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ABSTRACT

We present and validate BlastR, a method for effi-
ciently and accurately searching non-coding RNAs.
Our approach relies on the comparison of di-nucleo-
tides using BlosumR, a new log-odd substitution
matrix. In order to use BlosumR for comparison,
we recoded RNA sequences into protein-like se-
quences. We then showed that BlosumR can be
used along with the BlastP algorithm in order to
search non-coding RNA sequences. Using Rfam as
a gold standard, we benchmarked this approach
and show BlastR to be more sensitive than BlastN.
We also show that BlastR is both faster and more
sensitive than BlastP used with a single nucleotide
log-odd substitution matrix. BlastR, when used in
combination with WU-BlastP, is about 5% more
accurate than WU-BlastN and about 50 times
slower. The approach shown here is equally effect-
ive when combined with the NCBI-Blast package.
The software is an open source freeware available
from www.tcoffee.org/blastr.html.

INTRODUCTION

We describe in this work, a strategy to efficiently and ac-
curately search databases for homologous non-coding
RNAs (ncRNAs). This problem is growing in import-
ance, mostly because so many new classes of ncRNAs
have been recently reported (1–4), revealing ncRNA in-
volvement at virtually all cellular levels, especially gene

regulation. In broad terms, ncRNAs can be divided into
two classes: those that are active via a well-defined and
evolutionary constrained secondary and tertiary structure,
and those for which no evidence is yet available to suggest
a link between function and structure. The Rfam data-
base is mostly made of RNAs with a well-defined and
conserved secondary structure (5). The second group
includes many of the recently discovered ncRNAs
involved in gene regulation, such as Piwi-interacting
RNAs (1) involved in gene silencing, lincRNAs (3) a
novel class of regulated ncRNAs, epigenetic regulators-
like HOTAIR (HOX antisense intergenic RNA) (6) or
nuclear trafficking regulators-like NRON (ncRNA
repressor of NFAT) (7).

Further characterizing these new classes of genes has
become a prime target for biology, resulting in the devel-
opment of an increasing number of in-silico methods
for the prediction and comparison of RNA sequences.
Analyzing ncRNAs is, however, a complex task. First of
all, the genes are hard to discover, and although some of
them, such as lincRNAs, exhibit the same properties as
protein-coding genes, with introns/exon structures, similar
chromatin markings (3) and capped poly-adenylated tran-
scripts (8), they lack the equivalent of an open reading
frame that could ease their detection. Homology-based
analysis is not much easier since RNA sequences tend to
evolve rapidly, either under the sole constraint of main-
taining stable secondary structures (in the case of struct-
ured RNAs), or under unknown functional constraints
whose effect on sequence variation is hard to anticipate.
As a consequence, their level of sequence conservation is
limited and often too weak to yield statistically meaningful
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alignments, even when considering moderate evolutionary
distances such as mouse versus human. Using standard
database search tools like Blast is, therefore, difficult
and rarely as informative as in the case of protein-coding
genes.

More sensitive searches are possible, using profiles for
instance, but the highest level of sensitivity is only achieved
when using algorithmic methods simultaneously taking
into account sequence similarity and predicted (or experi-
mentally known) secondary structures like the Sankoff
algorithm does (9). These methods are computationally
very expensive [Sankoff has a time complexity of O(L3N)
where N is the number of sequences and L their length]
and their practical usage requires the design of heuristic
versions with lower complexity. These include Genetic
Algorithms (10) or banded Sankoff implementations like
Consan (11). In practice, however, the most popular ap-
plications to perform efficient database searches make use
of stochastic context free grammars (SCFG) (12). These
include Rsearch (13) and RaveNna (14) that are based on
Infernal (15). Although their algorithmic details vary, the
overall principle is similar: informing the database search
with some secondary structure information.

