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Abstract: Evaporation from heterogeneous and sparse canopies is often represented by multi-11 

source models which take the form of electrical analogues based upon resistance networks. 12 

The chosen representation de facto imposes a specific writing on the composition of 13 

elementary fluxes and resistances. The two- and three-source representations are discussed in 14 

relation to several papers of the scientific literature where some ambiguities arise. Using the 15 

two-layer model [Shuttleworth WJ, Wallace JS (1985). Q J Roy Meteorol Soc 111: 839–855] 16 

and the clumped (three-source) model [Brenner AJ, Incoll LD (1997). Agric For Meteorol 84: 17 

187–205] as a basis, it is shown that the stomatal characteristics of the foliage 18 

(amphistomatous or hypostomatous) generate different formulations. New generic and more 19 

concise equations, valid in both configurations, are derived. The differences between the 20 

patch and layer approaches are outlined and the consequences they have on the composition 21 

and formulation of component fluxes are specified. Then, the issue of calculating the effective 22 

resistances of the single-layer model from multi-source representations is addressed. Finally, 23 

a sensitivity analysis is carried out to illustrate the significance of the new formulations.      24 

 25 
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1. Introduction  1 

 2 

The energy transfers within heterogeneous and sparse canopies are often represented 3 

by multi-source models. The first models of this kind were designed for sparse canopies to 4 

separately account for vegetation and substrate (soil) contributions (Shuttleworth and Wallace 5 

1985; Choudhury and Monteith 1988; Shuttleworth and Gurney 1990). Subsequently, more 6 

complex representations were proposed to account for heterogeneous canopies with various 7 

components (main vegetation, herbaceous substrate, bare soil) (Dolman 1993; Huntingford et 8 

al. 1995), but always keeping the Shuttleworth-Wallace model as a basis. In the “clumped” 9 

model of Brenner and Incoll (1997), specially adapted to semi-arid shrub-lands, the substrate 10 

layer is divided into two sub-layers: one corresponds to the soil under the foliage and the 11 

other to the bare soil. The ERIN model of Wallace (1997) addresses the issue of evaporation 12 

in multi-species canopies through an extension of the Shuttleworth-Wallace model. From 13 

principles similar to those of Brenner and Incoll (1997), Verhoef and Allen (2000) developed 14 

a multi-source model, where the substrate is divided into three sub-layers: grasses, herbs and 15 

bare soil.  16 

The multi-source models are generally represented by resistance networks, which 17 

combine surface and air resistances within the canopy. They simulate fairly well evaporation 18 

provided appropriate parameterizations for component resistances are available. However, it 19 

appears that the writing of the total flux of evaporation from the component fluxes and the 20 

combination of elementary resistances differs depending on the authors and can lead to 21 

apparent inconsistencies and even inexact formulations. For instance, whereas in the first 22 

models (e.g. Shuttleworth and Wallace 1985) the component fluxes of the multi-source 23 

representation are simply added, in the subsequent ones (e.g. Dolman 1993) they are weighted 24 

by the relative area of each source without clear justification. In line with the pioneering work 25 

of Wallace and Verhoef (2000) on the modelling of interactions in mixed-plant communities, 26 

the main goal of the current study is to carefully examine the formulation of these multi-27 

source models in order to clearly establish their common ground, the differences between 28 

them and the correct way to formulate them. This examination is made through the most 29 

emblematic ones (Shuttleworth and Wallace 1985; Brenner and Incoll 1997) and three 30 

particular issues will be addressed in relation to the main objective. 31 

The first issue is linked to the stomatal characteristics of the canopy (amphistomatous 32 

versus hypostomatous leaves) and the impact they have on the basic equations of the multi-33 

layer representation. Although the Verhoef-Allen model accounts for differences in stomatal 34 
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characteristics, the introduced modifications are not systematically applied in many other 1 

studies based on multi-source models. In the case of vineyard for example, several papers 2 

apply the Shuttleworth-Wallace model (Ortega-Farias et al. 2007; Zhang et al. 2009; Ortega-3 

Farias et al. 2010) or the clumped model (Zhang et al. 2008; Poblete-Echeverria and Ortega-4 

Farias 2009) without correction for the hypostomatous characteristics. We propose here new 5 

generic formulations which are valid in both configurations (amphi- and hypo-stomatous).  6 

The second issue deals with the distinction between the patch (or uncoupled) approach 7 

and the layer (or coupled) approach. As already explained by Lhomme and Chehbouni (1999) 8 

and Daamen and McNaughton (2000), the choice of a coupled or uncoupled model has 9 

significant consequences in the formulation of the basic equations. When a coupled (also 10 

called interactive or layer) model is used, component fluxes are strictly additive, whereas in 11 

an uncoupled (patch) model, component fluxes should be weighted by the relative area of 12 

each patch.  This point will be addressed and discussed in relation to the clumped model of 13 

Brenner and Incoll (1997).  14 

The third issue addressed here occurs when the relative complexity of a multi-source 15 

model should be represented by a single-layer model, i.e., the “big leaf” model of Penman-16 

Monteith. How should one combine the component resistances of the multi-source approach 17 

to calculate the effective resistances of the single-source? Since the aggregation procedures 18 

proposed in the literature are diverse and raise questions (Were et al. 2007), the problem will 19 

be discussed and solutions will be proposed.  20 

The paper is divided into three main sections which examine successively the two-21 

layer representation (Shuttleworth and Wallace 1985), the “clumped” or three-source model 22 

