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Abstract

Two vector borne diseases, caused by the Bluetongue and Schmallenberg viruses respectively, have emerged in the
European ruminant populations since 2006. Several diseases are transmitted by the same vectors and could emerge in the
future. Syndromic surveillance, which consists in the routine monitoring of indicators for the detection of adverse health
events, may allow an early detection. Milk yield is routinely measured in a large proportion of dairy herds and could be
incorporated as an indicator in a surveillance system. However, few studies have evaluated continuous indicators for
syndromic surveillance. The aim of this study was to develop a framework for the quantification of both disease
characteristics and model predictive abilities that are important for a continuous indicator to be sensitive, timely and
specific for the detection of a vector-borne disease emergence. Emergences with a range of spread characteristics and
effects on milk production were simulated. Milk yields collected monthly in 48 713 French dairy herds were used to simulate
576 disease emergence scenarios. First, the effect of disease characteristics on the sensitivity and timeliness of detection
were assessed: Spatio-temporal clusters of low milk production were detected with a scan statistic using the difference
between observed and simulated milk yields as input. In a second step, the system specificity was evaluated by running the
scan statistic on the difference between observed and predicted milk yields, in the absence of simulated emergence. The
timeliness of detection depended mostly on how easily the disease spread between and within herds. The time and location
of the emergence or adding random noise to the simulated effects had a limited impact on the timeliness of detection. The
main limitation of the system was the low specificity i.e. the high number of clusters detected from the difference between
observed and predicted productions, in the absence of disease.
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Introduction

Syndromic surveillance consists in the routine monitoring of one

or several indicators for the early detection of adverse health

events. It is an active area of research with applications spanning

from the routine detection of seasonal flu [1] to potential

bioterrorism threats [2]. Surveillance is also of interest in

veterinary epidemiology for the early detection of the emergence

or re-emergence of diseases [3,4]. Our motivating problem is the

emergence of 2 vector borne diseases in the European ruminant

populations since 2006. The bluetongue virus, which had been

spreading with growing intensity in the south of Europe since 1998

[5], emerged in north-western Europe in August 2006. Before the

end of that year it had spread to the Netherlands, Belgium,

Germany, Luxemburg and France [6]. In the second half of 2011,

episodes of fever, milk drop and diarrhoea in cows were reported

in Germany and the Netherlands [7]. A previously unknown

orthobunyavirus was identified and named Schmallenberg virus

after the town from which originated the first sample in which the

virus was found [8]. Both bluetongue and Schmallenberg viruses

are transmitted by culicoides midges. With the emergence of 2

vector borne diseases only 5 years apart and their potential link to

climate change [9], we need to stand prepared for the emergence

of new diseases, some of which could be zoonotic. Syndromic

surveillance systems for the early detection of animal diseases

should be developed and implemented.

All methods used for syndromic surveillance detect temporal or

spatio-temporal patterns of deviations between expected and
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observed values produced by abnormal events on one or several

indicators [10]. Therefore, the performance of any detection

method depends crucially on the characteristics of the deviations

induced by the abnormal event as well as on the performance of

the model used to predict the indicators’ expected values.

Compared to surveillance of known diseases, the fact that the

next disease to emerge is unknown represents a difficulty for the

evaluation of the performance of a detection method. Sensitivity

can only be calculated when the distribution of the monitored

indicator in the infected population is known. This means that in

order to calculate sensitivity we can only work with hypothesised

disease characteristics. In order to assess the quality of the

prediction, the 2 elements to consider are i) bias, whereby

predicted indicator values are too high for several consecutive

time-intervals or adjacent locations leading to an apparent cluster

of low values and ii) noise, whereby the disease effects are diluted

in the unexplained indicator values’ variability.