A special form of SCFGs called covariance models
(CMs) is widely used today in RNA homology search
(16). Conceptually, CMs are similar to protein profiles,
albeit computationally much more expensive to use. CM
parameters are trained on high-quality (seed) alignments.
In the Rfam framework (5), for example, seed alignments
are taken from literature and are often manually refined to
ensure high quality [e.g. using editors like RALEE (RNA
alignment editor in Emacs) (17)]. These alignments are
used to compute CMs, which are in turn used by
Infernal to search databases. The whole setup is similar
to HMM (Hidden Markov Model) searches using
HMMER for Pfam (18,19) with the seed alignment
quality being a critical parameter (20). Infernal searches
are much more computationally demanding than
HMMER-based searches, even when considering recent
improvements (21). To reduce the search space a
pre-filtering step is often necessary (22). This can be
done by using tools especially developed for this task,
e.g. (14) or (23) or by means of a Blast (24) search with
‘relaxed’ parameters (to avoid filtering out true positives).
Several studies describe the optimization of BlastN par-
ameters for searching RNA sequences (25,26). The
method we describe here is precisely addressing this
pre-filtering step and shall be seen as an attempt to im-
prove database searches at a reasonable extra computa-
tional cost over a simple BlastN and without the need of
profiles, SCFG or accurate secondary structure information.

Our approach takes advantage of the possibility of im-
proving database search procedures by taking into account
di-nucleotide content. This idea is not new and neighbor-
ing nucleotides have been known for a long time to exhibit
some dependencies reflected in their evolutionary patterns
(27–30). Durbin et al. (31) even proposed a Markov chain
model able to take this phenomenon into account. While
the reality of this phenomenon is relatively well-accepted
at the genomic level and known to influence the stability
of secondary structures at the transcript level (32,33),

it remains debated whether the quantification of this
effect can help improving gene finding methods (34,35).
Di-nucleotides can also be used to improve multiple
sequence alignments, as recently reported by Lu and Sze
(36). Here we go further and show that in order to use
di-nucleotide information, RNA sequences can be recoded
using a 16 letters alphabet, thus making it possible to
apply protein algorithms [BlastP, BlastClust (24)] to
RNA sequences. This result is obtained by computing a
suitable RNA substitution matrix (BlosumR) and using
Rfam as a validation framework. While similar RNA-
specific matrices had been previously estimated on riboso-
mal RNA (13,37), this work is, to our knowledge, the first
reported attempt to use these models for efficient database
searches in a Blast-like framework.

METHODS

Computation of the BlosumR matrices

In biology, the cost for aligning two symbols is often
estimated using the log ratio between the observed fre-
quency of substitutions and the expected ones, as measured
on a collection of reference alignments (pair wise or
multiple). This approach forms the basis of the PAM
(point accepted mutation) (38) and BLOSUM (blocks of
amino acid substitution matrix) matrices (39). We used a
related approach in this work, to estimate a matrix that
takes into account the cost for aligning two nucleotides to
one another while taking into account the nature of their
immediate neighbor. The cost for aligning two nucleotides
Nx with Ny while taking into account Ny� 1 and Nx� 1

(their immediate neighbors) can therefore be expressed
as follows:

Score NxNx�1,NyNy�1

� �
¼ log

f NxNy Nx�1,Ny�1

��� �
f Nxð Þ � f Ny

� �
 !

ð1Þ

where f NxNy Nx�1,Ny�1

��� �
is the frequency of an alignment

column NxNy given a neighboring column that contains
Nx� 1, Ny� 1. The log-odd ratio in Equation (1) therefore
reflects the influence of di-nucleotide content on the
observed substitutions. In practice, this amounts to ‘en-
riching’ the substitution cost of each position with some
information related to di-nucleotide content.
The counts used to compute our matrix were estimated

on a data set containing 792 RNA families reported in
Rfam release 9.1. These families were used because they
are distinct from the ones used for validation (see next sec-
tion). We named this matrix BlosumR (Figure 1B) because
it relies on a procedure similar to that described for the
BLOSUM matrix. For BlosumR, all pairwise projections
yielding between 62% and 80% identity were extracted
from the Rfam seed alignments. All positions containing
gaps in the pairwise projection were excluded. The final
matrix is scaled in half bits and contains entries reflecting
the cost for the substitution of any pair of di-nucleotides.
For validation purposes and in order to show the useful-
ness of di-nucleotide information, we also re-computed
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similar matrices from reference alignments with randomly
reordered columns (i.e. reference alignments with random-
ized di-nucleotide content). The table used for the exten-
sion and the BlosumR matrix are displayed in Figure 1A
and B.
An interesting property of this formulation is its

