M. Alhagdow, F. Mounet, L. Gilbert, A. Nunes-nesi, and V. Garcia, Silencing of the mitochondrial ascorbate synthesizing enzyme Lgalactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato, Plant Physiol, vol.145, p.17921340, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02667375

J. Dowdle, T. Ishikawa, S. Gatzek, S. Rolinski, and N. Smirnoff, Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability, Plant J, vol.52, pp.673-689, 2007.

N. Smirnoff, Ascorbic acid: metabolism and functions of a multifacetted molecule, Curr Opin Plant Biol, vol.3, pp.229-235, 2000.

N. Gest, H. Gautier, and R. Stevens, Ascorbate as seen through plant evolution: the rise of a successful molecule?, J Exp Bot, vol.64, p.23109712, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02650938

D. R. Gallie, The role of l-ascorbic acid recycling in responding to environmental stress and in promoting plant growth, J Exp Bot, vol.64, p.23162122, 2013.

Y. Li and H. E. Schellhorn, New developments and novel therapeutic perspectives for vitamin C, J Nutr, vol.137, p.17884994, 2007.

L. C. Koo, Diet and lung cancer 20+ years later: More questions than answers?, pp.22-29, 1996.

Y. Li and H. E. Schellhorn, Can ageing-related degenerative diseases be ameliorated through administration of vitamin C at pharmacological levels?, Med Hypotheses, vol.68, p.17141419, 2007.

R. Stevens, M. Buret, P. Duffé, C. Garchery, and P. Baldet, Candidate Genes and Quantitative Trait Loci Affecting Fruit Ascorbic Acid Content in Three Tomato Populations, Plant Physiol, vol.143, p.17277090, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02665972

Y. Dumas, M. Dadomo, G. Lucca, and P. Grolier, Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes, J Sci Food Agric, vol.83, pp.369-382, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02681699

F. Poiroux-gonord, L. Bidel, A. Fanciullino, H. Gautier, and F. Lauri-lopez, Health Benefits of Vitamins and Secondary Metabolites of Fruits and Vegetables and Prospects To Increase Their Concentrations by Agronomic Approaches, J Agric Food Chem, vol.58, pp.12065-12082, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02665989

G. L. Wheeler, M. A. Jones, and N. Smirnoff, The biosynthetic pathway of vitamin C in higher plants, Nature, vol.393, p.9620799, 1998.

W. A. Laing, M. A. Wright, J. Cooney, and S. M. Bulley, The missing step of the l-galactose pathway of ascorbate biosynthesis in plants, an lgalactose guanyltransferase, increases leaf ascorbate content, Proc Natl Acad Sci U S A, vol.104, p.17485667, 2007.

C. L. Linster, L. N. Adler, K. Webb, K. C. Christensen, and C. Brenner, A second GDP-L-galactose phosphorylase in Arabidopsis en route to vitamin C: covalent intermediate and substrat requirements for the conserved reaction, J Biol Chem, vol.283, p.18463094, 2008.

M. Li, F. Ma, P. Shang, M. Zhang, and C. Hou, Influence of light on ascorbate formation and metabolism in apple fruits, Planta, vol.230, pp.39-51, 2009.

E. Ioannidi, M. S. Kalamaki, C. Engineer, I. Pateraki, and D. Alexandrou, Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions, J Exp Bot, vol.60, p.19129160, 2009.

C. Massot, R. Stevens, M. Génard, J. Longuenesse, and H. Gautier, Light affects ascorbate content and ascorbate-related gene expression in tomato leaves more than in fruits, Planta, vol.235, pp.153-163, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651665

A. A. Badejo, K. Wada, Y. Gao, T. Maruta, and Y. Sawa, Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway, J Exp Bot, vol.63, p.21984649, 2012.

B. A. Wolucka and M. Van-montagu, GDP-mannose 3 ',5 '-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants, J Biol Chem, vol.278, p.12954627, 2003.

F. Agius, R. González-lamothe, J. L. Caballero, J. Muñoz-blanco, and M. A. Botella, Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase, Nat Biotechnol, vol.21, p.12524550, 2003.

M. W. Davey, M. Montagu, D. Inze, M. Sanmartin, and A. Kanellis, Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing, J Sci Food Agric, vol.80, issue.7, p.7, 2000.

G. Noctor and C. H. Foyer, Ascorbate and glutathione: Keeping active oxygen under control, Annu Rev Plant Physiol Plant Mol Biol, vol.49, p.15012235, 1998.