A source of data that has not yet been explored for prospective

syndromic surveillance in cattle is milk recording data. Milk

recording consists in the measurement of milk quantities and

constituents from all the cows of a dairy herd on a regular, mostly

monthly, basis. A drop in milk yield can be expected to be a non

specific and precocious symptom associated with most diseases, as

milk production represents a high metabolic demand for the dairy

cow [11]. Therefore, milk recording data are potentially good

candidates to be included in a disease surveillance system, and this

should be evaluated. How to carry out this evaluation is however

non trivial. Indeed, the next disease to emerge, how it will spread

and the extent of its effects on the milk production of individual

cows are all, by definition, unknown. Furthermore, most of the

indicators used for cluster detection investigated are discrete, and

there are few methods and applications using continuous

indicators for prospective syndromic surveillance [12].

The aim of this study was to present a framework for the

quantification of both disease characteristics and model predictive

abilities that are important for a continuous indicator to be

sensitive, timely and specific for the detection of a vector-borne

disease emergence. This was undertaken by simulating the

emergence of a range of diseases and their impact on milk

production in French dairy cattle in 2006.

Materials and Methods

Data
Milk recording is the regular collection of milk production data

from all lactating cows in a herd. It is usually performed at

monthly intervals, on two consecutive milkings. The number of kg

of milk given per cow per day (milk yield) is measured and a milk

sample is taken to determine milk composition, for all the cows of a

tested herd. Farmers participate in order to get individual cow

performance data. These data are also used for the genetic

evaluation of sires and cows. In France, they are centralised by the

Centre de Traitement de l’Information Génétique (CTIG) for this purpose.

Milk recording data collected in herds enrolled in the French milk

recording scheme between 2003 and 2006 were extracted from the

CTIG national database. Records that originated from only one

milking (as opposed to the usual 2 consecutive milkings) or from

herd-recording dates (test-day) with less than 10 cows recorded

were excluded. In total, 48,713 herds were included. Farmers have

some control over lactation length and this can be used to adjust

the quantity of milk sold to external factors. In order to limit this

source of variation, only recordings from cows between 5 and 305

days in lactation were used. The median number of cows recorded

between 5 and 305 days in milk per test-day in these herds was 29.

Herd location was available at the municipality level. Three levels

of data are used in the remainder of this manuscript. Milk losses

were simulated at the individual cow-recording level. Prediction of

expected milk quantities were carried out on mean milk

productions per test-day. Disease detection was undertaken at

the municipality/week level.

Expected Milk Production
In order to detect a deviation from an expected milk

production, the expected milk production must be predicted.

Expected test-day milk productions in 2006, including cows

recorded between 5 and 305 days in lactation only, were predicted

using herd specific historical data as follows. Mean test-day milk

production per cow between 2003 and 2005 was modeled using a

linear mixed model. The model specification was:

Yij~b0zu
j
0z

P8

k~1

(bkzu
j
k)Tkzeij

uj*MVN(0,Su)

eij*N(0,sij)

where Yij was the mean test-day milk production per cow

recorded between 5 and 305 days in lactation on test-day i in herd

j, Tk was the day of the year linearly interpolated on 2 out of 8

consecutive time intervals, b was a vector of coefficients associated

with the effect of day of year on milk production, uj a matrix of

herd random effects following a multivariate normal distribution

with mean 0 and variance-covariance Su and e was a vector of

residual error following a normal distribution with mean 0 and

variance s2. Parameters were estimated in R [13] using the lmer

function [14]. Mean milk productions per cow were predicted for

each test-day observed in 2006 using this equation with the

parameters estimated between 2003 and 2005.

Simulation of Disease Emergence
In order to determine the disease characteristics that are

important for disease detection, a disease emergence model was

developed. In a first step disease spread was simulated in space and

time resulting in each cow being assigned a date of infection or the

absence of infection. In a second step, for each observed recording

date, a quantity of milk lost because of the disease was simulated.

Disease spread was simulated as follows. From its starting

location and date, the disease spread as a circle with speed S km/

day. Once the disease had reached a municipality centroid, each

herd from this municipality could get the disease with probability

pherd (Figure 1). Once a herd was reached by the disease, each cow

from the herd could get the disease with probability pcow (Figure 1).