reliance on di-nucleotides. Since there are only 16
di-nucleotides, one can easily recode them using a 16
letters alphabet. Given a matrix like the one defined in
Equation 1, it is therefore possible to recode the RNA
sequences into pseudo-amino acid sequences and to
align them with the BlosumR matrix used as a protein-like
substitution matrix. This recoding involves replacing each
nucleotide with a symbol coming from an extended
16-letters alphabet (Figure 1A and B). The choice of the
50 or 30 neighbor is arbitrary since it does not have any
consequence on the amount and the quality of

information eventually concentrated on every symbol
after extension. The recoding is carried out by sliding a
window of size 2 and replacing every nucleotide with one
of the 16 letter alphabet symbol. Given an RNA sequence
of size L, the recoding therefore results in a recoded
sequence of size L-1. A neutral character is then added
on the last position to preserve the original sequence
length. We name such sequences recoded RNAs
(reRNAs). Once recoded, the sequences can be fed to
BlastP and searched against a database of extended se-
quences, as outlined in Figure 1D.

Computation of the BlosumN matrices

The single nucleotide matrix BlosumN (Figure 1C) was
estimated on the same Rfam reference multiple sequence
alignments, using the same interval of 62–80% for the

A B

D

C

Figure 1. (A) Recoding scheme. The table shown represents the di-nucleotide to amino acid symbol recoding scheme. Rows correspond to the first
letter of the di-nucleotide, while columns to the second. For example the di-nucleotide ‘AC’ is recoded to ‘E’. (B) BlosumR log-odd matrix. The
matrix assigns a score for each possible substitution between di-nucleotides pairs. (C) BlosumN log-odd matrix. The matrix assigns a score for each
possible substitution between nucleotides pairs. (D) BlastR pipeline. Rfam seed alignments are used to estimate a log-odd matrix (BlosumR). BlastP
is then used along with BlosumR to search recoded RNA query sequences against a similarly recoded RNA database.
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selection of pairwise projections. The following formula
was used to estimate the matrix:

Score Nx,Ny

� �
¼ log

f NxNy

� �
f Nxð Þ � f Ny

� �
 !

ð2Þ

Where f(NxNy) is the frequency of an alignment column
NxNy.

Validation data set

In order to establish the relative merits of the di-
nucleotide-based searches with respect to simpler methods
such as BlastN, one requires a reference data set that can
be used to measure sensitivity and specificity. For this
purpose we used Rfam which is a collection of RNA align-
ments. For each family a high-quality seed alignment and
a corresponding full alignment are provided. Full align-
ments are created by searching databases for homologues
of the seed sequences using Infernal. It is appropriate to
use Rfam as a reference since our goal is not to over-
perform Infernal in accuracy, but rather to show how
di-nucleotides based searches can produce results close
enough to Infernal so that they might be used for efficient
and sensitive pre-filtering. Validation was done on a subset
of Rfam that we named Rfam-G because it contains all
the sequences of the 603 families of Rfam 9.0 that can be
mapped onto a reference genome. Rfam-G contains a
total of 10 409 sequences (591 families).

It is important to point out that the Rfam-G families
are distinct from the 792 Rfam families used for estimating
the BlosumR and BlosumN matrices. Although the
genomic location is not used here, the rationale behind
the development of Rfam-G is to create a framework in
which both homology search and homology-based RNA
gene discovery methods can be evaluated with a compar-
able data set (manuscript in preparation).

True positive/false positive curves

One can validate database search procedures by producing
receiver operator curves (ROC) or a similar representation
that involves plotting the number of false positives (FPs)
versus true positives (TPs) while varying some meta-
parameter affecting the trade-off between specificity and
sensitivity (typically a threshold). When doing so, the
method’s capacity to separate TPs and FPs is globally
estimated without any dependence on a meta-parameter
(threshold). The relative performances of two methods can
then be compared by measuring the area under the curve
(AUC) or by comparing the number of identified TPs for a
given number of accepted FPs.

