N
N

N

HAL

open science

Model-based adaptive spatial sampling for occurrence
map construction

Nathalie Dubois Peyrard Peyrard, Régis Sabbadin, Danny Spring, Barry
Brook, Ralph Mac Nally

» To cite this version:

Nathalie Dubois Peyrard Peyrard, Régis Sabbadin, Danny Spring, Barry Brook, Ralph Mac Nally.
Model-based adaptive spatial sampling for occurrence map construction. Statistics and Computing,

2013, 3 (1), pp.29-42. 10.1007/s11222-011-9287-3 . hal-02645082

HAL Id: hal-02645082
https://hal.inrae.fr /hal-02645082
Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.inrae.fr/hal-02645082
https://hal.archives-ouvertes.fr

Stat Comput
DOI 10.1007/s11222-011-9287-3

Model-based adaptive spatial sampling for occurrence map

construction

Nathalie Peyrard - Régis Sabbadin - Daniel Spring -
Barry Brook - Ralph Mac Nally

Received: 1 September 2010 / Accepted: 28 August 2011
© Springer Science+Business Media, LLC 2011

Abstract In many environmental management problems,
the construction of occurrence maps of species of interest is
a prerequisite to their effective management. However, the
construction of occurrence maps is a challenging problem
because observations are often costly to obtain (thus incom-
plete) and noisy (thus imperfect). It is therefore critical to
develop tools for designing efficient spatial sampling strate-
gies and for addressing data uncertainty. Adaptive sampling
strategies are known to be more efficient than non-adaptive
strategies. Here, we develop a model-based adaptive spatial
sampling method for the construction of occurrence maps.
We apply the method to estimate the occurrence of one of the
world’s worst invasive species, the red imported fire ant, in
and around the city of Brisbane, Australia. Our contribution
is threefold: (i) a model of uncertainty about invasion maps
using the classical image analysis probabilistic framework
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of Hidden Markov Random Fields (HMRF), (ii) an origi-
nal exact method for optimal spatial sampling with HMRF
and approximate solution algorithms for this problem, both
in the static and adaptive sampling cases, (iii) an empirical
evaluation of these methods on simulated problems inspired
by the fire ants case study. Our analysis demonstrates that
the adaptive strategy can lead to substantial improvement in
occurrence mapping.

Keywords Hidden Markov random fields - Optimal
sampling approximation - Fire ant sampling for mapping

1 Introduction

In many environmental management problems, estimation
of occurrence maps of species of interest, including endan-
gered and invasive species, is a prerequisite to their effective
management (Elith and Leathwick 2009). Map estimation is
a complex problem because observations are imperfect (de-
tectability of individuals is usually imperfect) and incom-
plete (it may be infeasible to survey the entire area that might
contain individuals). There is often a prohibitive cost of con-
ducting surveillance with perfect sensitivity in all locations
that might contain individuals. Therefore, there is a need for
methodological tools for designing efficient sampling strate-
gies and for using the resulting imperfect and incomplete
observations to estimate occurrence maps.

In adaptive spatial sampling, a set of locations to sam-
ple is built sequentially, taking the results of previous sam-
pling steps into account. Such a strategy, which takes into
account intermediate observations to monitor sampling, is
more efficient than non adaptive methods (Thompson and
Seber 1996). In addition, to deal with the uncertainty of
the observation, a model-based approach (Gruijter et al.
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2006) for sampling should be preferred. Geostatistical mod-
els and tools (Chiles and Delfiner 1999), such as kriging,
have been applied to model and solve problems of sam-
pling design for map reconstruction (Buesco et al. 1998;
Fuentes et al. 2007). However those methods are adapted
to continuous data such as pollution levels or temperatures.
The application of these tools is not straightforward if the
variable to sample and to map is of presence/absence type
(1/0 variable), and when observations are noisy (see Bon-
neau et al. 2010 for a proposition of modeling in the geo-
statistical framework). In the problem we consider, we are
interested in occurrence maps and the only data available
are located on a regular grid of spatial sampling units.
Therefore, rather than applying commonly used geostatisti-
cal models and tools, we propose to adopt a classical image
analysis probabilistic framework: Hidden Markov Random
Fields (HMREF, Geman and Geman 1984). In addition to be-
ing suited to occurrence data on a regular grid of sampling
units, another advantage of the HMRF approach is that it can
represent dependencies which are not linked to space (for
example social networks, transportation networks) while in
geostatistics, correlations are strongly linked to the notion of
spatial distances.

Image reconstruction from imperfect data is a classi-
cal problem tackled by HMRF (Li 1995; Winkler 1995)
even with missing data (Blanchet and Vignes 2009). Es-
timation of HMRF parameters has also been widely stud-
ied and efficient algorithms are available (Chalmond 1989;
Comer and Delp 2000; Celeux et al. 2003). This model
has recently been used in the context of static sampling
and spatial decision making when taking into account the
value of information (Bhattacharjya et al. 2010). In this arti-
cle, we propose to use the HMRF framework not only for
map construction from an incomplete observation set but
also to build efficient adaptive sampling strategies for the
purpose of mapping. We present an original model-based
adaptive spatial sampling method and we illustrate its per-
formance on a case study focusing on an invasive species
management problem. The campaign to eradicate the Red
Imported Fire Ant from around Brisbane, Australia, which
we considered, involves one of the world’s 100 worst inva-
sive species (Lowe et al. 2000). For comparison purposes,
we consider both adaptive and static variants of the opti-
mization problem. We use the Maximum Posterior Marginal
criterion to measure map quality and sample values. Under
this approach, solving the optimization problems (both static
and adaptive) requires the evaluation of conditional marginal
probabilities for each possible output of each sampling strat-
egy. Those problems are intractable in most realistic circum-
stances, including those considered here, and, therefore, we
propose an approximation of the optimal strategy in both the
static and dynamic cases.
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The paper is organized as follows. In Sect. 2, we pro-
vide background information on the fire ant sampling prob-
lem which motivated the methodological work presented in
this article. In Sect. 3, we describe the HMRF model that
we propose for modeling uncertainty about fire ants occur-
rence maps. The exact formulation of the optimization prob-
lems (static and adaptive) and their approximate resolution
are derived in Sect. 4. In Sect. 5, we analyze the perfor-
mance of the adaptive sampling method and we compare
it to the static method and two classical sampling methods,
using simulated data inspired by the fire ants problem. We
also illustrate map reconstruction on the fire ants mapping
problem. Possible extensions of our work are identified in
the concluding section (Sect. 6).

