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Abstract

For any organism, population size, and fluctuations thereof, are of primary importance in determining the forces driving its
evolution. This is particularly true for viruses—rapidly evolving entities that form populations with transient and explosive
expansions alternating with phases of migration, resulting in strong population bottlenecks and associated founder effects
that increase genetic drift. A typical illustration of this pattern is the progression of viral disease within a eukaryotic host,
where such demographic fluctuations are a key factor in the emergence of new variants with altered virulence. Viruses
initiate replication in one or only a few infection foci, then move through the vasculature to seed secondary infection sites
and so invade distant organs and tissues. Founder effects during this within-host colonization might depend on the
concentration of infectious units accumulating and circulating in the vasculature, as this represents the infection dose
reaching new organs or ‘‘territories’’. Surprisingly, whether or not the easily measurable circulating (plasma) virus load
directly drives the size of population bottlenecks during host colonization has not been documented in animal viruses,
while in plants the virus load within the sap has never been estimated. Here, we address this important question by
monitoring both the virus concentration flowing in host plant sap, and the number of viral genomes founding the
population in each successive new leaf. Our results clearly indicate that the concentration of circulating viruses directly
determines the size of bottlenecks, which hence controls founder effects and effective population size during disease
progression within a host.
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Introduction

Virus progression within multi-cellular hosts operates via two

distinct mechanisms: cell-to-cell proximal contamination and long-

distance migration (either as free infectious units or in circulating

cells) to colonize new organs and/or tissues. Both animals and

plants can be considered as heterogeneous landscapes consisting

of an ensemble of very different organs or ‘‘territories’’, variably

distant, and interconnected by a complex vascular system

transferring nutrients, metabolic product and wastes, and infor-

mation. Soon after entry into a healthy host, the vast majority of

viruses use this connecting vasculature to travel long distances and

expand their populations into virgin territories. In distant

susceptible organs, it seems intuitively obvious that the number

of initially infected cells, the number of viral genomes entering

each of these cells, and thus the number of founders of new viral

‘‘colonies’’, will depend on the concentration of infectious units

transported in the plasma or sap flooding the vasculature. In other

words, the virus load in the circulating flux will determine the

bottlenecks in a virus population progressing within a host, and

hence the effective population size and the pace at which new

variants are produced, selected, and emerge. Taking an alternative

view, however, one could speculate that the number of ‘‘entry

points’’ into various organs of the host might sometimes be

extremely limited, and hence the number of founder viral genomes

in such territories may always be low or constant, regardless of the

circulating virus load. Surprisingly, for both animal and plant

viruses, experimental data supporting one or the other of these

contrasting scenarios are extremely rare and only fragmentary at

best.

For animal viruses, many studies have quantified the virus load

in the plasma of infected individuals. That this virus load changes

drastically during progression of the infection, upon the onset of

host defenses or during drug treatments, has been reported for

several viruses, e.g. hepatitis B virus (HBV, [1]), hepatitis C virus

(HCV, [2,3]), human immunodeficiency virus (HIV, [2,4,5]),

simian immunodeficiency virus (SIV, [6]), and poliovirus [7]. The

logical speculations that an increase in plasma virus load increases

the infection dose in various tissues of the host [1,6,8], in some

cases allowing viral access to specific organs [7,9–12], enlarges the

viral population size and most likely augments the number of

multiply infected cells, thus favoring recombination [13–16], have
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been discussed frequently. Interestingly, a very recent study

demonstrated an ongoing exchange of HIV genomes between

the plasma and CD4(+) T blood cells [17]. However, despite its

recognition as a priority question [16], this expected relationship

between circulating virus load, effective viral population size, and

the multiplicity of cellular infection (MOI) remains to be

characterized.

In plants, this question has thus far been totally hampered by

long-standing technical difficulties with the collection and analysis

of pure phloem sap for determining virus titer. Collection of

phloem sap exuding from sieve tubes in the veins of severed or

wounded stems works in only a few plant species [18], and the

wounded cells surrounding the sieve tubes always contain viruses

that can contaminate the exudates. A very sophisticated alternative

technique uses aphid stylets as pure-phloem-sap collecting tools

[19], but its implementation is laborious in practice and produces

only minute amounts of sap per treated insect. As a result of these

technical limitations, despite the fact that all plant viruses travel

long distances within their host together with the elaborated sap,

the viral titer (and its putative dynamic fluctuations) circulating

within sieve tubes remains a complete mystery. Recently, we

reported monitoring of within-host MOI in successive leaves of a

host plant infected by Cauliflower mosaic virus (CaMV, [20]). We

demonstrated that the MOI varies greatly among leaf levels,

increasing as the infection progresses and later decreasing before

flowering and senescence of the host. Although this variation could

not be formally explained, we speculated that it could be driven by

changes in the virus titer circulating within the plant vasculature.