Simulations were carried out with a daily time step, and, because

we were interested in early detection, for a duration of 60 days

after disease emergence. On each day of simulation, the statuses of

each uninfected herd within an infected municipality and of each

cow within an infected herd were sampled from a Bernoulli

distribution with parameters pherd and pcow respectively. For each

cow either the absence of infection or the day of the simulation at

which the cow became infected were stored for the simulation of

the effects of the disease on milk production.

The effects of the emergences on milk production were

simulated at the cow-recording level. The loss of milk production

resulting from the infection was assumed to be proportional to the

recorded milk yield and made dependent on the day since

infection simulated at the previous step (Figure 2). More precisely,

milk production was assumed to drop by x % on the day a cow

Continuous Indicator for Syndromic Surveillance
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became infected. The loss of milk production was maintained at

this rate of x % for a period of d1 days. It then went back linearly

to the ‘normal’ milk production over a period of d2 days.

The model was used to simulate a disease emergence in 2006.

This year was chosen because only 6 bluetongue cases were

reported in 2006 in France and the disease spread in a large

number of herds in 2007. This could have had an effect on the

milk production observed during 2007 and the following years. All

the herds and cows recorded in 2006 were included in the

simulations. The parameters used in simulations are presented in

Tables 1 and 2. Two starting locations and 2 starting dates were

used. One location, in the West, had a high cattle density and one,

in the North, had a low cattle density (Figure 3). Diseases were

made to emerge on the 1st of March and the 1st of September.

Values selected for disease speed were chosen based on the

published estimate of 5.6 km/day for the front wave velocity of

bluetongue [15]. As there were no published values for the

probabilities of infection within and between herds such as

simulated here, a wide range of plausible values was used. Using

the same values for pherd and pcows of 0:1 and 0:005, respectively

65% and 5% of the population would be infected 10 days after

emergence, and, 99% and 26% would be infected 60 days after

emergence. Three milk losses scenarios with different values for x,

d1 and d2 were run on each spread scenario and the resulting milk

productions stored. Based on published estimates for the impact of

bluetongue on milk production [16], the parameters were chosen

so that the resulting loss of milk production would amount to

around 3% of the milk produced between 5 and 305 days in

lactation for a Holstein cow infected on day 150 of lactation.

Simulations were run for all 192 combinations of spread

parameters (Table 1) and 3 milk loss scenarios (Table 2) resulting

a total of 576 simulated scenarios.

Space-time Patterns of Disease Induced Milk Losses
Simulated milk productions were generated for 576 scenarios

representing all possible combinations of model parameters (See

Tables 1 and 2). As it would have been impossible to attempt to

Figure 1. Model used for the simulation of disease spread. The disease spreads as a circle at S km/day. Once the disease has reached a
municipality centroid, each uninfected herd in the municipality can become infected with a daily probability pherd . Once a herd is infected, each cow
from the herd can become infected with a daily probability pcow. Squares on the left-hand side represent herds. On the right-hand side, black dots and
red dots represent uninfected and infected cows respectively.
doi:10.1371/journal.pone.0073726.g001

Figure 2. Simulation of milk losses caused by the disease
represented on the theoretical lactation curve of a Holstein
cow in her second lactation. Milk production drops by a proportion
x on the day of disease onset and for a period of d1 days. Milk
production gets backs to its normal value linearly over a period of d2

days. Milk losses were simulated on monthly recorded milk yields.
doi:10.1371/journal.pone.0073726.g002

Continuous Indicator for Syndromic Surveillance
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detect disease emergences on all scenarios, groups of scenarios

were created. The ability of a detection method which uses milk

production to detect a disease emergence will depend on the

spatio-temporal pattern of milk losses. To compare the scenarios

based on this criterion, simulated milk losses were averaged per

cow for 8 areas centered on the known disease starting locations,

per week for 8 weeks after the emergence. The 8 areas were circles

centered on the disease starting locations with radii of 20, 30, 40,

50, 100, 200, 500 and w 500 km. This gave for each scenario a

grid of 64 values of milk production loss per cow per zone and per

week after emergence. By design, milk losses between adjacent

zones and between consecutive weeks were correlated. A principal

component analysis was run on the 64 values characterizing each

scenario in order to identify the combination of variables that

allowed to discriminate best between the different scenarios. The

k-means algorithm was then run on the identified principal

components to make groups of scenarios with similar character-

istics.

