.1 under the weather conditions specified above. Fig. 6 illustrates the results obtained as a function of LAI for different values of leaf stomatal resistance (rs,l) and substrate resistance (rs,s). It is clear that λE1 yields the most accurate results with a relative error (δλE1) generally less than 5 %. λE3 provides a relatively good approximation mainly for high LAI (> 2) and high substrate resistance with a relative error generally lower than 5 %. λE2 yields the less accurate estimates, mainly when the substrate resistance is low or nil; nevertheless, the approximation can be acceptable for large LAI, provided substrate resistance be large enough.

Conclusion

In several papers of the scientific literature, the multi-source representation of heterogeneous and sparse canopies raises some questions in relation to the correct formulation of the physical processes. When multi-source models are used to represent evaporation, some basic principles should be respected in writing the equations. The resistance network chosen to represent the physical processes necessarily dictates the correct formalism for combining the component fluxes and resistances. In relation to that, three particular points have been addressed. The first point stresses and details the fact that the basic formulations and the resulting equations slightly differ when the foliage is amphistomatous and hypostomatous. Generic equations, valid in both situations, have been established and it has been found that not taking into account the differences can lead to errors on the evaporation rate of about 10 ra: aerodynamic resistance between the source height and the reference height (s m -1 ) ra,f,h: bulk boundary-layer resistance of the foliage for sensible heat (s m -1 ) ra,f,v: bulk boundary-layer resistance of the foliage for water vapour (s m -1 ) ra,s: aerodynamic resistance between the substrate and the source height (s m -1 ) ra,vs: aerodynamic resistance between the vegetated soil and the source height (s m -1 ) ra,bs: aerodynamic resistance between the bare soil and the source height (s m -1 ) rs,f: bulk stomatal resistance of the foliage (s m -1 ) rs,s: substrate resistance to evaporation (s m -1 ) rs,bs: bare soil resistance to evaporation (s m -1 ) rs,vs: vegetated soil resistance to evaporation (s m -1 ) rs,l: leaf stomatal resistance (one side) (s m -1 ) ra,l: leaf boundary-layer resistance for sensible heat and water vapour (one side) (s m -1 ) e s r : effective surface resistance to water vapour within the canopy (s m -1 ) e v r : effective resistance to water vapour transfer within the canopy (s m -1 ) e h a r , : effective air resistance to sensible heat transfer within the canopy (s m -1 ) e v a r , : effective air resistance to water vapour transfer within the canopy (s m -1 ) Appendix A: Derivation of Eq. ( 5)

The steps of the derivation are the same as those used for deriving the Penman-Monteith equation. Sensible and latent heat fluxes emanating from the foliage are written respectively (Fig. 1)

h f a m f p f r T T c H , , / ) ( - =  , ( 48 
) ) /( ) ) ( * )( / ( , , , v f a f s m f p f r r e T e c E + - =    . ( 49 
)
Tf is foliage temperature and e*(Tf) is the saturated vapour pressure at temperature Tf.

Linearizing the difference of saturated vapour pressure between the foliage and the canopy source height and combining Eqs. ( 48) and ( 49) with the energy balance (

f f f E H A  + = ) leads to   h f a v f a f s h f a m p f f r r r r D c A E , , , , , , , / ) ( / 
+ +  +  =    . ( 50 
)
Given that ra,f,v = n ra,f,h (Eq. ( 4)), we obtain (Monteith and Unsworth 1990, p.188)

  h f a f s h f a m p f f r r n r D c A E , , , , , / / + +  +  =    (51)
with n =1 and 2 respectively for amphistomatous and hypostomatous leaves.

Appendix B: Derivation of Eq. (16)

Introducing Eq. ( 7) into Eqs. ( 5) and ( 6) and adding the two equations gives

        ) / 1 ( / ) ( ) / ( / ) ( , , , , , , , , s a s s s a a a p s h f a f s h f a a a p f r r r r E A D c A r r n r r E A D c A E + +  +  -  + +  + + +  +  -  + +  =          . ( 52 
)
Introducing the terms Rf ' and Rs' defined by Eqs. ( 20) and ( 21) yields

        ' , ' , , ) ( ) ( s a a p s a s f a a p h f a f R r E A D c r A R r E A D c r A E        +  -  + +  + +  -  + +  = . ( 53 
)
By collecting the terms in λE we obtain
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)
Introducing the term Ra ' defined by Eq. ( 22) gives
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)
Eq. (B4) can be transformed into
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)
Taking into account the definitions of Ps and Pf given by Eq. ( 18) and ( 19) leads to Eq. ( 16).