Thus, more viral infectious units may enter each leaf, and each

individual cell within these leaves, as the titer in the sieve tubes

increases.

In addition to an augmented MOI, this would translate into

larger effective sizes of within-host viral populations, due to larger

numbers of founder genomes in each leaf, and thus into mild (or

no) bottlenecks at leaf entry. The viral population bottlenecks

associated with leaf colonization have been investigated in several

plant virus genera—Potyvirus [21], Tobamovirus [22], Cucumo-

virus [23,24], and Caulimovirus [25]—but the bottlenecks

detected were either not quantified [23,24], quantified only at

the single leaf level [22], or calculated as a single averaged value

over the whole systemically infected host plant [21,25]. It is

interesting to note that physical host barriers [21–23,25,26] have

often been speculated to induce bottlenecks at leaf entry. Most

interestingly, however, a recent report is demonstrating that the

viral dose could also be a major factor, thus convincingly

concluding that it should be considered in future studies on within

host population bottlenecks [27].

Here, we report the first quantification of a plant virus titer

within the vasculature of its host, and monitoring of this important

trait as infection progresses. In addition, we demonstrate that

changes in sap virus titer correlate with changes in the size of viral

population bottlenecks at leaf entry, strongly suggesting that the

circulating virus load is a major factor determining the effective

size of within-host viral populations.

Results

Monitoring of CaMV titer within the sieve tubes of
infected turnip host plants

We first conducted a pilot experiment to collect pure phloem

sap from severed aphid stylets inserted precisely within sieve tubes,

as previously described [19,28]. Although the considerable

technical problems encountered led us to conclude that it was

unreasonable to use this technique for further time-course

experiments (for details see online Text S1), we could compile

measures from 19 sap samples collected from different leaves at

variable stages of development, and obtain an average value of 318

(SD +/2244) viral genomes per nanolitre of sap. The implications

of this order of magnitude, i.e. tens to hundreds of CaMV virions

per nanolitre, are discussed further below.

We next decided to estimate the virus load directly within whole

aphids, processed after a 16-hour acquisition period on CaMV-

infected turnip plants—a time at which aphids are most often

engaged in a phase of sustained sap ingestion from the phloem

sieve tubes [29]. As discussed further below, a continuous sap flux

transits rapidly within the aphid gut during this sustained phloem-

feeding phase, and ingested CaMV is thought to simply follow this

flux from ingestion to excretion without entering and accumulat-

ing within the aphid body [30]. We also carefully targeted young

sink leaves to make sure that we were indeed analyzing virus load

in aphids containing phloem sap flowing into the newly developing

leaves (see Materials and Methods for a more detailed explana-

tion). Using this technique, we monitored virus load in the sieve

tubes at several successive leaf levels appearing on 20 plants

infected in parallel, and were able to demonstrate huge temporal

variations in the circulating virus titer. We measured an average of

1386 viral copies per aphid in the first systemically infected leaf

level (level 5), with a sharp increase in leaf levels 9 and 14 before

reaching a maximum of 11291 viral copies/aphid, and then a

decrease back to initial values in leaf level 28 (Figure 1A). The

differences observed between successive leaf levels proved highly

significant (linear mixed-effects model, P,0.001).