Cluster Detection
The detection of a disease emergence based on its effects on

milk production assumes that the emergence will result in a

decrease in milk production that is localised in space and time.

This type of deviation can be detected using a scan statistic [17].

Disease emergence detection was carried out with SaTScanTM

using a space-time prospective analysis [18]. The cluster detection

algorithm was parametrized assuming a normal distribution [12]

for the indicator analysed. The model input was either the mean

simulated losses per municipality per week or the mean difference

between observed and predicted milk production per municipality

per week (kg of milk/municipality/week) with each observation

weighted by the square root of the number of cows recorded. In

order to detect a drop in milk production on a given week, data for

this week and the 4 preceding weeks were analyzed. This was done

to feed the program with background information on milk

production since milk recording is carried out on a monthly basis

in most herds. Alarms were clusters with a p-value ƒ 0.05. Cluster

detections carried out on simulated milk losses, i.e. when the time

and characteristics of the emergence were known, were used to

assess the sensitivity and timeliness of the method. Cluster

detections carried out on the difference between observed and

predicted milk productions, i.e. when there was no emergence to

detect, were used to assess the specificity of the method.

Factors Influencing Cluster Detection
Random noise. In order to mimic a predicted milk

production that would have been totally unbiased but with various

levels of unexplained variation, for each test-day that occurred in

2006, 3 random values were sampled from normal distributions

with mean 0 and standard deviation 1, 3 and 5 respectively and

added to the simulated milk production losses. The scan statistic

was run on the 3 vectors of random values.

Disease characteristics. The association between disease

characteristics and the ability of the scan statistic to detect their

emergence was evaluated. Based on the results of the principal

component analysis, 8 groups of diseases with similar character-

istics were formed using the k-means algorithm. This allowed to

Table 1. Parameters used for disease spread simulation.

Parameter Abbreviation Values

Disease starting location West, North

Disease starting date 01/03/2006, 01/09/2006

Disease speed S 1, 5, 10 km/day

Daily probability of infection within municipality Pherd 0.005, 0.01, 0.05, 0.1

Daily probability of infection within herd Pcow 0.005, 0.01, 0.05, 0.1

See Figures 1 and 3 for details on the simulation model.
doi:10.1371/journal.pone.0073726.t001

Table 2. Parameters used for the simulation of disease
induced milk losses.

Parameter Abbreviation Sc 1 Sc 2 Sc 3

Proportion of recorded
production lost at onset

x 0.9 0.5 0.35

Duration of loss (days) d1 5 14 21

Duration back to
normal (days)

d2 14 14 21

Three combinations of parameters were simulated and combined with the
disease spread simulations given in Table 1. See Figure 2 for details on the
simulation model of milk losses.
doi:10.1371/journal.pone.0073726.t002

Figure 3. Mean number of cows recorded per municipality per
week in the dataset used for simulation. The 2 blue crosses
represent the disease starting locations used in the simulations.
doi:10.1371/journal.pone.0073726.g003

Continuous Indicator for Syndromic Surveillance

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e73726



carry out cluster detection on a subset of scenarios. Even though

scenarios from different starting locations and dates can have

similar features in terms of mean quantity of milk lost per cow per

week and per zone, they may differ in terms of the number of cows

recorded per week. Only scenarios starting from the Western

starting location on the first of March were used at this step. The 8

scenarios fulfilling these selection criteria that were closest to the

cluster centroids were selected.

Disease starting location and date. Cattle density is not

homogeneous across France. Disease emergence simulations were

started at both a high (West) and a low (North) cattle density

location (Figure 3). Also, in France, milk recording is discontinued

between mid-July and mid-August. Therefore, there would be less

background data available to detect a disease emerging in early

September than in early March. The associations between disease

starting location and starting dates and cluster detection were

tested. The scan statistic was run on 8 groups of scenarios with the

same parameters as above but i) starting from the northern

location ii) starting on the 1st September.