In order to produce these graphs, Rfam-G families were
combined. For each family, we selected as a representative
sequence the most closely related member (as estimated by
measuring the average pairwise percent identity on the
corresponding Rfam-G seed alignment). Each representa-
tive was then searched against the full Rfam-G database
and in the resulting output, family members of that same
representative sequence were labeled as Proven Positives

while non-members were labeled as Proven Negatives.
This search/labeling procedure was carried out with the
representative sequences of all Rfam-G families, resulting
in 591 distinct Blast outputs (one per family). These
outputs were concatenated and sorted by E-values. FPs
versus TPs graphs were produced by scanning the sorted
output line by line, and counting for each line the number
of TPs and the number of FPs (respectively, number of
Proven Positives and Proven Negatives having a score
better or equal to that of the considered line). This
strategy is fairly standard and similar to the one recently
used by Biegert and Söding (40). As pointed out by these
authors, large families (Ribosomal RNA or RNAse-P in
our case) tend to dominate these FP/TP curves, a
drawback that can be corrected by weighting the contri-
bution of each sequence with the inverse of its family size
(i.e. down-weighting the contribution of big families). We
used this approach to estimate the quantities referred to as
weighted TPs and weighted FPs in Figure 2 and 3.

Validation of the clustering capacity

A methodology was designed in order to estimate the clus-
tering capacities of BlastR. This methodology estimates
the capacity of a clustering method (BlastClust, a compo-
nent of the NCBI-Blast package) to reconstruct a known
clustering (Rfam-G) when using a comparison method to
estimate pair-wise sequence similarity. The clustering was
applied onto a data set made of all Rfam-G sequences.
BlastClust clusters were then evaluated using the following
strategy: given the N Rfam-G sequences, an N�N matrix
is defined. In the reference matrix (the one built on the
original Rfam-G families), a vertex is set to 1 and con-
sidered a Proven Positive whenever the two corresponding
sequences belong to the same family, the other vertices are
set to 0 (Proven Negative). Given the output of BlastClust,
a similar matrix is built, where new-found clusters are used
to mark the vertices. The two matrices are then compared.
TPs can be estimated by counting the number of vertices
set to 1 in the reference matrix and to 1 in the new matrix;
similarly for FPs (0 and 1), False Negatives (1 and 0)
and True Negatives (0 and 0). Counts can be weighted
as described above and used to estimate sensitivity and
specificity using standard formulas:

Sn ¼ TP=ðTP+FNÞ ð3Þ

Sp ¼ TN=ðTN+FPÞ ð4Þ

We used this method to benchmark BlastClust (Figure 5),
varying the inclusion threshold in order to obtain a range
of values for Sn and Sp. These values were used to plot a
graph Sn versus (1� Sp). The areas under the resulting
curves were integrated. By default, BlastClust uses
MegaBlast (41) as a comparison engine for nucleotide se-
quences and BlastP for proteins. In the context of this
work, we only used BlastP as a comparison engine since
MegaBlast is meant to be used for closely related se-
quences and is therefore not sensitive enough for the
kind of clustering considered here.
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Database search algorithms

In order to validate the relevance of the sequence recoding
and the use of BlosumR matrices, we used the BlastP
algorithm to search reRNAs against their corresponding
reRNA databases. We named this approach BlastR. For

comparison purposes, BlastR was designed to run both
with WU-BlastP (version 2.0 MP, Gish, unpublished)
and with NCBI-BlastP (standalone NCBI Package
version 2.2.18). BlastR was also compared against
several different flavors of BlastN and BlastP packages
(Table 1). Considering the nucleic nature of the reRNA
sequences, we used for BlastP the BlastN default gap
penalties while keeping all other parameters to their
default BlastP values. In order to further emulate BlastN
behavior, sequences were reverse complemented before ex-
tension (i.e. the recoded databases contain both the direct
and the reverse sequence).

The substitution matrices used were the default NCBI
and WU-Blast matrices (+1/�3 or +5/�4, respectively)
when searching RNA sequences with BlastN, and the
BlosumN or BlosumR matrices when using BlastP. The
analyses presented in the main body of the text were all
carried out using WU-Blast, although similar results were
obtained using NCBI-Blast (Figure S1 in Supplementary
Data). WU-Blast is now distributed under the name
AB-Blast but the behavior of the AB-Blast package was
identical to WU-Blast in our benchmarks.

Implementation/distribution

BlastR is a Perl wrapper for BlastP. Three wrappers are
distributed, one for AB-Blast (Gish, unpublished data),
one for WU-Blast, and one for NCBI-Blast. The
package has been designed to behave like these three im-
plementations of Blast, supporting exactly the same
command line. BlastR is part of the standard T-Coffee
distribution, an open-source freeware available from
www.tcoffee.org/blastr.html.