(Brenner and Incoll 1997) and the calculation of single-source effective resistances. 23 

Numerical simulations and sensitivity analyses are presented in the last section to illustrate 24 

the interest of the new formulations.  25 

 26 

2. A new and generic formulation of the two-layer model 27 

 28 

The two-layer model of Shuttleworth and Wallace (1985) represents the evaporation 29 

from a stand of vegetation composed of two main sources: a substrate (which can be bare soil 30 

or grass) and an upper canopy (main foliage). The corresponding resistance network is shown 31 

in Figure 1. The resulting formulation for total evaporation slightly differs depending on the 32 

distribution of stomata on the leaves. The amphistomatous case (stomata distributed on both 33 

sides of the leaves) is the case implicitly considered in the original formulation (Shuttleworth 34 
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and Wallace 1985; Shuttleworth and Gurney 1990). More general equations are established 1 

here: they take into account the two possible patterns of stomatal characteristics 2 

(amphistomatous and hypostomatous).  3 

In the two-layer model, total evaporation (λE) from the canopy is expressed as the 4 

simple sum of two components: λEf (foliage) and λEs (substrate): 5 

 6 

sf EEE  += .                                                                                                                      (1) 7 

 8 

Each evaporation component is calculated separately from equations of the Penman-Monteith 9 

type involving the corresponding available energy (Af  or As) and the vapour pressure deficit 10 

Dm at the mean canopy source height zm, assumed to be located at the apparent sink for 11 

momentum (zero plane displacement height d + roughness length z0). The component 12 

resistances are expressed per unit area of land surface. So, leaf stomatal resistance rs,l (one 13 

side) and the corresponding leaf boundary-layer resistance for latent heat ra,l  (one side) should 14 

be divided by the transpiring surface expressed per unit area of land surface: 2LAI for 15 

amphistomatous leaves and LAI for hypostomatous leaves. For convenience we introduce the 16 

parameter n (n = 1 for amphistomatous leaves and n = 2 for hypostomatous leaves), which 17 

allows the bulk stomatal resistance to be written as 18 

 19 

)2/(,, LAIrnr lsfs = .                                                                                                                   (2) 20 

 21 

The foliage boundary-layer resistance for water vapour is written similarly 22 

 23 

 )2/(,,, LAIrnr lavfa = .                                                                                                               (3) 24 

 25 

However, since each leaf side is a heat source, the foliage boundary-layer resistance for 26 

sensible heat remains the same in both cases (amphistomatous or hypostomatous) and is 27 

defined as  28 

 29 

nrLAIrr vfalahfa /)2/( ,,,,, == .                                                                                                 (4) 30 

 31 

The hyperstomatous case (stomata only on the upper side of the leaves) is similar to the 32 

hypostomatous case and the corresponding expressions of bulk resistances are identical.  33 
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The combination equation (Penman-Monteith type) for the foliage takes the following 1 

form derived in Appendix A:  2 

 3 
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For the substrate, resistances are always expressed per unit area of land surface and the 7 

boundary-layer resistance is assumed to be the same for sensible heat and water vapour. 8 

Consequently, the corresponding combination equation is simply written as 9 
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 12 

where rs,s is the substrate resistance to evaporation and ra,s the aerodynamic resistance 13 

between the substrate and the source height. Expressing Dm as a function of Da (vapour 14 

pressure deficit at the reference height zr) leads to (Shuttleworth and Wallace 1985, Eq. (8)) 15 

 16 

  )/()( paam crEADD +−+= .                                                                                     (7) 17 

  18 

The general expression of total evaporation λE is obtained by introducing Eq. (7) into Eqs. (5) 19 

and (6). At this stage, two formulations of λE are possible: the one which follows the strict 20 

formalism of Shuttleworth and Wallace’s original equations and an alternative one, 21 

considered as more synthetic, which is proposed hereafter. 22 

 23 

 a. Original formulation 24 

 25 

 If we respect the original formalism, the resultant equation is written as  26 

 27 

ssff PMCPMCE += ,                                                                                                    (8) 28 

 29 

with  30 

 31 
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 4 

In these equations A represents the available energy for the whole stand (foliage and 5 

substrate): A = Af + As. The steps of the calculation are identical to those given in the original 6 

article of Shuttleworth and Wallace (1985). The coefficients Cf and Cs are simple 7 

combinations of the basic air and surface resistances. They are expressed as 8 

 9 
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with 14 

 15 

( ) fshfaf rrnR ,,,  ++= ,                                                                 (13) 16 

 17 

( ) sssas rrR ,,  ++= ,                                                                  (14) 18 

 19 

( ) aa rR += .                                                                                                                       (15) 20 

 21 

The two-layer representation of sparse canopies does not have the same mathematical form 22 

for amphistomatous and hypostomatous canopies. Some adjustments should be made when 23 

passing from one type of canopy to another: the PMf and Rf terms undergo a change and it is 24 

easy to verify that when n = 1 (amphistomatous case), the original equations of Shuttleworth 25 

and Wallace (1985) are retrieved. Additionally, we have to note that the partition of the 26 

original formulation into two “Penman-Monteith” type components (foliage and substrate) is 27 

not really well-designed insofar as each part has a relatively complex form and does not 28 
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represent the respective component evaporation (foliage and substrate). This can be even 1 

confusing and misleading. An alternative and simpler formulation is proposed hereafter. 2 