Model performance. In order to determine the number of

false alarms, cluster detection was carried out on the differences

between predicted and observed milk production in 2006. Since

there were only 6 farms with notified BTV cases during this year,

all the alarms were considered to be false alarms. This was used as

a measure of the method’s specificity.

Results

Expected Milk Production
A linear mixed model was fitted to monthly test-day milk

productions collected between 2003 and 2005. The mean and

standard deviation of the residuals were 1:510{4 kg and 1.87 kg

respectively. The model was then used to predict mean test-day

milk productions per cow in 2006 and the differences between

observed and predicted values were calculated for each test-day.

The mean and standard deviation for the difference were 0.4 kg

and 2.47 kg respectively. The mean difference between observed

and predicted value per week of the year between 2003 and 2006

are presented in Figure 4. Although the model accounted for herd

specific within year variation, there were systematic differences

between recorded and predicted milk productions between each

year. Except for weeks 10 to 14, observed milk production was

always higher than predicted in 2006.

Space-time Patterns of Disease Induced Milk Losses
Each scenario was summarised by a vector of 64 values of mean

production loss per cow for 8 geographical zones centred on the

disease starting locations and for 8 weeks following disease

emergence. The first 2 components of the principal component

analysis explained 82.9% and 9.7% of the variability respectively.

These 2 components were used to describe all the scenarios.

Figure 5 displays the input parameters used for each scenario and

the scenarios’ projection on the 2 principal components. The

associations between scenarios’ input parameters and projection

on the principal components were assessed visually. The most

visible association was between the first component and the

product of the daily probabilities of infection in herds within

municipality (pherd ) and in cows within herds (pcow). The only other

parameter associated with the principal components was disease

speed. Diseases progressing at 1 km/day were grouped on a single

line while diseases progressing at 5 or 10 km/day were more

scattered and could take similar values for the 2 principal

components.

Association between Random Noise and Cluster
Detection

Random values with mean 0 and standard deviation 1, 3 and 5

were assigned to each test-day that occurred in 2006. Cluster

detection was carried out on the 3 vectors of random values

separately. For each week under investigation, data for the 4

preceding weeks were also analysed with SaTScanTM as

background information. Therefore, 47 out of 52 weeks were

analysed per year. Clusters with p-value smaller than 0.05 were

reported. The numbers of detected clusters per week for these 3

levels of random noise are presented in Figure 6. The maximum

number of clusters detected in any week for the entire country was

one. Of the 13 detected clusters, only 2 occurred in a week directly

following another detection. Increasing the amount of noise did

not change the number of detected clusters.

Association between Disease Characteristics and Cluster
Detection

The association between disease characteristics and the ability

of the scan statistic to detect their emergence was evaluated.

Cluster detection was carried out on the 8 scenarios selected from

the groups formed using the k-means algorithm (Figure 7 and 8).

The parameters used for the simulation of the selected scenarios

are presented in Table 3. The intervals between disease emergence

and disease detection for these scenarios are presented in Table 4.

As an example, the clusters detected for group 6 are shown in

Figure 9. Using the exact simulated milk losses as input, all diseases

were detected within 3 weeks after their emergence. As could be

expected, the time to first disease detection depended on the

intensity of milk losses (See Figure 8). Adding random noise to the

simulated milk losses did not have a consistent association with

time to disease detection. It generally increased the time to

detection, although it also lead to a detection earlier by 1 week in

some cases where the random noise standard deviation was 1 or 3.