RESULTS

In this work, we describe a procedure for searching
ncRNAs in databases. Our approach relies on three
distinct components: the use of a 16 letters alphabet

Figure 2. Receiver–operator-like curve (ROC) for WU-Blast. The hori-
zontal axis indicates the weighted number of reported TPs, while the
vertical indicates the corresponding weighted number of FPs. Going
from left to right on the top of the graph, the blue curve shows
WU-BlastN, the orange curve corresponds to WU-BlastP/BlosumN
and the green one shows WU-BlastR.

Figure 3. ROC for optimized Blast. Similar layout as Figure 2. Going
from left to right on the top of the graph, the blue curve corresponds to
default WU-BlastN, the pink curve shows NCBI-BlastN optimized by
Roshan et al. (26), the brown curve corresponds to WU-BlastN
optimized by Freyhult et al. (25) and the green one shows WU-BlastR.

Table 1. Blast flavors used in the validation and associated

parameters

Name GOP GEP Word
Size

Matrix Sequence
tType

NCBI-BlastN 5 2 11 +1/�3 Nuc
NCBI-BlastN Optimized 8 6 4 +5/�4 Nuc
NCBI-BlastP/BlosumN 5 2 3 BlosumN Nuc
NCBI-BlastR 5 2 3 BlosumR Recoded

Nuc
WU-BlastN 10 10 11 +5/�4 Nuc
WU-BlastN Optimized 20 10 7 +5/�4 Nuc
WU-BlastP/BlosumN 10 10 3 BlosumN Nuc
WU-BlastR 10 10 3 BlosumR Recoded

Nuc

‘Name’ indicates the Blast flavor name, ‘GOP’ is the gap opening
penalty, ‘GEP’ the gap extension penalty. ‘Word size’ indicates the
word size for seeding alignment. ‘Matrix’ indicates the scoring scheme
that has been used. ‘Sequence type’ indicates whether the considered
sequences were nucleotides or recoded nucleotide sequences (respective-
ly ‘Nuc’ and ‘Recoded Nuc’). BlastP can be used with any Blosum like
scoring scheme (see text).
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reflecting di-nucleotide content (recoded sequences), the
use of the BlastP algorithm to align the nucleotide se-
quences, and the use of new substitution matrices
trained on Rfam seed alignments (BlosumR and
BlosumN). Our first task was to determine the net contri-
bution of each component when doing database searches.

We started by estimating the contribution of the BlastP
algorithm. It is important to realize that BlastP and
BlastN do not use the same algorithm. BlastP takes ad-
vantage of k-tuple similarity, while BlastN relies on perfect
k-tuple identity. Furthermore, the two algorithms rely on
a different low-level parameterization (different word size,
gap opening and gap extension penalties, HSP (high-
scoring segment pairs) extension thresholds, two-hit/
single-hit algorithms, multiple-hit window size, drop-off
value for gapped alignment, drop-off value for
un-gapped extensions) and the BlastP algorithm
supports the use of user defined log-odd matrices. It
was, therefore, necessary to quantify how these variations
may affect subsequent analysis. We did so by searching
nucleotide sequences with BlastP while treating them as
protein sequences made of a four letters alphabet and
using as a substitution matrix BlosumN (BlastP/
BlosumN), a nucleotide log-odd substitution matrix esti-
mated on the Rfam seed alignments. We estimated the
behavior of WU-BlastP/BlosumN by running one
selected query from each Rfam family, concatenating the
resulting outputs and sorting them by E-value. The result-
ing list was used to produce the FP versus TP plots in
Figure 2 (‘Material and Methods’ section). As a reference
we also included WU-BlastN with default parameters.

The results clearly show that using WU-BlastP/
BlosumN as a substitution matrix yields an improvement
over BlastN. It is hard to determine whether the improve-
ment is an effect of the matrix, the algorithm or a com-
bination, since neither WU-BlastN nor NCBI-BlastN
support the use of ad hoc matrices. We further quantified
the difference in behavior between BlastN and BlastP by
precisely estimating the number of TPs returned while ac-
cepting a specified number of FPs. Results (Table 2),
suggest that when accepting up to 10 FPs, WU-BlastP/
BlosumN reports 535 TPs, that is to say about >4% of
WU-BlastN. We did not see a similar improvement when

feeding NCBI-BlastP the BlosumN matrix (Figure S1 in
Supplementary Data). In WU-Blast, the increased sensi-
tivity comes at a significant computational cost and we
show in Table 2 that on the same benchmark data set,
WU-BlastP takes about 150 times longer to produce a
result than WU-BlastN.
We then replaced BlosumN with BlosumR, the