  3 

 b. Alternative formulation 4 

 5 

 By differently collecting the terms in the basic equations (the details of the calculation 6 

are given in Appendix B) it can be shown that the total flux of evaporation can be written as  7 

 8 
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 10 

In Eq. (16) λEp represents the potential evaporation from the sparse canopy expressed as 11 

 12 






+

+
=

aap

p

rDcA
E

/
                                                                                                            (17) 13 

 14 

The other terms are defined as follows: 15 
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This new formulation of the two-layer model has three main advantages: (i) first it is more 1 

concise than the traditional one; (ii) it avoids the confusion generated by separate evaporation 2 

terms; (iii) it involves the “climatic demand” λEp, which can be convenient and useful in 3 

many applied studies (Lhomme 1997). We also note that Eq. (16) has correct asymptotic 4 

limits. If there is no substrate evaporation (As is zero and rs,s  is infinite), Eq. (16) reduces to 5 

the conventional Penman-Monteith equation for a closed canopy with n = 1: 6 

 7 
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3.  A reformulated clumped model 10 

 11 

 3.1. Layer or patch approach? 12 

 13 

As already mentioned, the choice between the two representations is critical in the 14 

sense that it leads to different manner of aggregating the elementary fluxes (simple sum or 15 

area weighted addition). The choice should be dictated by the way the aerodynamic resistance 16 

above the canopy (between zm and zr) is defined. If the patches of vegetation or bare soil are 17 

large enough to allow different aerodynamic resistances to be defined for each patch, an 18 

uncoupled representation should be chosen (see Fig. 2). On the other hand, if the different 19 

sources are close to each other and do not allow the definition of separate aerodynamic 20 

resistances, a layer approach should be preferred (see Fig. 1). Daamen and McNaughton 21 

(2000) explained: “the patch model is fully justified at the scale where a boundary layer is 22 

fully developed over each patch and edge effects between patches are insignificant, but as the 23 

size of the patches decreases this model may be less valid”. From a turbulent transfer 24 

perspective, McNaughton and van den Hurk (1995) also showed that the coupled (interactive) 25 

model is a simplification of more complex and realistic Lagrangian models and consequently 26 

more widely applicable than the patch model. 27 

 The clumped model of Brenner and Incoll (1997), which is similar to the multi-species 28 

canopy representation described by Wallace (1997), constitutes in fact a modified two-layer 29 

model analogous to the Shuttleworth-Wallace model: the layer representing the soil surface is 30 

divided into two sub-layers (soil under the foliage and bare soil) and the component fluxes 31 

mix together at canopy source height before experiencing the same aerodynamic resistance 32 

above the canopy (Fig. 3). It was used and reworked by Domingo et al. (1999) and Were et al. 33 



 9 

(2007, 2008) for sparse bush vegetation in semi-arid Spain and by Zhang et al. (2008, 2009) 1 

for vineyard in an arid region of China. Following the logic of the layer model, the total flux 2 

of evaporation emanating from the canopy should be written in a simple additive form  3 

 4 

 bsvsf EEEE  ++=                                                                                                         (24) 5 

 6 

with subscript i = f for the foliage, i = vs for the soil below the vegetation and i = bs for the 7 

bare soil. This form of the conservation equation differs from the one used in the original 8 

model of Brenner and Incoll (1997) where the total flux of evaporation is written as an area-9 

weighted form of the component fluxes 10 

 11 

bsvsf EFEEFE  )1()( −++= ,                                                                                       (25) 12 

 13 

F representing the fractional cover of the foliage. Although a formulation similar to Eq. (25) 14 

has been used by Dolman (1993) and Verhoef and Allen (2000), we have to stress that this 15 

form of the equation is not concordant with the resistance network representing the model 16 

(Fig. 3). Given that all the component fluxes mix together at canopy source height and that a 17 

sole aerodynamic resistance is defined above the canopy, a layer approach should be 18 

preferred. We develop below the new equations of the clumped model when (i) the simple 19 

additive form of the conservation equation is used instead of the area weighted form and (ii) 20 

when the stomatal characteristics of the foliage are taken into account. 21 

 22 

 3.2. New formulations  23 

 24 

The component resistances should be expressed in a way similar to the two-layer 25 

model of Shuttleworth-Wallace (i.e. per unit area of land surface) since all the component 26 

fluxes mix together at canopy source height. Foliage resistances (stomatal and boundary-27 

layer) have the same expressions as those of the two-layer model and are given by Eqs. (2), 28 

(3) and (4). Substrate resistances, however, should have different expressions since the 29 

exchange surfaces are not the same. If the resistances expressed per unit area of vegetated soil 30 

or bare soil are written with the upper-script 1, the resistances should be divided by the 31 

relative area of the corresponding surface (vegetated or bare soil) to obtain the component 32 

resistances of the model (per unit area of land surface): 33 
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 9 