2 Fire ants detection problem and data

The red imported fire ant (Solenopsis invicta) was first dis-
covered in Australia near Brisbane in February 2001 and
the National Fire Ant Eradication Program formally com-
menced in September 2001. Two forms of treatment are
applied. Injection of poison directly into fire ant nests is
the method applied when nests are detected with targeted
surveillance by trained personnel. The effectiveness of this
method depends on the proportion of nests that are detected
during surveillance operations. The second method used is
to apply a corn-based bait several times across general areas
of infestation, with the bait then taken into the nest by forag-
ing individuals. Targeted surveillance activity is conducted
primarily in areas near nests detected by private citizens
near their residences, business places and public spaces. To
distinguish between targeted surveillance and citizen moni-
toring we refer to those surveillance methods as active and
passive surveillance, respectively. Active surveillance is dis-
cretionary surveillance, that is, surveillance whose place-
ment is determined by the eradication program manager,
the Biosecurity Queensland Control Center (BQCC). In con-
trast, there is no discretion regarding the placement of citi-
zen monitoring because that form of monitoring occurs pri-
marily in urban areas whose locations are fixed. Since no
decision is made on the placement of citizen monitoring, it
can be described as a form of passive surveillance.

The method used by BQCC to estimate the current spa-
tial distribution of fire ants in Brisbane is a variant of the
Adaptive Cluster Sampling (ACS) method (Thompson and
Seber 1996). Nests detected by passive surveillance are used
as an initial sample. Then, locations neighboring infected lo-
cations in the initial sample are explored. New infected lo-
cations are added to the sampling set. Their neighboring lo-
cations are sampled and so on until no more nests are found.
This is classical ACS. Here, information on the locations
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Fig. 1 Top line: eradication for years 2000 and 2001 (no eradication
in 2000). Middle line: search actions for years 2001 and 2002. Bottom
line: observations for years 2001 and 2002. The value nz indicates the
number of non zero cells in the image

where surveillance activity occurred (both passive and ac-
tive) and information on locations where treatment occurred
have also been used to increase the sampling set at each step.

The study region is a 73.7 km x 96.2 km rectangle,
including the city of Brisbane and surrounding rural ar-
eas around the city. It is represented by a grid of cells of
size 100 m x 100 m, thus the complete zone comprises
n = 737 x 962 cells. Detection and treatment efforts oc-
curred each year since 2001. The cells which are actively
searched during year ¢ are listed in a search action vector, a':
a! = 1 if cell number i was actively searched during year 7,
and a] = 0 otherwise. A list of detected nests is also main-
tained for each year 7. These observations are represented
in an observation vector o, where ol’. =1 if ants nests were
found in cell i during year 7, and o} = 0 otherwise. If 0} = 1,
it may be that nests were actively searched for (a! = 1), but
it is possible as well that they were discovered accidentally
(aj =0, passive search). If o} = 0, either there were no nests
in cell i or they were not detected. Information about treat-
ment actions is also maintained in the form of treatment vec-
tors e’, where ! = 1 if cell i is eradicated at the end of year
t,and ef = 0 otherwise. A given year, treatment occurs after
observation. It is possible to observe ol’.Jrl
ef =1, either because the eradication treatment failed or be-
cause cell i was colonized again by invasion from the neigh-
boring cells. Figure 1 shows the treatment, search and ob-
servation informations for the whole area under study for
the first two years of the campaign.

=1 even when

3 A HMRF model of the invasion map

In this section we present our model of uncertainty on in-
vasion map knowledge. This model is based on the HMRF
framework (Geman and Geman 1984), which allows to rep-
resent the conditional probability distribution of a map,
given observations (obtained by sampling). Here and in the
following, upper-case letters represent random variables and
lower-case letters represent realizations of the same random
variables.

In the fire ant problem, a graph G = (V, E) is associ-
ated to the n cells of the regular grid dividing the area under
study. The set of sites is V = {1, ...,n} and the set E of
edges is defined by the neighborhood system. A first order
neighborhood is chosen: for any cell i, the neighborhood
N (i) is composed of the four closest cells to cell i (except
on the edge of the grid). Other neighborhood systems could
be considered: 8-closest cells, or non regular neighborhood
systems in the case where an irregular network of locations
is considered. The choice of a grid-based first order sys-
tem is arbitrary and is made for illustrative purpose only.
If we were to provide an actual decision-making tool for the
management of fire ants, we would have to compare differ-
ent models. However, this is out of the scope of this paper,
which aim is to demonstrate the feasibility of the sampling
approach we propose. A random variable X; is associated to
cell i and can take two values: O if there are no ants nests
in the corresponding cell, 1 if there is at least one. The set
X ={X;,i €l,...,n}isreferred to as the set of hidden vari-
ables. The objective is to recover their values from observa-
tions. If e is the vector representing the treatment actions
applied the year before on all cells, then P,(X = x) will be
modeled as a 2-state Potts model with external field (Wu
1982), defined by:

vx € {0, 1},
Pe(X =x|a, B)

:%exp(Zaeixi—i- Z ,BCQ(xi,xj)>a ()

ieV (i,j)eE

where eq(x;, x;) is the Kronecker function, equal to 1 if x; =
x; and O otherwise.

We consider an external field in the Potts model in order
to take into account the available information on eradication
treatments. Indeed, the eradication treatment applied in year
t — 1 in a given cell is correlated with the presence of ants
in the same cell in year 7. For a given treatment vector e,
values o, € o = {ag, o1} model different “strength levels”
of invasion, depending on whether treatment was performed
or not on the cell. We should expect that in treated areas
the density of occupied cells is lower than in non-treated ar-
eas, modeling causal influence of the treatment. However,
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it may happen (see Sect. 5.2) that the density is higher in
treated area (which is a “correlation” effect: areas are treated
because it is expected that there are nests there, and eradi-
cation is not entirely efficient). Note that the external field
could also help modelling soil features favoring (or not) ant
colonization, etc.