di-nucleotide matrix and ran the benchmark on recoded
RNA sequences. This flavor of Blast is named BlastR and
its benchmark behavior is shown on Figures 2 and 3. The
improvement of WU-BlastR over WU-BlastP is modest
(557 TPs versus 553 when accepting 20 FPs) but more
significant when considering the NCBI package (539
versus 521). Yet in both cases, this improvement comes
along with a significant increase in efficiency. WU-BlastR
requires nearly 60% less CPU (Central Processing Unit)
time than WU-BlastP/BlosumN (Table 2) while
NCBI-BlastR requires about 40% less CPU time than
NCBI-BlastP/BlosumN. The lower CPU requirement is
consistent with a significant lower number of reported
HSPs (at least in NCBI BlastP) as shown on Table 2.
Albeit modest, the improvement remains consistent over
the whole TP versus FP graph. We finally compared
BlastR with two optimized versions of BlastN, one from
Freyhult et al. (25) and one from Roshan et al. (26). The
results on Figure 3 and Table 2 suggest a moderate but
consistent improvement of BlastR over these optimized
flavors of BlastN.
In order to further investigate the source of the im-

provement obtained when replacing BlosumN with
BlosumR, we re-estimated BlosumR matrices on Rfam
seed alignments with shuffled columns. The alignments
thus produced retain the same level of identity, the same
single nucleotide mutation patterns, but lose their
di-nucleotide dependencies. We produced 1000 such rep-
licates based on the 792 Rfam family set on which the
BlosumR matrix was estimated, and we used these 1000
replicates to search Rfam-G with BlastR. The results
(Figure 4) show the distribution of reported TPs (for 10
accepted FPs) obtained with these replicates. Interestingly,
the behavior of BlastR when used with shuffled BlosumR
matrices is similar to the behavior of BlastP/BlosumN.
This observation suggests that the differences observed
on Figure 2 results from the use of di-nucleotide informa-
tion. This result measured on a large number of replicates
confirms the existence of a modest but real signal resulting
from di-nucleotide dependencies and susceptible to
improve database searches. It is possible to estimate
these dependencies by measuring the log-odd ratio
between the observed and expected frequency of every
di-nucleotide given the background frequencies of the
four nucleotides. Results (Figure S2 in Supplementary
Data) confirm that the strongest dependency is between
a nucleotide and its immediate neighbor. The second
peak of dependency occurs when considering the
dependency between a given nucleotide and its +4
neighbor; this distal dependency is, however, significantly
lower.
One of the main objectives of BlastR is to allow the

identification of new ncRNA families. In order to estimate
the relative merits of BlastR for that purpose, we designed

Table 2. Comparison between various Blast configurations

Blast Flavor Mat #TP10 #TP20 #HSPs CPU (s)

WU-BlastN +5/�4 514 538 – 3
WU-BlastP/BlosumN BlosumN 535 553 – 440
WU-BlastN Opt +5/�4 533 551 – 6
WU-BlastR BlosumR 541 557 – 169
NCBI-BlastN +1/�3 523 530 51565 6
NCBI-BlastP/BlosumN BlosumN 492 521 553738 156
NCBI-BlastN Opt +1/�3 499 525 149065 103
NCBI-BlastR BlosumR 509 539 171891 89

‘Blast Flavor’ indicates which Blast was used, ‘Mat’ indicates which
matrix, ‘#TP100 and ‘#TP200 indicate how many weighted TPs were
reported for a total of, respectively, 10 and 20 accepted weighted
FPs. ‘#HSPs’ indicates how many HSPs were reported (only for
NCBI). ‘CPU’ indicates the CPU time in seconds.
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a simple benchmark test. It involves re-clustering Rfam-G
ab initio and using an estimate of the similarity between
the new clusters and the original one as a measure of
success. Results are displayed on Figure 5. This test was
used to compare BlastR and BlastP/BlosumN. The results
are in agreement with those reported on Figure 2 and
suggest that BlastR consistently provides a better
trade-off between sensitivity and specificity.

