O. Jaillon, J. M. Aury, B. Noel, A. Policriti, C. Clepet et al., The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla, Nature, vol.449, issue.7161, pp.463-467, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00180136

R. Velasco, A. Zharkikh, M. Troggio, D. A. Cartwright, A. Cestaro et al., A high quality draft consensus sequence of the genome of a heterozygous grapevine variety, PLoS ONE, vol.2, issue.12, p.1326, 2007.

M. J. Carmona, J. Chaib, J. M. Martinez-zapater, and M. R. Thomas, A molecular genetic perspective of reproductive development in grapevine, J Exp Bot, vol.59, issue.10, pp.2579-2596, 2008.

L. Costantini, J. Battilana, F. Lamaj, G. Fanizza, and M. Grando, Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes, BMC Plant Biology, vol.8, issue.1, p.38, 2008.

M. Moroldo, Physical mapping and sequencing of the genomes of grapevine, 2006.

F. Emanuelli, J. Battilana, L. Costantini, L. Cunff, L. Boursiquot et al., A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.), BMC Plant Biology, vol.10, issue.1, p.241, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02666357

C. A. Ledbetter and D. W. Ramming, Seedlessness in grapes, Hort Rev, vol.11, pp.159-184, 1989.

C. A. Ledbetter and L. Burgos, Inheritance of stenospermocarpic seedlessness in Vitis vinifera L, J Hered, vol.85, issue.2, pp.157-160, 1994.

J. A. Cabezas, M. T. Cervera, L. Ruiz-garcia, J. Carreno, and J. M. Martinez-zapater, A genetic analysis of seed and berry weight in grapevine, Genome, vol.49, issue.12, pp.1572-1585, 2006.

A. Doligez, A. Bouquet, Y. Danglot, F. Lahogue, S. Riaz et al., Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight, Theor Appl Genet, vol.105, issue.5, pp.780-795, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02680982

M. J. Striem, P. Spiegel-roy, I. Baron, and N. Sahar, The degrees of development of the seed-coat and endosperm as separate subtraits of stenospermocarpic seedlessness in grapes, vol.31, pp.149-155, 1992.

D. W. Cain, R. L. Emershad, and R. E. Tarailo, In-ovulo embryo culture and seedling development of seeded and seedless grapes (Vitis vinifera L.), vol.22, pp.9-14, 1983.

A. F. Adam-blondon, F. Lahogue, A. Bouquet, J. M. Boursiquot, and P. This, Usefulness of two SCAR markers for marker-assisted selection of seedless grapevine cultivars, vol.40, pp.147-155, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02670641

A. Bouquet and Y. Danglot, Inheritance of seedlessness in grapevine (Vitis vinifera L.), vol.35, pp.35-42, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02694384

G. Fanizza, F. Lamaj, L. Costantini, R. Chaabane, and M. S. Grando, QTL analysis for fruit yield components in table grapes (Vitis vinifera), Theor Appl Genet, vol.111, issue.4, pp.658-664, 2005.

N. Mejía, M. Gebauer, L. Muñoz, N. Hewstone, C. Muñoz et al., Identification of QTLs for seedlessness, berry size, and ripening date in a seedless × seedless progeny, Am J Enol Vitic, vol.58, issue.4, pp.499-507, 2007.

M. J. Striem, G. Ben-hayyim, and P. Spiegel-roy, Identifying molecular genetic markers associated with seedlessness in grape, J Amer Soc Hort Sci, vol.121, issue.5, pp.758-763, 1996.

F. Lahogue, P. This, and A. Bouquet, Identification of a codominant scar marker linked to the seedlessness character in grapevine, Theor Appl Genet, vol.97, pp.950-959, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02697649

. Mejía, BMC Plant Biology, vol.11, 2011.

R. G. Immink, N. Tonaco, I. A. De-folter, S. Shchennikova, A. Van-dijk et al., SEPALLATA3: The "glue" for MADS box transcription factor complex formation, Genome Biol, vol.10, issue.2, p.24, 2009.

J. Diaz-riquelme, D. Lijavetzky, J. M. Martinez-zapater, and M. J. Carmona, Genome-Wide Analysis of MIKCC-Type MADS-Box Genes in Grapevine, Plant Physiol, 2008.

P. K. Boss, E. Sensi, C. Hua, C. Davies, and M. R. Thomas, Cloning and characterization of grapevine (Vitis vinifera L.) MADS-box genes expressed during inflorescence and berry development, Plant Sci, vol.162, pp.887-895, 2002.