The parameter S, when positive, leads to higher proba-
bility for maps x where neighboring cells are in the same
state, as expected when there is spatial aggregation of nests.
Z is a normalizing constant, ensuring that P, sums to one.
If the state of neighbor cells is known, the probability of a
cell infection is independent of the state of the other cells
(conditional independences are represented on Fig. 2). If
xn@) = {xj, ] € N(i)}, then the conditional distribution is
defined by:

eXp (Ole,' + ﬁNil)

Po(Xi =1|xnG),a, B) = .
e @ exp (BND) + exp (o, + BN))

Nl.1 counts the number of neighbors of cell i in state 1, while

Nl.0 counts those in state 0. They can be computed as Nl.1 =
ZjeN(i) x; and Nl.O =card(N(i)) — Nil.

A second variable, O; is attached to a cell i. It can take
values in {0, 1} and represents the result of the sampling: an
ant nest has been found (1) or not (0) in cell i. A classi-
cal assumption in HMREF is that the conditional distribution
of observations given hidden variables admits the following
decomposition (again, see Fig. 2):

P(o|x)=]]Pilx). 2)

ieV

In the fire ants problem, these probabilities depend on
whether active or passive search occurred on the cell. This
information is represented by the search action vector a =
{a;,i € V} (see Sect. 2). Let 6 = {6y, 61} denote the respec-
tive probabilities that a nest present in an arbitrary cell i be
discovered, either passively or actively, then:

P, (0;i=1]X;,=1,0)=80,,
P,;(0;=1]X;=0,0)=0 and 3)

Py(0 =0lx,0) = [ | Pu(0i = 0i | xi,6).
ieV

Probability 6; of discovering a nest after a search action
was applied is naturally assumed to be larger than 6, the
probability if no active search was performed. Expression
(3) of the conditional distribution P,(O = o|x) relies on
several assumptions. First, observation probabilities (6, 61)
are independent of the precise cell which is searched. Then,
we assume that observation probabilities do not depend on
whether ants were eradicated in the preceding year. We also
assume that when the state of a hidden variable is 0, the cor-
responding observation is 0. Finally, observation conditional
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Fig. 2 Hidden Markov random field for the fire ants invasion map,
with hidden variables (top) and observed variables (bottom). Hidden
variables can take values O (absence, white sites) or 1 (presence, black
sites). Observations can take values 0 (no nest detected, white sites) or
1 (nests detected, black sites). If the state of a hidden variable is 0, the
corresponding observation is 0

probabilities are purely local and do not depend on whether
ants nests are present in neighbor cells. The three first as-
sumptions could be relaxed by increasing the number of pa-
rameters. Modifying the fourth one would imply changes in
the structure of the HMRF and the sampling methods de-
scribed in Sect. 4 would no longer be applicable as such.

Let us now express the joint distribution of X condition-
ally to o, a and e. In the fire ants model P, (O; = 1|X; =
0, 8) = 0 because we assume that there are no false positive
observations. Consequently, if A = {o, 8,0}, Pe o (x|, 0) =
0 as soon as there exists i such that o; = 1 and x; = 0. There-
fore we can write:

Peaxlh,0)oc [ T xi | PeCxlar, B)Pacolx, 6). “

i,0i=1
Exploiting (1), (2) and (4), we get

Pe,a (xlo, A)

= % l_[ X;i X exp (Zaeix,-

i,0i=1 ieV

+B > eqix)+ Y log(l—6)x |. (5

(i, J)eE i,0;=0

where Z’(A) is a normalizing constant, function of the
model’s parameters A. Equation (5) defines how the initial
knowledge P, (x|X) about the invasion map is updated when
observation actions are applied and resulting observations
are taken into account. In this section and in the following
ones we omit reference to time, for sake of simplicity. In
the above conditional distribution, if x is the hidden map at
time 7, then e, 0 and a stand respectively for e’ !, o, and a.

4 Spatial sampling policies

We now define the problem of designing a spatial sampling
policy (strategy) for fire ants map construction as a problem
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of optimization under uncertainty. To do so, we first need
to define the value of the uncertain knowledge about the ac-
tual invasion map, P = P, 4(x|o, A), as well as an estima-
tor of the invasion map associated to this value (Sect. 4.1).
The optimization problem can be modeled as non-sequential
(static, Sect. 4.2) or sequential (adaptive, Sect. 4.3), depend-
ing on the conditions of the search process.

A sampling policy is static if the cells chosen for search
are chosen once and for all at the beginning of the year, and
active search is limited to them. In the adaptive spatial sam-
pling problem, only a few cells are chosen for active search
at the beginning of the year. Then, given the results of the ac-
tive search in those cells (presence or absence of ants nests),
new cells are chosen for active search. This process is re-
peated until a specified stopping criterion is met (for exam-
ple the total budget, expressed in terms of number of cells
that can be searched, is exhausted). Note that in adaptive
spatial sampling problems, cells can be searched more than
once, unlike in the static case. In both cases, we assume that
a first arbitrary sample (a°, 0°) is available (for example, a
few regularly spaced cells will be sampled before the sam-
pling policy is computed).

4.1 Information value of a map distribution

In spatial sampling problems, it is important to define the
“information value” of a probability distribution over maps,
describing current knowledge. Sampling strategies will aim
at maximizing a criterion based on this information value.
Let us assume that x* is an unknown map, and that the
only available knowledge about x* is modeled by distribu-
tion P. The Maximum Posterior Marginal (MPM) estimator
(Besag 1986) of x* is the configuration x™ M verifying:
xMPMz[xf”PM,x,-MPMzargrr;axPi(X,-:x,-)}. (6)
The information value of P is defined as VMPM(P), the

sum of the marginal probabilities of the most probable state
for all sites:

vMPM(P) =" max P(Xi = xp). ™
iev

This value is equal to the expected number of correctly
“classified” sites. It is a direct measure of the information
value of P. Other information value criteria could be con-
sidered, such as the mode of distribution P (Maximum a
Posteriori criterion, MAP, Guyon 1995; Li 1995), or its
entropy. The former is a valid alternative and the corre-
sponding (static) optimal sampling problem has been stud-
ied from a computational complexity perspective (Peyrard
et al. 2010). Using MPM does not lead to a simpler compu-
tational problem. However, MPM should be more discrim-
inant than MAP since the mode of a joint distribution with

large state space may not be very “peaked”. We did not con-
sider the entropy criterion since it does not directly lead to
an estimator of the hidden map.