It is important to point out that with the exception of its
substitution matrix BlastR has not been tuned in any way
for RNA. It is merely the off-the-shelf BlastP package
used along with a di-nucleotide substitution matrix and
a BlastN gap penalty scheme. We therefore did not
make any specific attempt to properly estimate the param-
eters of the Extreme Value Distribution (K and �) used to
model the E-value estimations. The problem of addressing
the effect of unsuitable values for K and � is not new (40),
and it is well-known that inaccurate values result in under
or over estimated E-values for the reported hits. To assess
the effect on BlastR we systematically compared the
E-values reported by BlastN with the E-Values reported
by BlastR when considering the same hit (Figure 6A and
B). The correlation between the log (E-value) is linear and
on that same scale BlastR values are roughly twice lower
than BlastN. Interestingly, the same linear correlation and
the same doubling effect occur when comparing BlastN
E-values with BlastP/BlosumN E-values (Figure S3 in
Supplementary Data). This observation rules out our
di-nucleotide matrix (BlosumR) as the main explanation
for the doubling effect. It is, therefore, most likely that in
BlastR, the E-value underestimation results from inappro-
priate values of K and � in BlastP. Fortunately, the con-
sequences on the present analysis are limited. The log-shift
does not affect hit ranking, and therefore does not chal-
lenge any of the results reported here. In practice, to
benefit from the increased sensitivity of BlastR (or
BlastP/BlosumN), users simply need to use an E-Value
of 10�6 as a threshold for significance, rather than the
value of 10�3 that appear to be most suitable for BlastN
on this data set. Aside from this E-value shift the results
on Figure 6 confirm the capacity of BlastR to discriminate
very accurately between proven positives (blue dots) and
proven negatives (red dots).

Figure 4. Score distribution with shuffled matrices. Thousand shuffled matrices were used to produce the corresponding number of replicate
benchmarks. For each replicate, the weighted number of TPs for a weighted total of 10 accepted FPs was measured and used as a score for the
replicate. The graph shows the distribution of these scores, with the vertical line on the right indicating the value associated with BlastR.

Figure 5. ROC analysis of clustering capacities. Horizontal axis:
1-specificity. Vertical axis: sensitivity. Each curve shows the trade-off
between these two quantities when varying the inclusion threshold of
BlastClust. Starting from the bottom right corner to the top left, the
bottom curve corresponds to NCBI-BlastP/BlosumN, while the top
curve corresponds to NCBI-BlastR.
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DISCUSSION

In this work, we describe and validate a database search
method specific for non-coding RNA sequences. We show
that through simple sequence recoding and estimation of
an ad hoc substitution model, one can improve the
accuracy of standard tools such as Blast. Sequence
recoding is achieved by switching from the nucleotide
four-letters alphabet to a protein-like 16-letters alphabet.
Because they are recoded using an amino acid-like alpha-
bet, the resulting sequences can be dealt with using protein
analysis tools.

We examined the effect of using the BlastP algorithm to
analyze recoded RNA sequences. This recoding amounts
to increasing the information density within sequences by
overloading each position with information related to its
30 neighbor. While in theory, a nucleotide could be
informed with the nature of any other nucleotide in its
vicinity (i.e. one, two, three or more nucleotides apart),
we showed here that the strongest dependency occurs
between immediate neighbors. Interestingly, we also
found an increased signal at position +4 (Figure S2 in
Supplementary Data). This means that if one was ready
to use a slightly larger alphabet, it might be worthwhile
exploring the effect of combining these three nucleotides
(NN��N) into a unique symbol. As shown in Figures 2
and 3, most of the improvement reported here is achieved
by replacing the standard identity matrix in BlastN with a
log-odd matrix estimated on Rfam RNA alignments
(BlosumN) and feeding this matrix to the BlastP algo-
rithm. We then show how a more discriminative matrix
can be estimated by considering di-nucleotide substitu-
tions to search nucleotide sequences recoded accordingly.
We name the resulting procedure BlastR and show how its

increased database search performances also result in
improved clustering capacities when evaluating the
re-clustering of Rfam-G. The modifications we propose
here are simple and amount to a database pre-processing
procedure (reverse complementation, sequence extension)
combined with the use of di-nucleotide-specific substitu-
tion matrix (BlosumR). As such, they can be added on the
top of any Blast-like package (PSI-Blast, Smith and
Waterman, HMMER, etc.). We are currently distributing
three such adaptations: one for the NCBI-Blast, one for
WU-Blast and one for AB-Blast. We report comparable
results when using these three packages.
An important effect of the recoding is to create se-