C. H. Foyer and B. Halliwell, The presence of glutathione and glutathione reductase in [Spinach] chloroplasts: a proposed role in ascorbic acid metabolism, Planta, vol.133, pp.21-25, 1976.

M. A. Green and S. C. Fry, Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-l-threonate, Nature, vol.433, p.15608627, 2005.

H. T. Parsons, Y. T. Fry, and S. C. , Alternative pathways of dehydroascorbic acid degradation in vitro and in plant cell cultures: novel insights into vitamin C catabolism, Biochem J, vol.440, p.21846329, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00658156

R. K. Toor, G. P. Savage, and C. E. Lister, Seasonal variations in the antioxidant composition of greenhouse grown tomatoes, J Food Compost Anal, vol.19, pp.1-10, 2006.

C. Bénard, H. Gautier, F. Bourgaud, D. Grasselly, and B. Navez, Effects of Low Nitrogen Supply on Tomato (Solanum lycopersicum) Fruit Yield and Quality with Special Emphasis on Sugars, Acids, Ascorbate, Carotenoids, and Phenolic Compounds, J Agric Food Chem, vol.57, p.19348424, 2009.

M. Tamaoki, F. Mukai, N. Asai, N. Nakajima, and A. Kubo, Lightcontrolled expression of a gene encoding L-galactono-gamma -lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana, Plant Sci, vol.164, issue.03, pp.122-127, 2003.

Y. Yabuta, T. Mieda, M. Rapolu, A. Nakamura, and T. Motoki, Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis, J Exp Bot, vol.58, p.17586607, 2007.

Z. Chen and D. R. Gallie, The ascorbic acid redox state controls guard cell signaling and stomatal movement, Plant Cell, vol.16, p.15084716, 2004.

T. Faria, J. I. García-plazaola, A. Abadía, S. Cerasoli, and J. S. Pereira, Diurnal changes in photoprotective mechanisms in leaves of cork oak (Quercus suber) during summer, Tree Physiol, vol.16, p.14871754, 1996.

M. Léchaudel, F. Lopez-lauri, V. Vidal, H. Sallanon, and J. Joas, Response of the physiological parameters of mango fruit (transpiration, water relations and antioxidant system) to its light and temperature environment, J Plant Physiol, vol.170, pp.567-576, 2013.

H. Gautier, A. Rocci, M. Buret, D. Grasselly, and Y. Dumas, Effect of photoselective filters on the physical and chemical traits of vineripened tomato fruits, Can J Plant Sci, vol.85, pp.3-163, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02679176

H. Gautier, A. Rocci, M. Buret, D. Grasselly, and M. Causse, Fruit load or fruit position alters response to temperature and subsequently cherry tomato quality, J Sci Food Agric, vol.85, pp.1009-1016, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02676778

H. Gautier, V. Diakou-verdin, C. Bénard, M. Reich, and M. Buret, How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance?, J Agric Food Chem, vol.56, p.18237131, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02667193

A. C. Richardson, K. B. Marsh, H. L. Boldingh, A. H. Pickering, and S. M. Bulley, High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit, Plant Cell Environ, vol.27, pp.423-435, 2004.

N. Garg and D. S. Cheema, Assessment of fruit quality attributes of tomato hybrids involving ripening mutants under high temperature conditions, Sci Horti, vol.131, pp.29-38, 2011.

H. Gautier, C. Massot, R. Stevens, S. Sérino, and M. Génard, Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance, Ann Bot, vol.103, p.19033285, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02667699

R. Stevens, M. Buret, C. Garchery, Y. Carretero, and M. Causse, Technique for rapid, small-scale analysis of vitamin C levels in fruit and application to a tomato mutant collection, J Agric Food Chem, vol.54, p.16910702, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02662133

C. Garchery, N. Gest, P. T. Do, M. Alhagdow, and P. Baldet, A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit, Plant Cell Environ, vol.36, pp.159-175, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01332344

O. W. Griffith, Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine, Anal Biochem, vol.106, pp.207-212, 1980.

I. K. Smith, T. L. Vierheller, and C. A. Thorne, Assay of glutathionereductase in crude tissue-homogenates using 5,5'-Dithiobis(2-Nitrobenzoic acid), Anal Biochem, vol.175, p.3239770, 1988.

A. E. Cribb, J. S. Leeder, and S. P. Spielberg, Use of a microplate reader in an assay of glutathione reductase using 5,5?-dithiobis(2-nitrobenzoic acid), Anal Biochem, vol.183, p.2619044, 1989.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method, Methods, vol.25, p.11846609, 2001.