4.2 Static spatial sampling

In the static spatial sampling problem, a typical sampling
sequence can be decomposed into the following steps:

1. An initial arbitrary sample (ao, 00) is performed, which
will be used both as prior information and for estimating
the HMRF parameters A = {8, «, 6}.

2. A search action vector a representing the set of cells
which will be explored is chosen on the basis of
P, 0 (x]0%, 1). The size of this set is constrained: |{i €
V,a; = 1}| < Apax, where | - | denotes the cardinality of
a set and A4, the maximum affordable sample size.

3. A set of observations is produced. It can be completed by
passive observations, leading to the observation vector o.

4. The a priori knowledge is updated, using (5), providing a
new distribution P, ao’a(x|00, 0, A) representing knowl-
edge about fire ants nests presence after sampling.

5. Finally, the MPM value VMPM(Pe‘ao’a(JoO, 0, A)) of the
new MRF is computed and the corresponding MPM map
xMPM is returned.

4.2.1 Exact optimization problem

The optimal sampling strategy will be defined as follows.
First, since the results of search actions are not deterministic,
a set a of searched cells may result in many different obser-
vations o. This implies that the output observations (active
and passive) o are only determined through their probability
distribution P, 0. 2(010°, 1). The value of a sampling action
a can therefore be defined as the expected value U of the
updated MRF of step 5, according to that probability distri-
bution:

U, 40 00(a)

=Y P a0 VMM (P, o (0% 0.0).  (8)
o

The probability P, 40 ,(0 | 0%, 1) is obtained as:
P, 40,4(010%) =" Py(olx.0) P, 0(x|0°, 1).
X

Solving the static spatial sampling problem amounts to find-
ing the sampling vector * which maximizes U, ,0 ,0(a) un-
der constraints |{i € V,a; = 1}| < Ajax-

4.2.2 Approximate static spatial sampling

Computing the static sampling action a* is infeasible in
practice for large problems. When replacing MPM with the

@ Springer
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MAP criterion, which does not make the problem more com-
plex, it has been shown that the latter problem is NP-hard
(Peyrard et al. 2010). NP-hard optimization problems (Cook
1971) are problems for which it is highly unlikely that effi-
cient solution algorithms (that is with time complexity in-
creasing only polynomially with problem size) can be de-
signed.! Computing a* requires a maximization over the
set of possible search action vectors of an expression in-
volving summation over the set of possible observations.
Both of these state spaces are of size exponential in the
number of sites. In addition, it involves computations of
VMPM(Pe’aO’a(.l)\., oY, 0)) for all pairs (a, o), an operation
of exponential complexity as well. Given the size of the
problems we wish to address (tens of thousands of cells),
we must turn to approximation methods for computing the
set of cells that will be explored given the a priori knowledge
about invasion.

The approximation method we suggest relies on the fol-
lowing simplifying assumptions:

A1l Current observations are reliable (the state of searched
cells is perfectly known after the search) and there are
no passive observations, i.e. 69 = 0 and 6; = 1 (this
assumption is made only for the current sampling ac-
tion to choose, a, and not for the initial observation step
(@®,0%).

A2 The states of cells are independent given initial sam-
pling results. This leads to the following approximation:

n
Py 0 (x10%, 1) ~ [ | Pe.ao (Xi = xi10°, 1)
i=1

where P, ,0(X; = x;[A, 0°) is the marginal distribution
of the resulting MRF on cell i, given initial observation
result (a%, 09).

With these two assumptions, it can be shown that opti-
mizing a spatial sample amounts to choosing the cells whose
marginal occupation probabilities P, ,o(X; = x;]0%, 1) are
the closest to 0.5, that is, the cells whose occupation status
is most uncertain (a proof is given in the Appendix). Com-
puting exactly a marginal occupation probability is costly
since it involves the marginalization of the joint distribution
(5) over all variables except x;. This cannot be performed in
reasonable time. Therefore, we use a belief propagation al-
gorithm (Pearl 1988; Yedidia et al. 2000) in order to approx-
imate these marginal probabilities. This algorithm requires
only a time polynomial in the number of cells to compute
the approximate marginals.

IProving impossibility of this fact is one of the seven Millennium
problems proposed by the Clay institute: http://www.claymath.org/
millennium/P_vs_NP/.

@ Springer

Fig. 3 Part of an adaptive sampling strategy. Levels of gray represent
estimates of marginal occupation probabilities. Black dots represent the
current cell chosen for exploration

4.3 Adaptive spatial sampling

In the adaptive spatial sampling problem, we assume that
the A4 cells we explore can be decomposed into succes-
sive small groups, the next one being chosen taking into ac-
count observations of previously sampled cells. For illus-
tration purpose, we describe exact adaptive sampling in the
case where one cell is chosen (and explored) at each step.
Thus the number of steps is exactly A,,,. For this partic-
ular case, one step of adaptive sampling is represented on
Fig. 3. One cell is chosen for exploration (black dot in the
top figure) and then, depending on whether ants are detected
(Yes branch) or not (No branch), the MRF is updated in dif-
ferent ways. Therefore, the next cell to explore according to
the strategy can be different (black dots in bottom maps). In
the following, since the action vector a contains only one
cell in state one, it will be identified to the index of that cell
(a € V). Similarly, o is identified to the value (0 or 1) ob-
served on that cell.

4.3.1 Adaptive sampling strategy

As Fig. 3 suggests, an adaptive sampling strategy may well
lead to many different sets of cells being sampled, depend-
ing on the observations obtained. Thus the sampling strat-
egy can no more be represented as a subset a of V of size
Anax- It is now a tree, §, which vertices are cells chosen for
sampling and edges represent observations (0/1 or Yes/No
outputs when a single cell is sampled). A part of such a tree
is represented in Fig. 4. Let ak ,1 <k < A,,.x denote the
cell which is explored during the k'" sampling phase: a* is
chosen as a function of past samples results (0!, ..., 0" 1).
From 8 we can define 8y, a function specifying the k" cell to
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Fig. 4 Part of an adaptive sampling strategy tree

sample, as a function of the kK — 1 observations which were
obtained from past sampling steps. For example, on Fig. 4,
a® = 83(0!, 02).