Association between Disease Starting Location and Date
and Cluster Detection

The number of weeks between disease emergence and cluster

detection for the 8 groups for the 2 starting locations and the 2

starting dates are provided in Table 5. In all cases, clusters were

Figure 4. Difference between observed and predicted mean
milk production per cow per week between 2003 and 2006. The
years 2003 to 2005 were used for model fitting: the curves represent the
mean of residuals per week. The year 2006 was used for disease
simulation and detection.
doi:10.1371/journal.pone.0073726.g004
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Figure 5. Association between emergence model parameters and the projection of each scenario on the 2 principal components
identified in the principal component analysis. Each dot represents a scenario and each color represents a parameter level.
doi:10.1371/journal.pone.0073726.g005

Figure 6. False alarms. Number of detected clusters of mean cow yield deviations for weeks 5 to 52.
doi:10.1371/journal.pone.0073726.g006

Continuous Indicator for Syndromic Surveillance
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detected at least equally fast after emergence at the starting

location with the highest cattle density. For groups 1 and 3,

clusters were detected one week later in the area with the lowest

cattle density and for group 4, they were detected 3 weeks later.

For the association between cluster detection and disease starting

dates, in all cases, clusters were detected at least equally fast for

diseases emerging in March. For groups 2, 6, 7 and 8, clusters

were detected 1 week later when the emergence was simulated to

start on the 1st of September.

Association between Model Performance and Cluster
Detection

The scan statistic was run on the difference between predicted

and observed milk production in 2006. This allowed to quantify

the number of false alarms returned by the scan statistic in the

absence of an emergence (i.e. specificity) using predictions

incorporating realistic levels of noise and bias. The mean (standard

deviation) difference between observed and predicted milk

production was of 0.4 (2.47) kg. There were between 1 and 5

clusters with p-value smaller or equal to 0.001 per week (Figure 10)

and it was frequent for clusters to be present at the same location

on consecutive weeks (Figure 11). Model bias is compared to

disease induced milk losses for the scenarios representing the 8

groups defined above in Figure 8. Bias was of limited magnitude

compared to decrease in milk losses caused by the simulated

diseases.

Discussion

When the disease to be detected is unknown, the sensitivity,

timeliness and specificity of a disease detection method can only be

evaluated for a range of putative spatio-temporal spread charac-

teristics and effects on the monitored indicators. In the case of milk

yield as an indicator of vector borne disease emergence, specificity

was the main limitation of the detection method performance.

Specificity depended mostly on the unbiasedness of the predicted

indicator values. When the simulated milk losses were analysed

with the scan statistic, the specificity was high, and, the sensitivity

and timeliness of the method depended mostly on the extent of the

effect of the emerging disease on the monitored indicator. In other

surveillance systems or when using different indicators, other

components could prevail. Simulation is a useful tool to explore

the strengths and weaknesses of a detection method and to allocate

resources towards the improvements of particular components. In

the present case, efforts should be devoted to improving the

prediction of the expected milk production in order to decrease the

number of false alarms.

Simulation has been used several times to assess the determi-

nants of detection in surveillance [19]. For example, Kulldorff

et al. [20] used simulation to evaluate disease outbreak detection

methods. They generated 134,977 benchmark datasets with a

random number of cases of a hypothetical disease or syndrome. In

the present study, with 576 nation wide datasets, it would have

been intractable to run the scan statistic on all simulated scenarios.

The chosen approach was to define families of scenarios based on

space-time patterns of disease induced milk losses. This allowed to

explore a subset of scenarios that differed substantially. The

selected number of 8 groups of scenarios investigated further was a

compromise between the need to have a sufficient variety of

situations and the time required to carry out the analyses.

In the case of vector borne emerging diseases, the disease

characteristics that accounted most for the pattern of milk losses

were disease speed (denoted front-wave velocity in [15]) and ease

of spread (pherd and pcow) in the population. The effects of the

disease on individual cow milk production was not important to

predict the group in which a scenario would fall. It is possible that

the model or the parameter space explored do not capture well the

features of the diseases that could emerge. BTV was used as the

reference around which simulation was based because it emerged

recently in Europe and notification was mandatory in many

countries. Thus this emergence has been well described in terms of

spread and effects on production. Several studies using different

assumptions and modelling techniques have been published on the

spread of BTV [21–23]. The applicability of these models to

vector borne diseases other than BTV is unknown but is likely to

be limited in some cases. For example, since ticks cannot fly or be

transported by wind, tick-borne diseases can be expected to spread

much more slowly than culicoides-borne diseases. The model used

to simulate disease spread was based on the minimum assumptions

of circular progression, homogeneous probability of infection

between farms within municipalities and homogeneous probability

of infection between cows within farms. This set of assumptions

Table 3. Parameters used for the simulation of the 8 selected
scenarios representing 8 disease groups.