The control experiment gave an estimate of what aphids can

potentially acquire when feeding superficially only in epidermal

and mesophyll cells. Because aphids always conduct test probes in

these tissues before settling in the sieve tubes [28], we needed to

assess the number of CaMV copies acquired during these test

probes and how much this could affect our measurements of virus

load in the sap. Aphids of the species Myzus persicae seldom reach

deep phloem tissues before a feeding time of about 30 min has

elapsed [29]. We thus performed exactly the same experiment in

parallel, on the same plants and the same leaves, but allowing only

Author Summary

Infecting viruses progress within multi-cellular hosts via
two distinct mechanisms: cell-to-cell proximal contamina-
tion and long-distance migration to remote organs
through the vasculature. In distant susceptible organs, it
seems logical that the number of initially infected cells, the
number of viral genomes entering each of these cells, and
thus the number of founders of new viral ‘‘colonies’’,
depends on the concentration of infectious units trans-
ported in the vasculature. For any organism, the number of
founders colonizing a ‘‘virgin territory’’, is of prime
importance in determining the forces driving its evolution.
This is particularly true for viruses where the so-called
founder effect is a key factor in the emergence of new
variants with altered virulence. It is surprising to note,
however, that whether the circulating virus load directly
drives the size of viral populations during host colonization
remains elusive. By monitoring for the first time the virus
concentration flowing in host plant sap, in parallel with the
number of viral genome founders in each successive leaf,
we provide unequivocal evidence that the concentration
of circulating viruses can directly determine the founder
effect and effective population size during disease
progression in a eucaryotic host.

Circulating Virus Load and Population Bottlenecks
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a short feeding period of 10 min. Figure 1A shows that the virus

load within aphids that have fed only in epidermal and mesophyll

cells (dashed line) is much lower, and can be neglected when

estimating the virus load from aphids fed in sieve tubes (solid line).

By enlarging the scale (Figure 1B), it can be seen that the time-

pattern of virus copy number in aphids fed only for a short time is

distinctly different from that in aphids fed for longer, confirming

that ‘‘long-fed’’ aphids indeed access a different tissue (sieve tubes).

Finally, we also immediately estimated the virus load in cells of

leaves used directly for aphid-feeding experiments (Figure 1C).

Interestingly, the range of CaMV accumulation among successive

leaf levels was of the same order of magnitude (from ,10 to ,40,

Figure 1C), suggesting that the efficiency of viral replication in

these cells is rather constant. The time-pattern of virus accumu-

lation in cells of successive leaf levels (Figure 1C) appeared totally

different from that in the sap (Figure 1A), highlighting the absence

of correlation of the dynamics of the virus load in these two distinct

compartments (i.e. sieve tubes vs. mesophyll). Consistently, the

difference in virus load in the sap between two leaf levels was not

correlated to the corresponding difference in the mesophyll

(Pearson r values were equal or inferior to 0.417, and p-values

equal or superior to 0.067).

CaMV population bottleneck size at entry to different leaf
levels

We next assessed whether a higher virus concentration in the

circulating sap represents a higher viral dose, which would in turn

increase the number of founder viral genomes in newly infected

leaves. For this experiment, we conducted a similar longitudinal

analysis of infected plants, measuring the size of bottlenecks

imposed on CaMV populations at the entry to successive leaf

levels. Fifty replicate plants were inoculated with a mixture of two

CaMV variants (Mys4 and Mys7) at a 1:1 ratio, and their relative

frequency was monitored in order to evaluate bottleneck sizes

upon entry to leaf levels 5, 16 and 21, as described in the Materials

and Methods. Briefly, Mys4 and Mys7 are equally competitive in

Figure 1. Dynamics of CaMV load in phloem sap. (A) Comparison of the mean virus load in aphids fed for 10 minutes (dashed line, see also B)
and 16 hours (solid line) on the leaf levels indicated (vertical bars indicate standard error). The experiment was conducted in parallel on 20 plants. The
difference between the two treatments was highly significant (linear mixed-effects model with leaf level and treatment as fixed effects and plant as
random effect; p-value ,0.001). Significant differences were also found among viral sap loads in successive leaf levels when aphids were fed for
16 hours (Tukey’s HSD, different letters mean p-values ,0.02). Results from aphids fed for 10 min. are further considered in B. (B) This panel shows
the same data as in (A), for viral sap load in aphids fed for 10 minutes, but the scale of the y-axis enlarged 20 times (Tukey’s HSD, different letters
mean p-values ,0.001). (C) Virus concentration in plant cells of the same leaf and leaf levels as in (A) and (B), expressed as normalized mean virus
copies per actin gene copy. Although significant differences are observed among certain leaf levels, the average cellular virus load appears relatively
constant, the range falling within the same order of magnitude (Tukey’s HSD, different letters mean p-values ,0.03).
doi:10.1371/journal.ppat.1003009.g001