U. Hanania, M. Velcheva, E. Or, M. Flaishman, N. Sahar et al., Silencing of chaperonin 21, that was differentially expressed in inflorescence of seedless and seeded grapes, promoted seed abortion in tobacco and tomato fruits, Transgenic Res, vol.16, issue.4, pp.515-525, 2007.

U. Hanania, M. Velcheva, N. Sahar, M. Flaishman, E. Or et al., The ubiquitin extension protein S27a is differentially expressed in developing flower organs of Thompson seedless versus Thompson seeded grape isogenic clones, Plant Cell Rep, vol.28, issue.7, pp.1033-1042, 2009.

B. G. Coombe, The development of fleshy fruits, Ann Rev Plant Physiol, vol.27, pp.507-528, 1976.

N. Ollat, P. Diakou-verdin, J. P. Carde, F. Barrieu, G. Jp et al., Grape berry development: A review, Journal International des Sciences de la Vigne et du Vin, vol.36, pp.109-131, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02681141

L. G. Deluc, J. Grimplet, M. D. Wheatley, R. L. Tillett, D. R. Quilici et al., Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development, BMC Genomics, vol.8, issue.1, p.429, 2007.

S. Pilati, M. Perazzolli, A. Malossini, A. Cestaro, L. Dematte et al., Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison, BMC Genomics, vol.8, issue.1, p.428, 2007.

C. Davies and S. P. Robinson, Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response proteins, Plant Physiol, vol.122, pp.803-812, 2000.

F. Goes-da-silva, A. Iandolino, F. Al-kayal, M. C. Bohlmann, M. A. Cushman et al., Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development, Plant Physiol, vol.139, issue.2, pp.574-597, 2005.

F. Y. Peng, K. E. Reid, N. Liao, J. Schlosser, D. Lijavetzky et al., Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development, Gene, vol.402, issue.1-2, pp.40-50, 2007.

N. Terrier, D. Glissant, J. Grimplet, F. Barrieu, P. Abbal et al., Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development, Planta, vol.222, pp.832-847, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00084078

R. Favaro, A. Pinyopich, R. Battaglia, M. Kooiker, L. Borghi et al., MADS-box protein complexes control carpel and ovule development in Arabidopsis, Plant Cell, vol.15, issue.11, pp.2603-2611, 2003.

S. Rounsley, G. Ditta, and M. Yanofsky, Diverse roles for MADS box genes in Arabidopsis development, Plant Cell, vol.7, issue.8, pp.1259-1269, 1995.

L. Colombo, J. Franken, E. Koetje, J. Van-went, H. Dons et al., The petunia MADS box gene FBP11 determines ovule identity, Plant Cell, vol.7, issue.11, pp.1859-1868, 1995.

E. M. Kramer, M. A. Jaramillo, and D. Stilio, VS: Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms, Genetics, vol.166, issue.2, pp.1011-1023, 2004.

K. Higo, Y. Ugawa, M. Iwamoto, and T. Korenaga, Plant cis-acting regulatory DNA elements (PLACE) database: 1999, Nucleic Acids Res, vol.27, issue.1, pp.297-300, 1999.

S. Pauli, H. M. Rothnie, G. Chen, X. He, and T. Hohn, The cauliflower mosaic virus 35S promoter extends into the transcribed region, J Virol, vol.78, issue.22, pp.12120-12128, 2004.

M. Kooiker, C. A. Airoldi, A. Losa, P. S. Manzotti, L. Finzi et al., BASIC PENTACYSTEINE1, a GA binding protein that induces conformational changes in the regulatory region of the homeotic Arabidopsis gene SEEDSTICK, Plant Cell, vol.17, issue.3, pp.722-729, 2005.

L. Parenicova, S. De-folter, M. Kieffer, D. S. Horner, C. Favalli et al., Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world, Plant Cell, vol.15, issue.7, pp.1538-1551, 2003.

M. Egea-cortines, H. Saedler, and H. Sommer, Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus, EMBO J, vol.18, issue.19, pp.5370-5379, 1999.

T. Honma and K. Goto, Complexes of MADS-box proteins are sufficient to convert leaves into floral organs, Nature, vol.409, issue.6819, pp.525-529, 2001.

A. Doligez, A. F. Adam-blondon, G. Cipriani, D. Gaspero, G. Laucou et al., This P: An integrated SSR map of grapevine based on five mapping populations, Theor Appl Genet, vol.113, issue.3, pp.369-382, 2006.

D. A. Cartwright, M. Troggio, R. Velasco, and A. Gutin, Genetic mapping in the presence of genotyping errors, Genetics, vol.176, issue.4, pp.2521-2527, 2007.