4.3.2 Optimal sampling strategy computation

As in the static case, an initial arbitrary sample (ao, 00) is
used as prior information. The value of an adaptive sam-
pling policy is defined by extension of the value of a static
sampling policy (see (8)), taking into account the fact that §
is a tree:

1 A
62’6“00(5) > P00

(ol...04max)ets

max | 007 K)

x VMPM(p, o 51, 0% 0", ... 0%me)). (9)
In (9), 75 denotes the set of possible observation se-
quences given §, i.e. the set of paths from the root to a
leaf of the policy tree. The knowledge of § enables to
recover the sequence of sampled cells: Pe,,g(ol ... 0Amax |
A, a%, 0% =def Pog0al... qhmar (0%, 0! ...0%max | }), with
a' =8;(0o',...,0'"1) the action defined by the sampling
policy at step i, given past observations. More precisely,
8i(o',..., 0" 1) can be read from the policy tree represen-
tation of 4, as the last node of the partial branch defined by
01,...,0i_1.

Since multiple samplings at a same site are possible
in adaptive sampling, P, ,0 5(x|A, 0%, 0!, ..., 04max) is ob-
tained from a slight modification of (5), takmg into account
repeated samplings of cells:

max)o( l_[x "

heSy

P, 0 s(x|A, .o

xexp | Y axi+B Y eqxi,x))

iev (i,j)eE
+ > log(l = ,m)xgn | »
/’lGS()

where So = {h,0 <h < Apax and 0" =0} and §; = {h,0 <
h < Apax and o" = 1} are respectively the sets of obser-

vation steps /1 where the sampled cell a” was found unoc-
cupied or occupied. In the set Sy (or S1) a same cell index
can appear more than once if the correspond cell is explored
several times.

The problem of optimizing § with A, cells to sample
can be solved recursively backwards, noting that

Am(z)r)o((s ) = maX{Z PE a%.a 1(0 |0 )\,)

e,a

X max —
Ue a%.00 q! 01(5|a 01) s

where 8* is an optimal policy (we have UeAl’l"(;"oO(é*) >
UAmer (8),¥8) and 5,

e 0 60 ol is the optimal sub-policy com-

puted from the HMRF resulting from observations 0°, 0!

and with sampling budget A;,qx — 1.

Of course, the recursive algorithm explores a solution
space of exponential size, which makes it unsuitable to solve
realistic problems. This is all the more true if we can explore
more than one cell in each sampling step. In the follow-
ing section, we propose an approximate sampling algorithm
which relies on the static sampling approximate algorithm
and directly applies to the case where more than one cell is
sampled at a time.

4.3.3 Approximate adaptive sampling

For our approximate adaptive algorithm, we propose to
use a greedy algorithm (as is usually done in heuristic
search problems), in conjunction with the approximation
approach of the static sampling case. The set of cells a¥
(now, a* represents a set of cells indices and not a single
index) which will be sampled during sample phase k will
be computed on-line, by applying the method of Sect. 4.2.2
and considering that the initial sample is the sequence
(ao, 0 al,ol, ... ak L, ok_l) of actions/observations ob-
tained so far. More precisely the procedure is:

1. An initial arbitrary sample (a°, o) is performed, from
which the model parameter A is estimated.

2. Evaluate the marginal probabilities for the conditional
distribution P, 40 (x|, 0°).

3. Explore the cells whose marginal probabilities are the
closest to 0.5. This leads to (a!, ol).

4. Update the sampling informations:
(ao,oo) <« (ao,oo,al,ol).

5. Go to step 2 while the number of sampled cells is less
than A4 .

When we consider only two successive sample phases, this
on-line procedure can be related to the two-phase adaptive
method for optimal spatial sampling proposed by Chao and
Thompson (2001) in the case of log-normal perfectly ob-
servable variables and a mean square error criterion.
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5 Validation of the model-based sampling methods

In this section, we present a validation of the heuristic sam-
pling approaches on simulated data. This validation can only
be performed on simulated data since as far as real data
is concerned, no validation with respect to the “true” inva-
sion status of cells is possible, this “true” status being un-
observed. However, the method is validated on simulated
problems with various parameters sets, covering the range
of likely parameters values for the fire ant problem. An il-
lustration of parameters estimation and map reconstruction
based on the available fire ant data (Sect. 5.2) is also pre-
sented.

5.1 Evaluation of the heuristic sampling methods

In order to evaluate the relative performances of the static
and adaptive heuristic sampling methods we compared the
methods using simulated data generated by a HMRF model
whose parameters (o, 8) were unknown to the sampling
algorithms (Sect. 5.1.1). Since the ACS sampling method
(Thompson and Seber 1996, and Sect. 2) was used to col-
lect the fire ant data set, the static and adaptive heuristic
sampling methods were compared with the ACS method.
A comparison was also made with the purely random sam-
pling method. ACS is a method originally developed for es-
timating global characteristics of spatially distributed pop-
ulations under the hypothesis of perfect observation (6 =
(0, 1)). The random sampling method (Thompson and Se-
ber 1996) consists in selecting a fixed number of cells to
observe (in a non-adaptive way), with each cell having the
same probability of being selected.

The evaluations presented below include a parameters es-
timation step. It is performed using the Simulated Field EM
algorithm (SF-EM, Celeux et al. 2003), an approximation
of the EM algorithm for parameters estimation in HMRF. In
SF-EM, at each iteration, the MRF distribution is replaced
by one of independent variables, built by setting the state
of the neighborhood of each cell to a simulated value. We
observed good performance of the SF-EM algorithm for the
parameters values corresponding to an established epidemic,
that is when the correlation coefficient g is high. On the con-
trary, when B is low, a low incidence (o) with high proba-
bility of detection (@) is confused with a higher incidence
with low probability of detection. This parameters identifi-
ability problem can be easily intuitively understood: when
variables are independent (8 = 0) and we have no idea on
incidence and detectability (o« and 6), it is impossible to dis-
tinguish, in the model expression, between a highly incident
but difficult to detect process and a low incidence, easily
detected one. Of course, estimation of « poses no problem
when 6 is not estimated but fixed at its true value. In the fire
ants problem, expert estimations of the detection probabili-
ties with active and passive search are available, therefore,
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we assumed in the following experiments that 6 was known
and did not have to be estimated.