Appendix C: Coefficients of the modified clumped model (conventional formulation)

We define:

( ) f s h f a f r r n R , , ,   + +  = , ( 57 
) ( ) vs s vs a vs r r R , ,   + +  = , (58) ( ) bs s bs a bs r r R , ,   + +  = , (59) 
( )

a a r R  +  = . ( 60 
)
The coefficients of Eq. ( 30) are written as

( ) DE R R R R C a f bs vs f / ' + = , (61) 
( ) DE R R R R C a vs bs f vs / ' + = , ( 62 
) ( ) DE R R R R C a bs f vs bs / ' + = , (63) 
DE being defined as 

a bs vs a vs f a bs f bs f vs R R R R R R R R R R R R DE + + + = . ( 64 

)

  Each evaporation component is calculated separately from equations of the Penman-Monteith type involving the corresponding available energy (Af or As) and the vapour pressure deficit Dm at the mean canopy source height zm, assumed to be located at the apparent sink for momentum (zero plane displacement height d + roughness length z0). The component resistances are expressed per unit area of land surface. So, leaf stomatal resistance rs,l (one side) and the corresponding leaf boundary-layer resistance for latent heat ra,l (one side) should be divided by the transpiring surface expressed per unit area of land surface: 2LAI for amphistomatous leaves and LAI for hypostomatous leaves. For convenience we introduce the parameter n (n = 1 for amphistomatous leaves and n = 2 for hypostomatous leaves), which allows the bulk stomatal resistance to be written as

  model of Shuttleworth-Wallace (i.e. per unit area of land surface) since all the component fluxes mix together at canopy source height. Foliage resistances (stomatal and boundarylayer) have the same expressions as those of the two-layer model and are given by Eqs. (2), (3) and (4). Substrate resistances, however, should have different expressions since the exchange surfaces are not the same. If the resistances expressed per unit area of vegetated soil or bare soil are written with the upper-script 1, the resistances should be divided by the relative area of the corresponding surface (vegetated or bare soil) to obtain the component resistances of the model (per unit area of land surface):

  soil to be isothermal (at effective temperature Tm), the effective resistances should be calculated as the parallel sum of the component resistances expressed per unit area of land surface. This means that for the two-layer model we have

  ) leads to the common formalism of the Penman-Monteith model, where the ratio of a surface resistance divided by an aerodynamic resistance appears in the denominator

%

  . The second point concerns the conservation equation. If all the component fluxes mix together at canopy source height and experience the same aerodynamic resistance above the canopy, they should be simply added and not weighted by the relative area of each component. The weighing by the relative area should be applied not to the fluxes but to the component resistances. The third point deals with the effective resistances which allow a multi-source model to be reduced to a single-layer model. It is shown that the way of combining the elementary resistances within the canopy to formulate the effective air and surface resistances is physically determined as the parallel sum of component resistances: here also the hypostomatous case slightly differs from the amphistomatous one. More simple and operational formulations of the effective resistances can be obtained by means of some legitimate assumptions with different degrees of confidence illustrated by numerical simulations. Nomenclature A: available energy of the whole crop (W m -2 ) Af: available energy of the foliage (W m -2 ) As: available energy of the substrate (W m -2 ) Avs: available energy of the vegetated soil (W m -2 ) Abs: available energy of the bare soil (W m -2 ) Rn: net radiation of the whole crop (W m -2 ) G: soil heat flux (W m -2 ) H: sensible heat flux from the complete canopy (W m -2 ) λE: latent heat flux from the complete canopy (W m -2 ) Hi: component heat flux (i = f, s, vs, bs) (W m -2 ) λEi: component latent heat flux (i = f, s, vs, bs) (W m -2 ) Da: vapour pressure deficit at reference height (Pa) Dm: vapour pressure deficit at canopy source height (Pa) Ta: air temperature at reference height (°C) Tm: air temperature at canopy source height (°C) Ti: surface temperature of component i (i = f, s, vs, bs) (°C) ua: wind speed at reference height (m s -1 ) ea: vapour pressure at reference height (Pa) em: vapour pressure at canopy source height (Pa) e*(T): saturated vapour pressure at temperature T (Pa) cp: specific heat of air at constant pressure (J kg -1 °C-1 ) ρ: air density (kg m -3 ) γ: psychrometric constant (Pa °C-1 ) Δ: slope of the saturated vapour pressure curve (Pa °C-1 ) Canopy structural characteristics: d: canopy displacement height (m) F: fractional cover of foliage (dimensionless) LAI: leaf area index (m 2 m -2 ) n: parameter with value of 1 for amphistomatous and 2 for hypostomatous foliage zr: reference height (m) zh: mean canopy height (m) zm: mean canopy source height (= d+z0) (m) z0: canopy roughness length (m) Component resistances:
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 1 Figures captions

Fig. 2 .