In fact, given the basic formalism (Ohm’s law type) of component fluxes, dividing the 10 

resistances by the fractional areas is equivalent to multiplying the corresponding fluxes by the 11 

same quantity. In the original clumped model of Brenner and Incoll (1997), where a mix of 12 

patch and layer approach is used, the surface and aerodynamic resistances of the substrates are 13 

logically expressed per unit area of land surface and consequently they are not divided by 14 

their relative area (F or 1-F). This is consistent with the patch formulation of Eq. (25), but as 15 

explained above, it is the approach itself which is questionable. 16 

Each evaporation term can be expressed in the form of a Penman-Monteith equation 17 

(Eqs. (5) and (6)), n having the same significance as in the Shuttleworth-Wallace model 18 

(section 2). Replacing Dm by its expression as a function of Da (Eq. (7)) leads to the following 19 

formulation   20 

 21 
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The three coefficients C’ are simple combinations of the component air and surface 1 

resistances and are detailed in Appendix C. We note that the modifications needed to take into 2 

account the stomatal characteristics of the canopy (through the parameter n) are exactly 3 

similar to the ones made to the Shuttleworth-Wallace model (Eq. (32) versus (10) and (57) 4 

versus (13)). 5 

 As for the Shuttleworth-Wallace model, it is possible to obtain an alternative 6 

formalism and to write more concisely the resultant expression of λE by collecting differently 7 

the terms of the equation (derivation similar to that described in Appendix B). With the 8 

coefficients P’ defined in Appendix D, the equation equivalent to Eq. (16) in the two layer 9 

model is written in the clumped model as 10 

  11 
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 13 

where λEp represents the potential evaporation defined by Eq. (17). It can be verified that the 14 

asymptotic limits of this formulation are correct. When the vegetated part of the substrate 15 

tends to zero, rs,vs tends to infinite, '

vsP   and Avs tends to zero and Eq. (33) transforms into Eq. 16 

(16). 17 

 18 

4. Big leaf model: aggregation of component resistances 19 

 20 

 4.1. The problem to solve 21 

 22 

In the modelling of surface fluxes at different scales, the canopy spatial 23 

heterogeneities are often averaged by using simpler representations. One way to proceed is by 24 

using a bulk-transfer approach based on a single-layer representation and the concept of kB-1 25 

introduced by Owen and Thomson (1963) and largely discussed since then (Garratt and 26 

Hicks, 1973). However, this concept, which is defined as the logarithm of the ratio between 27 

momentum and heat roughness length, is questionable and considered as not perfectly sound 28 

from a physical standpoint (Verhoef et al. 1997; Lhomme et al. 2000). Another way to 29 

proceed is by calculating effective parameters. Presently, the problem to solve is how to 30 

correctly represent a heterogeneous canopy by a simple combination equation (Penman-31 

Monteith model) in which the effective surface and air resistances are expressed from the 32 
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component resistances of the multi-source model. The basic model (Monteith, 1965) is 1 

commonly written as  2 

 3 
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 5 

where e

sr is the effective surface resistance and ra is the aerodynamic resistance calculated 6 

between the mean source height of the canopy zm and the reference height zr (Fig. 4a). The 7 

original Penman-Monteith equation is strictly valid for a full covering canopy (big leaf 8 

model) and the surface resistance of the foliage is reduced to its stomatal component 9 

(expressed from leaf stomatal resistance as n rs,l /2LAI). The canopy boundary-layer resistance 10 

for sensible heat and water vapour is neglected or assumed to be incorporated in the 11 

aerodynamic resistance above the canopy (ra).  12 

When a two-layer or clumped approach is considered, it is clear that the effective 13 

surface resistance ( e

sr ) should be put in series with the aerodynamic resistance (ra) above the 14 

canopy. It is less clear, however, how the component surface and air resistances within the 15 

canopy should be combined into the effective surface resistance. Were et al. (2007, 2008), for 16 

instance, have tested with observed data of evaporation several aggregation procedures 17 

previously discussed by Blyth et al. (1993): in parallel or in series, weighted by the relative 18 

area F or not. The specific objective of this section is to examine this issue from a theoretical 19 

standpoint and to identify the correct way of physically combining the component resistances 20 

of multi-source models into the effective resistances of a single-layer model. The two-layer 21 

case will be thoroughly examined. Then, we will show how the equations can be extended to 22 

the clumped model.  23 

 24 

4.2. General expressions for the two-layer model 25 

  26 

The Penman-Monteith model results from the combination of two basic Ohm’s law 27 

type formulations, one for sensible heat and the other for latent heat (Fig. 4b). Written with 28 

effective resistances they read 29 
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 2 

Tm is air temperature at canopy source height, e

har ,  is the effective resistance for sensible heat 3 

(which includes only air resistances within the canopy) and e

vr  is the one for water vapour 4 

(which includes air and surface resistances). Both resistances should be logically added to the 5 

aerodynamic resistance above the canopy (ra). Combining Eqs. (35) and (36) with the energy 6 

balance equation  results in the following combination equation  7 
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 10 

Assuming plant and soil to be isothermal (at effective temperature Tm), the effective 11 

resistances should be calculated as the parallel sum of the component resistances expressed 12 

per unit area of land surface. This means that for the two-layer model we have 13 
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 18 