5.1.1 Comparison procedure

In order to compare the four sampling methods, we consid-
ered eight configurations for («, B, 8), reported in Table 1.
This corresponds to four different choices for («, §), and
for each choice, two values of 6 were considered. In Fig. 5,
a realization of the hidden Potts model for each of the four
parameter choices is presented. The experimental protocol
was the following. For each set of parameters values we sim-
ulated ten different hidden maps of 50 x 50 cells, according
to P(x). The grid was divided into four equal squares and
treatment efforts were applied to the top-left and the bottom-
right squares. For each map we started by applying an arbi-
trary regular sampling action a® comprising around 10% of
the total number of cells (see first image of Fig. 7, top) and
then simulated an observation set 0° according to the hid-
den map and 6. This initial sample was used to compute an
estimate (&, ,3) of the MRF parameters, using the SF-EM
algorithm. The same estimate was used for the static and
adaptive heuristic methods (these estimates are also used in
the random sampling and the ACS procedure but only in
the map restoration step). Then, for each of the ten initial
samples (x, a®, 09) we ran the four methods (heuristic static,
heuristic adaptive, ACS and random) five times. The number
of cells that could be sampled by the static heuristic method
varied from 5% to 90% of the total number of cells. For the
adaptive heuristic method, a maximum of 5% of the cells
could be sampled at each time step and there were a max-
imum of 18 sampling steps, implying that a maximum of
90% of the cells could be sampled. Under the ACS method,
the number of cells sampled during each sampling phase is
not fixed in advance, nor is the total number of cells sam-
pled. The random approach sampled from 5% to 90% of the
total number of cells, as in the heuristic static method. After
the list of sampled sites is established, the corresponding ob-
servations are simulated. Based on all observations (0° plus
the ones obtained after sampling), the MPM restoration of
the map is computed ((6) with P(x) updated as described
in Sect. 3 or Sect. 4.3.2). We compared, for each method,
the average proportion of (i) misclassified empty cells (cells
where there are no nests, incorrectly classified as occupied)
(ii) misclassified occupied cells (invaded cells incorrectly
classified as empty) (iii) misclassified cells (cells which are
incorrectly classified as either invaded or empty).

5.1.2 Comparison of the methods performances
The parameters («, 8, 0), as well as the budget allocated to

sampling influence the performances of the four methods.
For configurations 3 and 4, none of the methods are efficient
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Table 1 The eight configurations of («, B, ) tested

Config o B 0

1 0,-2) 0.8 (0.5,0.8)
2 0,-2) 0.8 (0,0.8)

3 (=2,-3) 0.2 (0.5,0.8)
4 (=2,-3) 0.2 (0,0.8)

5 0,0) 0.5 (0.5,0.8)
6 (0,0) 0.5 (0,0.8)

7 1,-1) 04 (0.5,0.8)
8 1,-1) 0.4 (0,0.8)

(d)

Fig. 5 Realizations of a two-state Potts model with external field
on a 50 x 50 grid (obtained for 10000 iteration of the Gibbs
Sampling). o (resp. o) is attached to the fop-right and the bot-
tom-left squares (resp. to the top-left and the bottom-right squares)
of the grid. (a) « = (0,—-2),8=0.8, (b) @ = (—2,-3),8 =0.2,
©a=(0,0),=05Wa=(1,-1),6=04

in reconstructing the map since the proportion of occupied
cells is very low. For the other configurations, several gen-
eral qualitative conclusions can be made. We discuss them
and present numerical results for configurations 2, 6 and 8
(Fig. 6). The changes observed when 6 increases from 0 to
0.5 are discussed at the end of this section.

First, the ACS method is clearly dominated by the three
other sampling methods in terms of quality of the restored
invasion map. The ACS method is not designed to recon-
struct maps of spatial processes, but rather to estimate global
statistics of these processes, such as average densities of
occupation. Thus this poor performance is not surprising.
The random approach is dominated by the two model-based
heuristic approaches. When sampling resources (percentage
of cells sampled) increase, results of random sampling be-
come closer to those of heuristic static sampling because in
both cases almost all cells are sampled.

Another general conclusion is that the heuristic adaptive
sampling method has superior performance than the static
method, with the difference being small in two specific sit-
uations: low sampling resource and low spatial structure.
First, when the sampling budget is low, the adaptive method
selected cells to explore based on similar information to that
which was available under the static approach, and, there-
fore, explored similar or identical cells. If the sampling bud-
get is large enough, the adaptive sampling approach can ex-
ploit the first observations that were made, while the static
approach does not. Therefore, under the adaptive approach,
exploration is more informed, leading to a strategy for space
exploration different to that of the static method. This is
demonstrated in Fig. 7 representing the locations of sampled
sites and the corresponding observations respectively for the
heuristic static method and the heuristic adaptive method,
for configuration 8 (o« = (1, —1), 8 =0.4,0 = (0,0.8)). In
the heuristic static approach, whatever the percentage of area
sampled, the only information used is that illustrated on the
top left image (initial arbitrary regular sample), while in the
heuristic adaptive method, for a given percentage of sam-
pled area, information on all intermediate images was also
used. Under an adaptive strategy, it can be more informa-
tive to revisit a site that was previously sampled, if uncer-
tainty remains high on this site, than to systematically ex-
plore new cells. The resulting estimated marginal probabili-
ties of presence for a sampling size of 90% of the whole area
are displayed on Fig. 8. In that case, despite the large sam-
ple size, uncertainty remains substantially higher with static
than with adaptive sampling. The latter strategy eventually
leads to an improved restoration of the hidden process. This
example also illustrates that for both heuristic methods, sam-
pling is preferably performed near detected occupied sites
in low density areas (the top left and bottom right squares of
the area under study are explored first in configuration 8): in
these areas, a sampled cell with o; = 0 has only few neigh-
bor cells with 0; = 1: enough to maintain uncertainty (was
presence missed or is it a true absence?) but not enough to
influence belief strongly towards x; = 1.