R. Murshed, F. Lopez-lauri, and H. Sallanon, Microplate quantification of enzymes of the plant ascorbate-glutathione cycle, Anal Biochem, vol.383, p.18682244, 2008.

, Aebi H (1984) isolation, purification, characterization and assay of antioxygenic enzymes: catalase in vitro, Methods in Enzymol, pp.121-126

R. Gómez, R. Varón, M. Amo, J. Tardáguila, and J. Pardo, Differences in the rate of coloration in tomato fruit, J Food Qual, vol.21, pp.329-339, 1998.

C. J. Atkinson, M. J. Davies, J. M. Taylor, and H. Longbottom, Linking ascorbic acid production in Ribes nigrum with fruit development and changes in sources and sinks, Ann Bot, vol.111, issue.4, p.23419248, 2013.

R. D. Hancock, P. G. Walker, S. Pont, N. Marquis, and S. Vivera, L-Ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the L-galactose pathway, Funct Plant Biol, vol.34, pp.1080-1091, 2007.

C. Massot, M. Génard, R. Stevens, and H. Gautier, Fluctuations in sugar content are not determinant in explaining variations in vitamin C in tomato fruit, Plant Physiol Biochem, vol.48, p.20621498, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02667885

S. M. Bulley, M. Rassam, D. Hoser, W. Otto, and N. Schünemann, Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis, J Exp Bot, vol.60, p.19129165, 2009.

N. Leferink, E. Van-duijn, A. Barendregt, A. Heck, and W. Van-berkel, Galactonolactone Dehydrogenase Requires a Redox-Sensitive Thiol for Optimal Production of Vitamin C, Plant Physiol, vol.150, p.19369590, 2009.

M. Alimohammadi, K. De-silva, C. Ballu, N. Ali, and M. V. Khodakovskaya, Reduction of inositol (1,4,5)-trisphosphate affects the overall phosphoinositol pathway and leads to modifications in light signalling and secondary metabolism in tomato plants, J Exp Bot, vol.63, p.21994174, 2012.

C. A. Torres, P. K. Andrews, and N. M. Davies, Physiological and biochemical responses of fruit exocarp of tomato (Lycopersicon esculentum Mill.) mutants to natural photo-oxidative conditions, J Exp Bot, vol.57, p.16698820, 2006.

P. L. Conklin, Recent advances in the role and biosynthesis of ascorbic acid in plants, Plant Cell Environ, vol.24, pp.383-394, 2001.

V. J. Melino, M. A. Hayes, K. L. Soole, and C. M. Ford, The role of light in the regulation of ascorbate metabolism during berry development in the cultivated grapevine Vitis vinifera L, J Sci Food Agric, vol.91, p.21656772, 2011.

R. M. Rivero, J. M. Ruiz, and L. Romero, Oxidative metabolism in tomato plants subjected to heat stress, J Horti Sci Biotech, vol.79, pp.560-564, 2004.

J. O. Ogweno, X. S. Song, K. Shi, W. H. Hu, and W. H. Mao, Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum, J Plant Growth Regul, vol.27, pp.49-57, 2008.

J. O. Ogweno, X. S. Song, W. H. Hu, K. Shi, and Y. H. Zhou, Detached leaves of tomato differ in their photosynthetic physiological response to moderate high and low temperature stress, Sci Horti, vol.123, pp.17-22, 2009.

H. Kang, K. Park, and M. E. Saltveit, Elevated growing temperatures during the day improve the postharvest chilling tolerance of greenhouse-grown cucumber (Cucumis sativus) fruit, Postharvest Biol Technol, vol.24, pp.129-135, 2002.

Z. Chen and D. R. Gallie, Dehydroascorbate reductase affects nonphotochemical quenching and photosynthetic performance, J Biol Chem, vol.283, issue.31, p.18539599, 2008.

B. A. Martin, J. A. Gauger, and N. E. Tolbert, Changes in activity of ribulose-1,5-bisphosphate carboxylase-oxygenase and 3 peroxisomal enzymes during tomato fruit-development and ripening, Plant Physiol, vol.63, p.16660753, 1979.

J. Wang, Y. Yu, Z. Zhang, R. Quan, and H. Zhang, Arabidopsis CSN5B Interacts with VTC1 and Modulates Ascorbic Acid, Synthesis -Plant Cell, vol.25, pp.625-636, 2013.