This set of equations constitutes the unique rationale to aggregate the elementary resistances 19 

within the canopy in order to calculate the effective resistances of a big-leaf model from a 20 

two-layer representation. Two remarks should be made, however. First, the effective 21 

resistance for water vapour e

vr  is a complex arrangement of air and surface resistances and 22 

does not allow air and surface components to be separated into two bulk resistances in series. 23 

Second, the resultant combination equation does not have the common formalism of Eq. (34), 24 

where the simple ratio of a surface resistance to an aerodynamic resistance appears in the 25 

denominator of the equation, allowing the effects of the air to be separated from those of the 26 

surface. Nevertheless, this simple ratio can be obtained if the air resistances within the canopy 27 

are neglected, as is the case in the original Penman-Monteith equation. This approximation 28 

can be justified since it is well known that evaporation depends much more on stomatal 29 
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resistance and LAI than on internal air resistances. With this approximation the effective 1 

resistance for sensible heat e

har ,
 is equal to 0. This means that Eq. (37) transforms into Eq. (34) 2 

and the effective resistance for water vapour e

vr  becomes e

sr  defined as 3 

 4 

sslsssfs

e

s rrn

LAI

rrr ,,,,

12111
+=+= ,                                                                                               (40) 5 

 6 

 4.3. Decoupling surface and air resistances (2-layer model) 7 

 8 

In order to obtain the familiar formalism of the big leaf model it is convenient to split 9 

the effective resistance for water vapour transfer e

vr  into two resistances put in series: one 10 

including only surface components and the other only air components: 11 

 12 

e

va

e

s

e

v rrr ,+= .                                                                                                                           (41) 13 

 14 

This assumption is physically valid to a first approximation if we consider that it roughly 15 

respects the path followed by water vapour in its transfer from the plant to the open air. In this 16 

case, the effective surface resistance e

sr  is logically defined as the sum of parallel resistances 17 

and obtained from Eq. (40). On the other hand, the effective aerodynamic resistance e

var ,  can 18 

take two forms depending on the stomatal characteristics of the foliage.  19 

In amphistomatous canopies, the same expression for the effective aerodynamic 20 

resistance (calculated as the sum of parallel resistances) can be applied simultaneously to 21 

sensible heat and water vapour: e

ha

e

va rr ,, =  given by Eq. (38). Putting Eq. (41) into Eq. (37) 22 

leads to the common formalism of the Penman-Monteith model, where the ratio of a surface 23 

resistance divided by an aerodynamic resistance appears in the denominator 24 

 25 
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 27 

Although this formulation is not perfectly sound from a physical standpoint, it is certainly 28 

more realistic than the one obtained by neglecting the air resistances within the canopy.  29 
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The hypostomatous case is more complicated since the effective aerodynamic 1 

resistance for water vapour e

var ,
 differs from the one for sensible heat e

har ,
. For the two-layer 2 

model these effective aerodynamic resistances are respectively calculated as  3 

 4 
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 6 
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 8 

Following steps similar to those developed in Appendix A, the combination equation in the 9 

hypostomatous case writes as 10 

 11 
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 13 

It is not possible to obtain the simple ratio of a surface resistance divided by an aerodynamic 14 

resistance. The decoupling of surface and air resistances does not allow obtaining a “strict” 15 

Penman-Monteith formalism. 16 

 17 

4.4. Extension to the clumped model 18 

 19 

 The equations developed for the two layer model can be easily extended to the 20 

clumped model by splitting the substrate component into its two sub-components of area F 21 

(vegetated soil) and 1-F (bare soil) (see section 3.1). The resistances expressed per unit area 22 

of substrate being denoted by the upper-script 1, Eqs. (38) and (39) should be rewritten with  23 

 24 
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When the air resistances within the canopy are disregarded, 1/rs,s in Eq. (40) should be 1 

replaced by Eq. (47) in which air resistances ( 1

,vsar and 1

,bsar ) are put to zero. When surface and 2 

air resistances are decoupled, Eqs. (43) and (44) should be similarly modified by expressing 3 

1/ra,s  as in Eq. (46). 4 

The formulations developed in section 4 are based upon a strict physical background 5 

with different levels of approximation and should be preferred to the empirical combinations 6 

tested by Were et al. (2007, 2008). 7 

 8 

5. Sensitivity analysis 9 

 10 

 Numerical simulations were undertaken to assess the sensitivity of evaporation to 11 

some incorrectness or approximations in the formulation of multi-source representation. For 12 

the sake of convenience the analysis was carried out on the basis of the two-layer model. The 13 

parameterizations used to formulate available energy and component air resistances are given 14 

in Appendix E. Calculations are made for a canopy with a height (zh) equal to 1 m under the 15 

following meteorological conditions at a reference height of 2 m above the canopy: Rn = 400 16 