We also observed (Fig. 6) that the difference in perfor-
mance between the heuristic static and the heuristic adaptive
method increases with the hidden map structure. Both meth-
ods lead to similar results in configuration 6 (o = (0, 0), 8 =
0.5,6 = (0,0.8)), but if the value of the spatial parameter
B is increased then the adaptive method outperforms the
static one (results not shown). Because treatment actions are
applied to create a chessboard pattern if the difference of
weights (o1 — «p) increases, this creates large scale struc-
ture in the map. In that case we observed better results for
the adaptive method.

Finally, when 6y = 0.5, the number of invaded cells found
after the initial arbitrary sample will be higher than when
6o = 0, because it includes cells in passively sampled areas.
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Fig. 6 Errors rates for the different sampling strategies and for differ-
ent model parameters. Left: proportion of misclassified empty cells in
the map restoration for the four sampling methods tested, middle: pro-

The consequence of that, as expected, is that the classifica-
tion errors will be lower. However, the conclusions on rela-
tive performances of the four methods are not significantly
altered by the choice of 6.

5.2 Fire ants illustrative case study

We applied the methods for parameters estimation (SF-EM)
and map reconstruction (MPM) based on the sampling ac-
tions actually applied and the resulting observations. We se-
lected a sub-grid of the entire study region to ensure there
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portion of misclassified occupied cells, right: proportion of misclassi-
fied cells. From top to bottom rows, configurations 2, 6, and 8. Average
number of infected cells are respectively 459.3, 1243 and 1249.6

was sufficient information in the sample. The region was se-
lected on the basis of its low proportion of rural areas (where
detection by passive search is estimated to be close to zero).
Only years 2001, 2002 and 2003 were considered in the data
set. Subsequent years (2004 to 2007) do not present enough
detected nests to reliably fit a spatial model. Therefore it is
pointless to apply our method to these. Years 2008 and 2009
show a new rise in infected cells, but not much structure. The
selected grid was composed of 100 x 100 = 10000 cells.
The statistics are summarized in Table 2 and the treatment
actions, search actions and observed nests are illustrated in
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Static sampling: A and O
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Table 2 Number and percentage of cells with active search, observed
nests and eradication for year 2001 to 2003 on the sub-grid selected for
analysis
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Fig. 7 Cumulative sampling locations and realization of correspond-
ing observations for the heuristic static (fop) and adaptive (bottom)
methods. Observations were simulated for 6 = (0,0.8). The first
top-left images corresponds to the initial regular sampling, then from
left to right and top to bottom images correspond to a sample size in-
creasing from 5% to 90 % of the whole area

Fig. 9. From Table 2 we can see that the number of actively
searched cells increases with time and that the percentage of
cells with observed nests is initially significant but declines
with time. We recall that the eradication vector used in the
HMRF model of year 7 is /1.

Three HMRF models have been estimated, using treat-
ment, sampling and observation data for years 2001 to 2003.
The SF-EM algorithm was initialized with the following val-
ues: @ = (0, —1) and B = 0.5. Parameter 6 was not esti-
mated, but fixed to the following “plausible” values: 6 =
(0.5,0.8) in urban areas and 6 = (0.01, 0.8) in rural areas.
The value of 6y was not set to zero in rural areas, in order
to account for the passive observations of nests which actu-

2001 2002 2003
A=1 0 656 3593
% 0 6.4307 35.2220
0=1 340 189 109
% 3.3330 1.8528 1.0685
E=1 7548 9473 10142
% 73.9927 92.8634 99.4216

Table 3 Top: estimation of the HMRF parameters of the fire ants
model. Bottom: percentage of observed nest in areas with and with-
out treatment (right) on the sub-grid selected for analysis

2001 2002 2003
ap 0.0006 0.3907 —0.7548
ay -1 0.1867 0.1299
B 1.1619 1.3810 1.2641
2002 2003
e=0 1.9224 0.8242
e=1 1.8283 1.0873

ally occurred, even though rare. The parameters estimation
for the 3 years considered are reported in Table 3. In 2001,
a1 cannot be estimated (and is arbitrary fixed to —1) be-
cause no treatment was applied in 2000. In 2002 and 2003,
the orderings of ¢ (without eradication) and oy (with erad-
ication) are consistent with the orderings of the proportions
of occupied cells in areas with and without treatment (see
Table 3, bottom). The two estimations of «g in 2002 and
in 2003 are also in agreement with the proportions of cells
with observed nests in the area without treatment, namely
20% and 8 % in 2002 and 2003. This proportion was equal
to 33% in 2001.

Figure 10 shows a restoration of the 2002 invasion map,
as well as the estimated marginals probabilities of occupa-
tion based on the sole data a, o and e and of estimated pa-
rameters values (ag, o1, ) (listed in Table 3). The restored
map is a smoothed version of the observation map o, with
clusters of occupied cells of larger size: After the restoration,
369 cells are considered likely to be invaded (marginal oc-
cupation probability greater than 0.5) while nests were only
observed in 189 cells.
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Fig. 8 Estimations of the marginals probabilities of presence for a
sample size of 90% of the whole area (blackness increases with the
probability of presence). Left, heuristic static sampling; right, heuristic
adaptive sampling
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Fig. 9 Top line: eradication for years 2000 and 2001 (no eradication
in 2000). Middle line: search actions for years 2001 and 2002. Bottom
line: observations for years 2001 and 2002

6 Concluding remarks and discussion

In this article, we have presented an original method for de-
signing approximate sampling strategies for estimating oc-
currence maps of spatial processes. The main innovation of
our approach is that it is a model-based approach which
embeds the objective of map reconstruction in the sample
selection criterion. We formulated the problem within the
HMREF framework (Geman and Geman 1984; Guyon 1995;
Li 1995), the classical framework used in image analysis
problems. More precisely, we formulated the problem of se-
lecting sampling strategies as a combinatorial optimization
problem in which the expectation of the value of the possi-
ble resulting MRF is to be maximized. We formulated static
and adaptive versions of that approach. In practice both are
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Fig. 10 Observed nests in 2002 (fop), marginals (bottom left) and re-
stored invasion map (bottom right)

too complex to be applied directly to problems of realis-
tic size and, therefore, we proposed approximate variants
of those methods. We simplified the methods in two ways:
(i) approximating the computation of marginal probabilities
by using the belief-propagation algorithm (Pearl 1988) and
(i1) replacing the exact optimization problems (static and
adaptive) with the computation of simpler criteria based on
those approximate marginal probabilities.