quences with a lateral dependency. In the recoded se-
quences, some symbol combinations are not allowed
anymore because they are incompatible with the
underlying recoding. For instance the symbol ‘D’ that cor-
responds to the ‘AA’ di-nucleotide cannot be followed by
the symbol ‘I’ that correspond to ‘CA’. In order to be
compatible, two extended symbols must have identical nu-
cleotides on their 50 and 30. This property results from the
fact that the di-nucleotides do not define an arbitrary
reading frame, but merely correspond to a sliding window
of size 2. Such a high lateral dependency would dramatic-
ally decrease the estimated E-values if Blast were consider-
ing dependencies between adjacent positions. Blast,
however, like Smith and Waterman or the most common
string matching algorithms, ignores such dependencies. It
relies on the simplifying assumption that all positions are
independent from one another and sums up the contribu-
tion of each position to estimate the final score. As a con-
sequence, the privileged association between two symbols
does not affect the score.

Figure 6. (A) E-values correlation between WU-BlastN and WU-BlastR. The horizontal axis indicates the ten based logarithm of the E-values
recorded on WU-BlastN output. The vertical axis corresponds to that same quantity measured on WU-BlastR outputs. Each dot on the graph
corresponds to the same hit observed on two outputs. Blue dots are hits labeled as proven positives, red dots correspond to proven negatives. (B)
Close up of the previous graph centered on the high E-value area.
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Overall, the observation that taking into account di-
nucleotide composition when searching databases results
in an improvement should not come as a surprise.
Nucleotides forming dinucleotides have been known for
a long time not to be fully independent. The question is,
therefore, not whether the di-nucleotide signal exists, but
whether it is strong enough to make a difference when
added on the top of any analysis. In this work, we
designed a simple protocol to enrich standard database
search methods with di-nucleotide signal. We show here
that the effect is strong enough to influence sensitivity.
Although our results suggest that the best combination
between CPU requirement and sensitivity is obtained
when using recoded sequences, it is worth noting that we
also report a significant increase in accuracy by the mere
fact of using a nucleotide log-odd matrix (BlastP/
BlosumN). Of course, one would have liked to test these
nucleotide matrices within BlastN. Unfortunately, this is
not possible as the currently available BlastN implemen-
tations have not been designed to use ad hoc scoring
schemes.
Considering the importance of RNA analysis and the

exponential growth of this research field, any small im-
provement in detection capacities could have major con-
sequences. It must be stressed here that BlastR is not an
attempt to improve over structure-aware, CPU intensive
methods, like Infernal. These packages use RNA informa-
tion in a way that is much closer to optimality. Our goal is
not to outperform them but rather to ask how close one
can get to their accuracy while using CPU inexpensive
methods such as Blast. For this reason, we used the
output of these methods (namely Infernal/Rfam) as a
standard of truth and asked what fraction of the signal
generated by accurate methods can be recovered using
BlastR. A niche exists for methods like BlastR since
today even the most sophisticated procedures designed
for the assembly of ncRNA databases like Rfam rely in
their early stage on BlastN-based analyses. Whenever
BlastN is used, BlastR could be used as a drop-in replace-
ment. BlastR has roughly the same CPU requirements as
BlastP. That makes it about 10–100 times slower than
BlastN but 2–5 orders of magnitude faster than any
other non-Blast based alternatives such as Infernal (21).
In this analysis, we have focused our interest on

evaluating how BlastR can be used to identify homologs
among a set of well-defined RNA sequences. This exercise
supposes the existence of data sets made of mature RNA
transcripts (as opposed to genes embedded within a
genome). This situation is realistic, given the large
number of RNAseq experiments being performed in an
increasing number of projects that deliver fully assembled
transcriptomes. Of course BlastR could also be used to
scan genomes for embedded multiexonic genes but the
performance of our method in this precise context remains
to be evaluated. This work is currently underway, taking
advantage of the Rfam-G data set described here. Last but
not least, it is interesting to note that the use of protein-
like sequences makes it possible to use all available flavors
of Blast including the most sophisticated, such as PSI-
Blast. Unfortunately, our attempts at doing so have
been hampered by the presence of many hard coded

protein-dependent parameters within PSI-Blast. The de-
velopment of PSI-BlastR would therefore require a more
invasive software engineering approach, but it is certainly
an avenue worth exploring.
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