Circulating Virus Load and Population Bottlenecks
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doubly infected plants (Figure 2A) and the procedure consisted of

comparing the variance in the relative frequency of Mys4/Mys7

among the 50 replicate plants, at an ‘‘initial’’ stage (source

population) and at a ‘‘final’’ stage (population in a specific leaf

level). Changes in variance during passage from the initial to the

final stage were used to calculate the number of CaMV genomes

from the source populations that made it through to each

respective leaf level (according to [25]). As leaf level 5 was the first

systemically infected level, we considered the corresponding source

population to be that present in inoculated leaf level 2, for reasons

described previously [22]. Thus, by analyzing the viral populations

in leaves 2 and 5 in each of the 50 replicate plants, we were able to

estimate the size of the bottleneck through which the CaMV

population passes when leaving the inoculated leaf to initiate

systemic infection. This protocol is not destructive since the

inoculated leaves are collected just before senescence, and leaves at

level 5 are punctured only to extract few leaf discs.

In contrast, the initial source populations from which viral

genomes in leaf levels 16 and 21 originate are much harder to

define because many leaves below them are exporting virions. We

made the same assumption as in [25] and considered that, due to

anastomosis of the vasculature connecting different leaves, all viral

genomes present in all leaves below leaf level 16 (or 21) provide the

best estimate of the source population feeding into this leaf level.

Because in this case the protocol is destructive (most infected leaves

are finally harvested), we could not analyze levels 5, 16 and 21

with the same set of plants. We thus estimated the bottleneck at

entry of leaf levels 5 and 16 with one set of 50 plants, and that at

entry of leaf level 21 with a second similar set under the same

experimental conditions. The results, summarized in Figure 2B,

illustrate the remarkable variation in bottleneck size at the entry to

different leaf levels. While the number of founder viral genomes is

very low in the first systemically infected leaf (around ten per leaf),

it rises by over an order of magnitude in leaf-level 16, before

decreasing back to initial values in leaf level 21.

Dynamics of bottleneck size changes during host
invasion

To confirm the observed changes in bottleneck size over time

(Figure 2B), we argued that one could simply track the dynamics of

variance in the relative frequency of Mys4/Mys7 among replicate

plants at successive leaf levels. As Figure 3A illustrates, if the

within-plant effective population size were constant the variance of

the marker frequencies between plants would increase monoton-

ically. On the other hand, temporal variations of the within-plant

population size are expected to induce a non-monotonic behavior

of the among-plant variance. For example, if the population size is

first small, then large and then small again, the among-plant

variance in marker frequency is expected to first increase rapidly,

then increase very slowly and then resume a rapid increase. Thus,

simply tracking the between-plant variance, without the need to

identify and analyze the initial source populations entering into

each leaf level, should allow us to infer the pattern of bottleneck

size changes with time, although it cannot allow actual estimation

of bottleneck size per se.

We first plotted the variances of marker frequency calculated

from the two sets of plants used in Figure 2B (dashed line), and

verified that it increased when the bottleneck at leaf entry was

narrow, whereas it remained approximately constant when the

bottleneck was relaxed. Then, we decided to confirm the pattern

of bottleneck size changes over time on a new single set of 40

Mys4/Mys7-infected plants. We harvested leaf levels 5, 10, 16, 21

and 27, leaving all other leaves intact, thus allowing the plants and

the infection to grow continuously and develop throughout the

experiment. Consistently, Figure 3B shows that the among-plant

variance of Mys4 relative frequency increases between leaf levels 2

and 5, stabilizes in leaf levels 10 and 15, and again increases in leaf

levels 21 and 27. We verified that the results were better explained

by a non-monotonic function, such as a hyperbolic-sinus function,

as opposed to a monotonic function, such as a logarithmic

function, by comparing their Akaike’s Information Criterion (AIC)

values. The best model (lowest AIC) was the hyperbolic-sinus

function (DAIChyperbolic-logarithmic.2000), confirming the pattern

of bottleneck changes shown in Figure 2B.

Remarkably, the pattern of bottleneck size changes at successive

leaf levels (Figures 2 and 3) resembles that of the virus load

measured in sieve tubes of corresponding leaf levels (Figure 1),

strongly suggesting a correlation between the two.