F. Pompanon, A. Bonin, E. Bellemain, and P. Taberlet, Genotyping errors: causes, consequences and solutions, Nat Rev Genet, vol.6, issue.11, pp.847-859, 2005.
URL : https://hal.archives-ouvertes.fr/halsde-00278823

D. Tautz and . Schlotterer, Simple sequences, Curr Opin Genet Dev, vol.4, issue.6, pp.832-837, 1994.

Y. Lai, D. Shinde, N. Arnheim, and F. Sun, The mutation process of microsatellites during the polymerase chain reaction, J Comput Biol, vol.10, issue.2, pp.143-155, 2003.

D. Shinde, Y. Lai, F. Sun, and N. Arnheim, Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites, Nucleic Acids Res, vol.31, issue.3, pp.974-980, 2003.

H. Ellegren, Microsatellites: simple sequences with complex evolution, Nat Rev Genet, vol.5, issue.6, pp.435-445, 2004.

L. Da-costa-e-silva, D. Cruz, C. , A. Moreira, M. et al., Simulation of population size and genome saturation level for genetic mapping of recombinant inbred lines, Genet Mol Biol, vol.30, issue.4, pp.1101-1108, 2007.

M. I. Vales, C. C. Schon, F. Capettini, X. M. Chen, A. E. Corey et al., Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust, Theor Appl Genet, vol.111, issue.7, pp.1260-1270, 2005.

C. Cheniclet, W. Y. Rong, M. Causse, N. Frangne, L. Bolling et al., Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth, Plant Physiol, vol.139, issue.4, pp.1984-1994, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02679827

J. Blouin and G. Guimberteau, Maturation et maturité des raisins, Editions Féret, 2000.

A. Pinyopich, G. S. Ditta, B. Savidge, S. J. Liljegren, E. Baumann et al., Assessing the redundancy of MADS-box genes during carpel and ovule development, Nature, vol.424, issue.6944, pp.85-88, 2003.

L. Colombo, J. Franken, A. R. Van-der-krol, P. E. Wittich, H. Dons et al., Downregulation of Ovule-Specific MADS Box Genes from Petunia Results in Maternally Controlled Defects in Seed Development, Plant Cell, vol.9, issue.5, pp.703-715, 1997.

M. Busi, C. Bustamente, D. Angelo, C. Hidalgo-cuevas, M. Boggio et al., MADS-box genes expressed during tomato seed and fruit development, Plant Mol Biol, vol.52, pp.801-815, 2003.

L. Dreni, S. Jacchia, F. Fornara, M. Fornari, P. B. Ouwerkerk et al., The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice, Plant J, vol.52, issue.4, pp.690-699, 2007.

T. L. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers, Proc Int Conf Intell Syst Mol Biol, vol.2, pp.28-36, 1994.

M. Morgante and F. Salamini, From plant genomics to breeding practice, Curr Opin Biotechnol, vol.14, issue.2, pp.214-219, 2003.

S. Salvi and R. Tuberosa, To clone or not to clone plant QTLs: present and future challenges, Trends Plant Sci, vol.10, issue.6, pp.297-304, 2005.

B. Johansen, L. B. Pedersen, M. Skipper, and S. Frederiksen, MADS-box gene evolution-structure and transcription patterns, Mol Phylogenet Evol, vol.23, issue.3, pp.458-480, 2002.

. Mejía, BMC Plant Biology, vol.11, 2011.

M. Vandenbussche, G. Theissen, Y. Van-de-peer, and T. Gerats, Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations, Nucleic Acids Res, vol.31, issue.15, pp.4401-4409, 2003.

E. M. Kramer, H. J. Su, C. C. Wu, and J. M. Hu, A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage, BMC Evol Biol, vol.6, p.30, 2006.

Y. Yang and T. Jack, Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins, Plant Mol Biol, vol.55, issue.1, pp.45-59, 2004.

S. Cho, S. Jang, C. S. Chung, K. M. Moon, Y. H. An et al., Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain, Plant Mol Biol, vol.40, issue.3, pp.419-429, 1999.

S. Yalovsky, M. Rodriguez-concepcion, K. Bracha, G. Toledo-ortiz, and W. Gruissem, Prenylation of the floral transcription factor APETALA1 modulates its function, Plant Cell, vol.12, issue.8, pp.1257-1266, 2000.