Group S Pherd Pcow Milk loss scenario

1 5 0.1 0.1 Sc 2

2 5 0.05 0.05 Sc 1

3 1 0.1 0.1 Sc 3

4 1 0.05 0.05 Sc 2

5 10 0.01 0.1 Sc 3

6 10 0.005 0.1 Sc 3

7 5 0.005 0.05 Sc 3

8 5 0.01 0.005 Sc 3

The abbreviations used and the milk loss scenarios are presented in Tables 1
and 2.
doi:10.1371/journal.pone.0073726.t003

Table 4. Number of weeks between disease emergence and
cluster detection for groups of scenarios 1 to 8 for various
levels of random noise added to the simulated milk losses.

Group None N(0, 1) N(0, 3) N(0, 5)

1 1 +1 +2 +3

2 1 +1 21 +2

3 2 +1 +3 0

4 2 +3 +3 –

5 2 21 0 0

6 2 21 21 0

7 2 0 +1 +2

8 3 21 0 0

Cluster detections were performed using a scan statistic for groups of scenarios
1 to 8 on simulated milk losses as well as on simulated milk losses plus 4 levels
of random noise. Random noise vectors were sampled from normal
distributions with means 0 and standard deviations 1, 3 and 5. Disease
emergence was simulated on week 9 (01/03/2006), starting from the Western
location. The None column gives the week after emergence at which the first
cluster was detected using the simulated milk losses without any added
random noise as input. Other columns present the delay in weeks between
cluster detection in the absence of noise and for the 3 simulated levels and
random noise.
doi:10.1371/journal.pone.0073726.t004
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was deemed sufficient to capture the main features of most vector

borne diseases without being specific of a particular disease. There

were limited data available to choose the parameters from. For

bluetongue, Pioz et al. [15] estimated the speed of the epidemic

front-wave to be of 5.6 km/day. Using a large milk recording

dataset, Nusinovici et al. [16] estimated milk losses in infected

Figure 7. Groups generated using k-means algorithm from the scenarios 2 principal components. On the left-hand side plot, each dot
represents a scenario and each color represents one of the 8 retained scenario groups. The plot on the right-hand side represents the mean quantity
of milk lost per cow in each of 8 geographical area and during the first 8 weeks after emergence. The same colors are used on both sides.
doi:10.1371/journal.pone.0073726.g007

Figure 8. Comparison of the mean quantity of milk lost per cow in each of the 8 zones and during the first 8 weeks after emergence
between the 8 selected scenarios and difference between milk production as observed and as predicted from the model results.
doi:10.1371/journal.pone.0073726.g008
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herds between 2 and 3%. The input values used for the current

work were consistent with this work. Santman-Berends et al. [24]

gave lower estimates for the milk losses associated with BTV, but

these were based on seroconversions with no associated clinical

signs and were therefore not deemed representative of what

happened during the start of the epidemic. The peak and duration

of the effect were varied in order to see whether this would affect

detection. For the values explored, these parameters explained

very little of the variation in spatio-temporal patterns of milk

losses. Other parameters were selected to reflect plausible values.

With prospective disease surveillance, the event to detect is

unknown. What is important is to use parameters that explore

realistic scenarios. For example, using higher values for milk losses

or ease of spread would have resulted in quicker detection, but

would not have conveyed more information about the strengths

and weaknesses of the method.

The scan statistic with a normal probability model was

introduced in [12] for the detection of clusters of low birth

weights in New York city. This method cannot be used because

milk production undergoes seasonal variation that can be different

between farms, which required a preliminary modelling step [25].