W m-2, Ta = 25 °C, Da = 10 hPa, ua = 2 m s-1. These values were already used by Shuttleworth 17 

and Wallace (1985) in the sensitivity analysis of their model.  18 

 19 

 5.1. Amphistomatous versus hypostomatous leaves 20 

 21 

 In section 2 it was shown that the formulation of the two-layer model differs 22 

depending on whether the canopy is amphistomatous or hypostomatous. The practical 23 

problem arises when the common formulation (strictly valid for an amphistomatous foliage) is 24 

applied to a hypostomatous one. Our simulation consisted in comparing for a hypostomatous 25 

canopy the “true” evaporation rate λE0, calculated using the right formulae (Eqs. (8) or (16) 26 

with n = 2), with the “erroneous” evaporation rate λE’, calculated with the equations valid for 27 

an amphistomatous one (putting n = 1), except for the bulk stomatal resistance (Eq. (2)), 28 

which logically should be calculated as hypostomatous (n = 2).  The error is generated in fact 29 

by an under-estimation of foliage boundary-layer resistance for water vapour ra,f,v (Eq. (3)): its 30 

hypostomatous value being twice its amphistomatous value (for instance, for LAI = 3, 166 s 31 

m-1 against 83 s m-1). Fig. 5 illustrates the corresponding error made on the evaporation rate as 32 

a function of LAI for different values of leaf stomatal resistance (rs,l) and substrate resistance 33 
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(rs,s). Under the standard conditions specified above, the relative error, calculated as δλE = 1 

(λE’−λE0)/λE0, is around 10 % for LAI greater than 1, which is not negligible and justify the 2 

use of different formulations.   3 

 4 

 5.2. Effective resistances 5 

 6 

 The aim of the exercise is to compare the evaporation rate calculated using the big leaf 7 

model and different approximations for the effective resistances with the “true” evaporation 8 

rate (λE0) calculated using the two-layer model. The simulations are made here for an 9 

amphistomatous canopy. Three levels of approximation are considered: (1) λE1 is calculated 10 

by the general expressions (Eqs. (37), (38), (39)), which are supposed to be the most accurate 11 

ones; (2) λE2 is obtained by the expressions derived by neglecting the air resistances within 12 

the canopy (Eqs. (34), (40)); (3) λE3 when surface and air resistances are decoupled (Eqs. 13 

(42), (38), (40)). In each case, a relative error (δλEi) is calculated as in section 5.1 under the 14 

weather conditions specified above. Fig. 6 illustrates the results obtained as a function of LAI 15 

for different values of leaf stomatal resistance (rs,l) and substrate resistance (rs,s). It is clear 16 

that λE1 yields the most accurate results with a relative error (δλE1) generally less than 5 %. 17 

λE3 provides a relatively good approximation mainly for high LAI (> 2) and high substrate 18 

resistance with a relative error generally lower than 5 %. λE2 yields the less accurate 19 

estimates, mainly when the substrate resistance is low or nil; nevertheless, the approximation 20 

can be acceptable for large LAI, provided substrate resistance be large enough. 21 

 22 

6. Conclusion 23 

 24 

In several papers of the scientific literature, the multi-source representation of 25 

heterogeneous and sparse canopies raises some questions in relation to the correct formulation 26 

of the physical processes. When multi-source models are used to represent evaporation, some 27 

basic principles should be respected in writing the equations. The resistance network chosen 28 

to represent the physical processes necessarily dictates the correct formalism for combining 29 

the component fluxes and resistances. In relation to that, three particular points have been 30 

addressed. The first point stresses and details the fact that the basic formulations and the 31 

resulting equations slightly differ when the foliage is amphistomatous and hypostomatous. 32 

Generic equations, valid in both situations, have been established and it has been found that 33 

not taking into account the differences can lead to errors on the evaporation rate of about 10 34 
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%. The second point concerns the conservation equation. If all the component fluxes mix 1 

together at canopy source height and experience the same aerodynamic resistance above the 2 

canopy, they should be simply added and not weighted by the relative area of each 3 

component. The weighing by the relative area should be applied not to the fluxes but to the 4 

component resistances. The third point deals with the effective resistances which allow a 5 

multi-source model to be reduced to a single-layer model. It is shown that the way of 6 

combining the elementary resistances within the canopy to formulate the effective air and 7 

surface resistances is physically determined as the parallel sum of component resistances: 8 

here also the hypostomatous case slightly differs from the amphistomatous one. More simple 9 

and operational formulations of the effective resistances can be obtained by means of some 10 

legitimate assumptions with different degrees of confidence illustrated by numerical 11 

simulations. 12 

 13 

Nomenclature 14 

 15 

A: available energy of the whole crop (W m-2) 16 

Af: available energy of the foliage (W m-2) 17 

As: available energy of the substrate (W m-2) 18 

Avs: available energy of the vegetated soil (W m-2) 19 

Abs: available energy of the bare soil (W m-2) 20 

Rn: net radiation of the whole crop (W m-2) 21 

G: soil heat flux (W m-2) 22 

H: sensible heat flux from the complete canopy (W m-2) 23 

λE: latent heat flux from the complete canopy (W m-2) 24 

Hi: component heat flux (i = f, s, vs, bs) (W m-2) 25 

λEi: component latent heat flux (i = f, s, vs, bs) (W m-2) 26 

Da: vapour pressure deficit at reference height (Pa) 27 

Dm: vapour pressure deficit at canopy source height (Pa) 28 

Ta: air temperature at reference height (°C) 29 

Tm: air temperature at canopy source height (°C) 30 

Ti: surface temperature of component i (i = f, s, vs, bs) (°C) 31 

ua: wind speed at reference height (m s-1)   32 

ea: vapour pressure at reference height (Pa) 33 

em: vapour pressure at canopy source height (Pa) 34 
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e*(T): saturated vapour pressure at temperature T (Pa) 1 