 2 Fig. 2. Patch representation of evaporation from a sparse crop: schematic diagram showing the resistance network and potentials: subscript 1 is for foliage component and subscript 2 for substrate component.

Fig. 3 .

 3 Fig. 3. Resistance networks and potentials for a clumped representation (Brenner-Incoll model) of convective fluxes (sensible and latent heat) from a heterogeneous canopy (see the list of symbols).

Fig. 4 .

 4 Fig. 4. Resistance network and potentials for a one-layer representation (Penman-Monteith model) of convective fluxes (sensible and latent heat) from a full covering canopy: a) basic Penman-Monteith model; b) Penman-Monteith model with effective parameters accounting for air resistances within the canopy.

Fig. 5 .

 5 Fig. 5. Variation as a function of canopy LAI of the relative error δλE (expressed in percentage) made on the evaporation rate of a hypostomatous canopy when calculated with the two-layer equations valid for an amphistomatous one: a) for different values of leaf stomatal resistance rs,l (with rs,s = 500 s m -1 ); b) for different values of substrate resistance rs,s (with rs,l = 400 s m -1 ).
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 6 Fig. 6. Variation as a function of canopy LAI of the relative error δλE (expressed in percentage) made on the evaporation rate when calculated with a big leaf model and effective resistances estimated with different levels of approximation: a) with the physically soundest formulation (δλE1); b) when air resistances within the canopy are neglected (δλE2); c) when surface and air resistances are decoupled (δλE3).
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 1 Figure 1. Resistance networks and potentials for a two-layer representation (Shuttleworth-Wallace model) of convective fluxes (sensible and latent heat) from a sparse canopy (see the list of symbols).

Figure 3 .

 3 Figure 3. Resistance networks and potentials for a clumped representation (Brenner-Incoll model) of convective fluxes (sensible and latent heat) from a heterogeneous canopy (see the list of symbols).
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 4 Figure 4. Resistance network and potentials for a one-layer representation (Penman-Monteith model) of convective fluxes (sensible and latent heat) from a full covering canopy: a) basic Penman-Monteith model; b) Penman-Monteith model with effective parameters accounting for air resistances within the canopy.

Figure 5 .

 5 Figure 5. Variation of the relative error δλE (expressed in percentage) made on the evaporation rate of a hypostomatous canopy when calculated with the two-layer equations valid for an amphistomatous one. The variation is plotted as a function of canopy LAI: (a) for different values of leaf stomatal resistance rs,l (with rs,s = 500 s m -1 ); (b) for different values of substrate resistance rs,s (with rs,l = 400 s m -1 ).

Fig. 6 .

 6 Fig. 6. Variation of the relative error δλE (expressed in percentage) made on the evaporation rate when calculated with a big leaf model and effective resistances estimated with different levels of approximation: (a) and (b), with the physically soundest formulation (δλE1); (c) and (d), when air resistances within the canopy are neglected (δλE2); (e) and (f), when surface and air resistances are decoupled (δλE3). The variation is plotted as a function of canopy LAI.

  

The coefficients of the resultant equation are written as

Appendix E: Parameterizations used in the simulation process

The parameterization used to simulate the component air resistances and the distribution of available energy within the canopy are taken and adapted from Shuttleworth and [START_REF] Shuttleworth | Evaporation from sparse crops-an energy combination theory[END_REF], [START_REF] Choudhury | A four-layer model for the heat budget of homogeneous land surfaces[END_REF] and [START_REF] Shuttleworth | The theoretical relationship between foliage temperature and canopy resistance in sparse crops[END_REF].

The net radiation reaching the substrate Rns is calculated from the net radiation above the canopy Rn following Beer's law

Soil heat flux is calculated as a given fraction of Rns (G = 0.2 Rns). Consequently, available energies are obtained as: A = Rn-G, Af = Rn-Rns and As = Rns-G. For the sake of convenience, the aerodynamic resistance above the canopy (ra) is calculated in neutral conditions. It is expressed as a function of wind speed ua at reference height zr

where d = 0.63 zh, z0 = 0.13 zh and k is von Karman's constant. The aerodynamic resistance between the substrate (with a roughness length z0s = 0.01 m) and the canopy source height (d + z0) is calculated as