The main limitation of our method’s performance was the bias in

predicted values. This was because there were predicted values

that were systematically lower than the observed values and the

differences were clustered in space as well as in time. This type of

pattern is what would be expected if there were a vector borne

disease to emerge. Therefore, the scan statistic behaved as

expected and to improve its performance, the quality of the

predictions must be improved. Systematic differences between

observed and predicted values were even visible when predicting

milk yields in the fitting dataset (2003 to 2005, see Figure 4). This

was because milk production varies between years depending on

factors such as for example climate, feed availability, feed price or

quota extensions that are difficult to capture in a model. Our

results do not invalidate the use of linear mixed models for the

prediction of expected values. The incorporation of herd-time

specific effects in the predictions accounted for breed, herd

management and other unmeasured factors that are likely to be

repeated between years. The implementation was straightforward

using R and SaTScanTM in conjunction.

One way to overcome the problem of bias would be to decrease

the threshold below which clusters are reported. In the present

work, for clarity of presentation, all clusters with p-values smaller

than 0.05 were reported. However, it would be possible to set a p-

value, or a log likelihood ratio value, below which clusters would

be considered to indicate disease. This value would be chosen so as

to have less than a certain number of false positives throughout the

year. This would decrease the power of the surveillance system but

would ensure a manageable number of false positives. This will be

the next step of our work.

Different choices could have been made regarding the level of

data aggregation both in time and space. Milk recording data were

available at monthly intervals for all the cows of a herd, but in a

given area, there would be herds tested every day. Herd locations

Figure 9. Detection of emergence induced milk losses by
SaTScan for group 6 for weeks 2 to 8 after emergence. The scan
statistic was performed on the simulated milk losses to which random
noise was added.
doi:10.1371/journal.pone.0073726.g009

Table 5. Number of weeks between disease emergence and
cluster detection for groups of scenarios 1 to 8 for 2 disease
starting locations and 2 starting dates.

Group West/March North/March West/Sept.

1 1 +1 0

2 1 0 +1

3 2 +1 0

4 2 +3 0

5 2 0 0

6 2 0 +1

7 2 0 +1

8 3 0 +1

The reference were diseases emerging at the western locations (High cattle
density) on the 1st March and were compared to disease starting at the
Northern location (Low cattle density) on the 1st March and diseases emerging
at the Western location on the 1st September (Data collection interrupted in
between mid-July and mid -August).
doi:10.1371/journal.pone.0073726.t005
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were available at the municipality level. One approach could have

been to work with times series of data aggregated at some level,

such as week/département as was done in [26]. Using time-series

would have presented the disadvantage that the level of spatial

aggregation has to be chosen a priori. Using large areas for spatial

aggregation could delay detection by diluting the signal associated

with emergence in random noise. Having small areas would result

in having to analyse multiple time series with important random

fluctuation in each series. The scan statistic does not impose

constraints on the size of the cluster to be detected, except for the

fact that a cluster cannot represent more than half of the

population. Regarding the level of time aggregation, the week was

chosen. The trade-off in this case was between the time required to

undertake the analyses and the minimum detection delay between

emergence and detection. A delay of 7 days between disease

emergence and the triggering of an alarm seemed acceptable while

the required computation time would be of less than 1 hour.

It is common in syndromic surveillance that what is to be

detected is unknown. In order to test detection methods, a simple

disease simulation model that produces a range of plausible disease

effects on an indicator can be applied to real data in the absence of

disease. It is then sufficient to run the detection method on a subset

of simulated disease scenarios that are sufficiently different to

determine the strengths and weaknesses of the methods. When

monitoring continuous indicators, known factors of variation

should be accounted for, especially when they are clustered in

space and time. Linear mixed models can be used for this purpose.

Milk yield from milk recording can be used for the detection of

vector borne emerging diseases. The main limitation of this

indicator was the difficulty to predict unbiased expected milk

productions. Further work should be undertaken on improving the

prediction of milk yield.
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