cp: specific heat of air at constant pressure (J kg-1 °C-1) 2 

ρ: air density (kg m-3) 3 

γ: psychrometric constant (Pa °C-1) 4 

Δ: slope of the saturated vapour pressure curve (Pa °C-1) 5 

 6 

Canopy structural characteristics: 7 

d: canopy displacement height (m) 8 

F: fractional cover of foliage (dimensionless) 9 

LAI: leaf area index (m2 m-2) 10 

n: parameter with value of 1 for amphistomatous and 2 for hypostomatous foliage 11 

zr: reference height (m) 12 

zh: mean canopy height (m) 13 

zm: mean canopy source height (= d+z0) (m) 14 

z0: canopy roughness length (m) 15 

 16 

Component resistances: 17 

ra: aerodynamic resistance between the source height and the reference height (s m-1) 18 

ra,f,h: bulk boundary-layer resistance of the foliage for sensible heat (s m-1) 19 

ra,f,v: bulk boundary-layer resistance of the foliage for water vapour (s m-1) 20 

ra,s: aerodynamic resistance between the substrate and the source height (s m-1) 21 

ra,vs: aerodynamic resistance between the vegetated soil and the source height (s m-1) 22 

ra,bs: aerodynamic resistance between the bare soil and the source height (s m-1) 23 

rs,f: bulk stomatal resistance of the foliage (s m-1) 24 

rs,s: substrate resistance to evaporation (s m-1)   25 

rs,bs: bare soil resistance to evaporation (s m-1)  26 

rs,vs: vegetated soil resistance to evaporation (s m-1) 27 

rs,l: leaf stomatal resistance (one side) (s m-1) 28 

ra,l: leaf boundary-layer resistance for sensible heat and water vapour (one side) (s m-1) 29 

e

sr : effective surface resistance to water vapour within the canopy (s m-1) 30 

e

vr : effective resistance to water vapour transfer within the canopy (s m-1) 31 

e

har , : effective air resistance to sensible heat transfer within the canopy (s m-1) 32 

e

var , : effective air resistance to water vapour transfer within the canopy (s m-1)  33 
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 1 

Appendix A: Derivation of Eq. (5) 2 

 3 

The steps of the derivation are the same as those used for deriving the Penman-4 

Monteith equation. Sensible and latent heat fluxes emanating from the foliage are written 5 

respectively (Fig. 1) 6 

 7 

hfamfpf rTTcH ,,/)( −=  ,                                                                                                     (48) 8 

 9 

)/())(*)(/( ,,, vfafsmfpf rreTecE +−=  .                                                                        (49) 10 

 11 

Tf is foliage temperature and e*(Tf) is the saturated vapour pressure at temperature Tf. 12 

Linearizing the difference of saturated vapour pressure between the foliage and the canopy 13 

source height and combining Eqs. (48) and (49) with the energy balance ( fff EHA += ) 14 

leads to  15 
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 18 

Given that ra,f,v = n ra,f,h (Eq. (4)), we obtain (Monteith and Unsworth 1990, p.188) 19 
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 22 

with n =1 and 2 respectively for amphistomatous and hypostomatous leaves. 23 

 24 

Appendix B: Derivation of Eq. (16) 25 

 26 

Introducing Eq. (7) into Eqs. (5) and (6) and adding the two equations gives  27 

 28 
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 2 

Introducing the terms Rf
’ and Rs’ defined by Eqs. (20) and (21) yields 3 
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 6 

By collecting the terms in λE we obtain 7 
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 10 

Introducing the term Ra
’ defined by Eq. (22) gives 11 

 12 
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 14 

Eq. (B4) can be transformed into 15 
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 18 

Taking into account the definitions of Ps and Pf given by Eq. (18) and (19) leads to Eq. (16). 19 

 20 

Appendix C: Coefficients of the modified clumped model (conventional formulation) 21 

 22 

We define: 23 

 24 

( ) fshfaf rrnR ,,,  ++= ,                                                                        (57) 25 

 26 



 22 

( ) vssvsavs rrR ,,  ++= ,                                                                                                       (58) 1 

 2 

( ) bssbsabs rrR ,,  ++= ,                                                       (59) 3 

 4 

( ) aa rR += .                                                                  (60) 5 

 6 

The coefficients of Eq. (30) are written as 7 

 8 

( ) DERRRRC afbsvsf /' += ,                                                                           (61) 9 

 10 

( ) DERRRRC avsbsfvs /' += ,                                                                 (62) 11 

 12 

( ) DERRRRC absfvsbs /' += ,                                                                  (63) 13 

 14 

DE being defined as 15 

 16 

absvsavsfabsfbsfvs RRRRRRRRRRRRDE +++= .                                                               (64) 17 

 18 

Appendix D: Coefficients of the modified clumped model (alternative formulation) 19 

 20 

We put 21 

 22 
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''''''''''''' absvsavsfabsfbsvsf RRRRRRRRRRRRDE +++= .                                                               (69) 1 

 2 

The coefficients of the resultant equation are written as  3 

 4 

'''' / DERRrP bsvsaf =                                                                                                                (70) 5 

 6 

'''' / DERRrP bsfavs =                                                                                                                (71) 7 

 8 

'''' / DERRrP vsfabs =                                                                                                                (72) 9 