L. Cunff, L. Fournier-level, A. Laucou, V. Vezzulli, S. Lacombe et al., This P: Construction of nested genetic core collections to optimize the exploitation fo natural diversity in Vitis vinifera L. subsp sativa, BMC Plant Biology, vol.8, issue.31, 2008.

M. A. Lodhi, G. N. Ye, N. F. Weeden, and B. I. Reisch, A simple and efficient method for DNA extraction from grapevine cultivars, Vitis species and Ampelopsis, Plant Mol Biol Rep, vol.12, issue.1, pp.6-13, 1994.

G. Acquaah, Principles of Plant Genetics and Breeding, 2007.

L. Costantini, M. S. Grando, S. Feingold, S. Ulanovsky, N. Mejia et al., Generation of a Common Set of Mapping Markers to Assist Table Grape Breeding, Am J Enol Vitic, vol.58, issue.1, pp.102-111, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02659595

A. F. Adam-blondon, C. Roux, D. Claux, G. Butterlin, D. Merdinoglu et al., Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics, Theor Appl Genet, vol.109, issue.5, pp.1017-1027, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02682543

S. Riaz, G. S. Dangl, K. J. Edwards, and C. P. Meredith, A microsatellite marker based framework linkage map of Vitis vinifera L, Theor Appl Genet, vol.108, issue.5, pp.864-872, 2004.

D. Lamoureux, A. Bernole, L. Clainche, I. Tual, S. Thareau et al., Anchoring of a large set of markers onto a BAC library for the development of a draft physical map of the grapevine genome, Theor Appl Genet, vol.113, issue.2, pp.344-356, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00180148

S. Temnykh, G. Declerck, A. Lukashova, L. Lipovich, S. Cartinhour et al., Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential, Genome Res, vol.11, issue.8, pp.1441-1452, 2001.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J Mol Biol, vol.215, issue.3, pp.403-410, 1990.

S. Rozen and H. Skaletsky, Primer3 on the WWW for general users and for biologist programmers, Methods Mol Biol, vol.132, pp.365-386, 2000.

C. Iniciativa-genoma, Plataforma científica-tecnológica para el desarrollo de la genómica en Chile

S. Creste, A. Tulmann, and A. Figueira, Detection of Single Sequence Repeat Polymorphisms in Denaturing Polyacrylamide Sequencing Gels by Silver Staining, Plant Mol Biol Rep, vol.19, pp.299-306, 2001.

P. Martins-lopes, H. Zhang, and R. Koebner, Detection of Single Nucleotide Mutations in Wheat Using Single Strand Conformation Polymorphism Gels, Plant Mol Biol Rep, vol.19, pp.159-162, 2001.

C. Maliepaard, J. Jansen, and J. W. Van-ooijen, Linkage analysis in a full-sib family of an outbreeding species: overview and consequences for applications, Genet Res Camb, vol.70, pp.237-250, 1997.

D. Grattapaglia and R. Sederoff, Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers, Genetics, vol.137, issue.4, pp.1121-1137, 1994.

J. W. Van-ooijen and R. E. Voorrips, JOINMAP 3.0, software for the calculation of genetic linkage maps, Plant Research International, 2001.

, Kosambi DD: The estimation of map distances from recombination values, Ann Eugen, vol.12, pp.172-175, 1944.

. International-grape-genome and . Program,

E. S. Lander and D. Botstein, Mapping mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, vol.121, issue.1, pp.185-199, 1989.

J. W. Van-ooijen, M. P. Boer, J. Rc, and C. Maliepaard, MapQTL 4.0, software for the calculation of QTL positions on genetic maps, Plant Research International, 2002.

R. W. Doerge and G. A. Churchill, Permutation tests for multiple loci affecting a quantitative character, Genetics, vol.142, issue.1, pp.285-294, 1996.

A. Untergasser, H. Nijveen, X. Rao, T. Bisseling, R. Geurts et al., Primer3Plus, an enhanced web interface to Primer3, 35 Web Server, pp.71-74, 2007.

A. J. Drummond, B. Ashton, M. Cheung, J. Heled, M. Kearse et al.,

M. Baggiolini, Les stades repères dans le développement annuel de la vigne et leur utilisation pratique. Rev Romande Agric Vitic Arboric, vol.8, pp.4-6, 1952.

. Mejía, Submit your next manuscript to BioMed Central and take full advantage of: ? Convenient online submission ? Thorough peer review ? No space constraints or color figure charges ? Immediate publication on acceptance ? Inclusion in PubMed, CAS, Scopus and Google Scholar ? Research which is freely available for redistribution, BMC Plant Biology, vol.11, p.57, 2011.