Theoretical validation (for example, distance to the value
of the true optimal sample) of the heuristic static and adap-
tive approaches remains difficult. Here, we presented an em-
pirical validation approach based on simulated data. Our
study demonstrated the superiority of the model-based ap-
proach over two standard sampling methods (random sam-
pling and adaptive cluster sampling (Thompson and Seber
1996)) when the two following conditions are fulfilled: (i) in
circumstances where spatial structure is present, as in our
fire ants case study, and (ii) provided that sufficient sam-
pling resources are available (at least 10% of the total area).
We should insist on the fact that the ACS method and our
methods do have different goals, even though they can be
used interchangeably. Our methods aim at providing the
most accurate map of a given spatially structured stochas-
tic process, when bounded sampling resources are available.
We illustrated their use with binary variables, but finite do-
main variables could be considered as well (at the price of
increased complexity and certainly decreased performance,
in practice). ACS, on the other hand, is dedicated to binary
variables, and the sampling resource is not bounded a pri-
ori (while there still are newly found infected cells, sam-
pling goes on). The ACS method does not provide a recon-
struction tool for the whole map (it only classifies cells into
three categories : occupied, empty and unexplored). For our
comparison, we equipped the ACS method with the same



Stat Comput

HMRF-based reconstruction tool as ours and we noticed
that the reconstructed maps are of poorer quality than the
ones reconstructed after our sampling methods are applied.
This result is expected, since our heuristic methods aim at
approaching “optimal” sampling for reconstruction, which
is not the objective of the ACS method. In order to com-
pare the efficiency of both types of method for eradication
and not only for mapping, we could add, at the end of the
HMRF sampling phase, an “eradication phase”, consisting
in eradicating all cells with marginal probability of occupa-
tion exceeding a given threshold (0.5, for example). How-
ever, this was not the objective of this study and is left for
further research.

In our study we took constraints on resources into ac-
count only through a limit on the sample size. Constraints
can be more complex: the cost of a sample could be re-
lated to the time spent during exploration. In adaptive sam-
pling fixed sampling costs could be incurred whenever a new
sampling phase starts, etc. Our assumption was that sam-
pling costs are negligible compared to the cost of mapping
errors. Introducing such costs in the optimization problem
and evaluating the impact on the sampling designs remain
open questions which are of crucial interest in environmen-
tal management problems. One question is of course how to
scale costs and map quality.

This work is one of the first attempts to combine HMRF
modeling and tools for sequential decision making under un-
certainty in order to solve optimal sampling problems for
occurrence map reconstruction. Our proposed method led
to substantial improvement compared to classical design-
based sampling methods, even with the simple approxima-
tion we used in this paper. These results confirm our ap-
proach is promising, particularly given that several improve-
ments could be considered that are expected to strengthen
the approach.

The two heuristic approaches we have presented can be
improved in two different ways. Optimization can be im-
proved. The spatial sampling problems we tackled are too
complex to solve exactly. The approximation we proposed
is the simplest and, a priori, least efficient, in the family
of approximate algorithms that could be applied to sam-
pling problems involving stochasticity (Spall 2003). A nat-
ural direction to derive more efficient algorithms is the ex-
ploration of simulation-based optimization methods. We are
currently studying solutions using Reinforcement-Learning
algorithms (Sutton and Barto 1998), which have been suc-
cessful in the resolution of optimal sequential planning
problems.

Parameters estimation can also be improved, in two dif-
ferent ways. In the adaptive version, data obtained during
the sampling process can be used to improve the current es-
timation of the HMRF model. Thus, alternation of sampling
and estimation phases would improve the method. In our

case study, fire ant data are available for successive years of
treatment, sample actions and nests observations. This infor-
mation could also be taken into account to improve parame-
ters estimation, provided that knowledge about the temporal
dynamics of the ants propagation is available.
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Appendix

We demonstrate here that the approximate solution algo-
rithm for static spatial sampling presented in Sect. 4.2.2 pro-
vides the exact solution when the HMRF model satisfies as-
sumptions Al and A2.

Let us recall the definition of VMPM.

VMEM(p, 0 (X|X, 0 0))

n
:ZmaxPe OaXi=x | 1,0 0).
Xi v
i=1

If we assume that current observations o, obtained after sam-
pling actions a are reliable and that there is no passive ob-
servation (A1), and denoting x, = {o; : a; = 1}, we have

D P, 0,401 0°, VMNP, 0 (X 10", 0,2))

[
=) P O
= e,u0,¢¢(xa|0 JA)
Xa

n
XY max P, 0 ,(X; =xi | 0°, x4, 1)
X Fead,
i=1

n
= Z Z P04 (xa]0°, )

i=1 Xa

x max P, 40 ,(Xi = x; | 0% xq, 1).
o lead,

If g; = 1, then maxy, P, 40 ,(X; = xi | 0%, x4, ) =1 (cell
i has been observed and observation was reliable). If a; =0,
from A2 x; is independent of x, conditionally to 0° so that
P, 0a(Xi=xi 10 x4, ) = P, 0 4(Xi = xi | 0°,1). Fi-
nally, under Al and A2:

Z P, 40,4 010°, YVMPM (P, o (X|1,0°,0))
[

n
~ Z vi(aj),
i=1
where

If a; = 0, vi (a;) = maxy, P, ,o(X; = x;]0%, ).
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Ifa;=1,v;(aq;) = 1.

The corresponding approximation d(e, A, a’, 0%) of
a*(e, A, a®, 00) satisfies

Vi, a;=1 if —c¢;(1)+ 1> max(v;(0),1—v;(0)) (10)

which is equivalent to
¢i(1) < I —max (v;(0), 1 —v;(0)) = min (v;(0), I —v;(0)).

Computing da(e, A, a®, 00) defined in (10) consists in
practice in ranking the cells i in decreasing order of {v(i) =
min (v; (0), 1 —v;(0)) — ¢;(1)}. Then, all the cells with pos-
itive value v(i) are sampled if sampling resources are suf-
ficient. Fewer cells are sampled if sampling resources are
not sufficient, the cells with higher heuristic values being
sampled in priority, since the heuristic function models their
contribution to map uncertainty reduction.
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