 10 

Appendix E: Parameterizations used in the simulation process 11 

 12 

 The parameterization used to simulate the component air resistances and the 13 

distribution of available energy within the canopy are taken and adapted from Shuttleworth 14 

and Wallace (1985), Choudhury and Monteith (1988) and Shuttleworth and Gurney (1990). 15 

The net radiation reaching the substrate Rns is calculated from the net radiation above the 16 

canopy Rn following Beer’s law 17 

 18 

)7.0exp( LAIRR nns −= .                                                                                                         (73) 19 

 20 

Soil heat flux is calculated as a given fraction of Rns (G = 0.2 Rns). Consequently, available 21 

energies are obtained as: A = Rn−G, Af = Rn−Rns and As = Rns−G. For the sake of 22 

convenience, the aerodynamic resistance above the canopy (ra) is calculated in neutral 23 

conditions. It is expressed as a function of wind speed ua at reference height zr 24 

 25 

( ) 0
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 27 

where d = 0.63 zh, z0 = 0.13 zh and k is von Karman’s constant. The aerodynamic resistance 28 

between the substrate (with a roughness length z0s = 0.01 m) and the canopy source height (d 29 

+ z0) is calculated as  30 

 31 
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 2 

where αw = 2.5 (dimensionless) and K(zh) is the value of eddy diffusivity at canopy height 3 

(Lhomme et al. 2000). Leaf boundary-layer resistance (one side) is expressed as a function of 4 

the wind speed at canopy height u(zh) as 5 

 6 
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 8 

w is leaf width (0.01 m) and α0 is a constant equal to 0.005 (in m s−1/2) (Lhomme et al. 2000). 9 
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 27 

Figures captions 1 

 2 

Fig. 1. Resistance networks and potentials for a two-layer representation (Shuttleworth-3 

Wallace model) of convective fluxes (sensible and latent heat) from a sparse canopy (see the 4 

list of symbols). 5 

 6 

Fig. 2. Patch representation of evaporation from a sparse crop: schematic diagram showing 7 

the resistance network and potentials: subscript 1 is for foliage component and subscript 2 for 8 

substrate component. 9 

 10 

Fig. 3. Resistance networks and potentials for a clumped representation (Brenner-Incoll 11 

model) of convective fluxes (sensible and latent heat) from a heterogeneous canopy (see the 12 

list of symbols).  13 

 14 

Fig. 4. Resistance network and potentials for a one-layer representation (Penman-Monteith 15 

model) of convective fluxes (sensible and latent heat) from a full covering canopy: a) basic 16 

Penman-Monteith model; b) Penman-Monteith model with effective parameters accounting 17 

for air resistances within the canopy.    18 

 19 

Fig. 5. Variation as a function of canopy LAI of the relative error δλE (expressed in 20 

percentage) made on the evaporation rate of a hypostomatous canopy when calculated with 21 

the two-layer equations valid for an amphistomatous one: a) for different values of leaf 22 

stomatal resistance rs,l  (with rs,s = 500 s m-1); b) for different values of substrate resistance rs,s 23 

(with rs,l = 400 s m-1). 24 

 25 

Fig. 6. Variation as a function of canopy LAI of the relative error δλE (expressed in 26 

percentage) made on the evaporation rate when calculated with a big leaf model and effective 27 

resistances estimated with different levels of approximation: a) with the physically soundest 28 

formulation (δλE1); b) when air resistances within the canopy are neglected (δλE2); c) when 29 

surface and air resistances are decoupled (δλE3). 30 
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Figure 1. Resistance networks and potentials for a two-layer representation (Shuttleworth-3 

Wallace model) of convective fluxes (sensible and latent heat) from a sparse canopy (see the 4 

list of symbols). 5 
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Figure 2. Patch representation of evaporation from a sparse crop: schematic diagram showing 3 

the resistance network and potentials: subscript 1 is for foliage component and subscript 2 for 4 

substrate component. 5 
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 8 
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Figure 3. Resistance networks and potentials for a clumped representation (Brenner-Incoll 3 

model) of convective fluxes (sensible and latent heat) from a heterogeneous canopy (see the 4 

list of symbols).  5 
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Figure 4. Resistance network and potentials for a one-layer representation (Penman-Monteith 3 

model) of convective fluxes (sensible and latent heat) from a full covering canopy: a) basic 4 

Penman-Monteith model; b) Penman-Monteith model with effective parameters accounting 5 

for air resistances within the canopy.    6 
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Figure 5. Variation of the relative error δλE (expressed in percentage) made on the 3 

evaporation rate of a hypostomatous canopy when calculated with the two-layer equations 4 

valid for an amphistomatous one. The variation is plotted as a function of canopy LAI: (a) for 5 

different values of leaf stomatal resistance rs,l  (with rs,s = 500 s m-1); (b) for different values of 6 

substrate resistance rs,s (with rs,l  = 400 s m-1).  7 
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Fig. 6. Variation of the relative error δλE (expressed in percentage) made on the evaporation 3 

rate when calculated with a big leaf model and effective resistances estimated with different 4 

levels of approximation: (a) and (b), with the physically soundest formulation (δλE1); (c) and 5 

(d), when air resistances within the canopy are neglected (δλE2); (e) and (f), when surface and 6 

air resistances are decoupled (δλE3). The variation is plotted as a function of canopy LAI. 7 
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