Relationship between virus sap-load and bottleneck size
at leaf entry

Though stemming from different plant sets, the above results

together suggest a match between the pattern of the virus

concentration within the sap and that of the size of the bottlenecks

endured by CaMV populations when initially colonizing leaves. In

order to confirm this relationship in a single experiment, we

further analyzed DNA samples used in Figure 1. As indicated in

the Materials and Methods, the plants were infected by a mixture

of the two CaMV genotypes (Mys4/Mys7 ratio 1:1), allowing the

monitoring of the variance of this ratio both within aphids (so

within the phloem sap) and within the corresponding leaf tissues,

thus allowing to calculate the number of viral genomes passing

from the sap into the leaf tissues. The data summarized in Figure

S1 (in Text S1) consistently confirm an increase of the number of

viral colonizers within leaves, when the viral load increases in the

sap. Early and late in infection, when viral sap-load is minimum,

the size of CaMV population bottlenecks is close to 10, whereas it

rises above 70 as viral sap-load drastically increases. The sizes of

CaMV populations colonizing leaves were very similar to those

calculated in the other set of plants in Figure 2B.

Discussion

Virus load in phloem sap
Unlike the case in mammals, the virus load in the vasculature of

plants represents hard-to-access information. There is no reported

method of artificially puncturing sieve tubes and aspiring sap;

simply severing the stem is, in most cases, totally inefficient as in

many plant species (including turnip as used here) no liquid exudes

from the wound [18]. In addition, the viral content of companion

and other cell types that always surround the sieve tubes represents

an inevitable source of putative contamination upon wounding.

For these reasons, and because they are natural entities capable of

pumping pure sap, in this study we attempted to exploit aphids to

access this plant compartment. Because of the multiple drawbacks

encountered by us (see Text S1) and others [19], the sophisticated

stylectomy technique was implemented only in an exploratory

experiment, not differentiating leaf level and leaf age. How the

resulting range of tens to hundreds of CaMV genome copies per

nanoliter (average+/2SD 318+/2244 copies/nl) compares with

values quantified from whole aphids (Figure 1A) depends on the

volume of sap that an aphid actually contains, and whether or not

virions are massively degraded in the aphid gut. It can be

calculated from [31] that aphids of the species Myzus persicae (Sulz.)

can individually contain around 25 nl of sap, continuously flowing

and rapidly transiting (about 1 hour) from ingestion to excretion.

This volume would consistently correspond to a range of 55–452

virus copies per nanoliter of sap, depending on the leaf level

Circulating Virus Load and Population Bottlenecks
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(number of copies estimated from pools of five aphids, divided by 5

to provide a per aphid number as in Figure 1, and by 25 to provide

a per nanoliter number). The current literature suggests that

aphids (and other hemipteran insects) readily assimilate free amino

acids, but poorly degrade proteins [32—34][35]. However, in

additional experiments where aphids were fed with artificial

Figure 2. Bottleneck sizes at CaMV entry into different leaf levels. (A) Boxplot of the Mys4 frequency distributions in samples harvested
successively in two sets of 50 replicate plants. In the first set of plants (blue), harvested samples were leaf level 2 (L2), leaf level 5 (L5), pooled leaves
below leaf level 16 (pool_L16), and leaf level 16 (L16). In the second set of plants (red), harvested samples were leaf level 2 (L2), pooled leaves below
leaf level 21 (pool_L21), and leaf level 21 (L21). The average frequency of Mys4 did not vary during CaMV progression into host plants, demonstrating
the equi-competitiveness of Mys4 and Mys7 (linear mixed-effects model with leaf level as a fixed effect and plant as a random effect: p-values = 0.450/
0.818, and the slope of the two linear regressions of Mys4 frequency over time is not significantly different from 0: p-values = 0.124/0.616). (B) The full
line shows changes in the average number of CaMV genomes founding the population in successive leaf levels. The number of viral genome
founders (CI95%) in leaf levels 5, 16 and 21 was: 8.8 (6.4–14.1), 124.7 (19.1–908.9) and 10.8 (7.1–23.9), respectively. The dashed line represents changes
in the variance of Mys4 frequency among repeated plants at successive leaf levels (scale on the right). Confidence limits for variance values were
obtained using a resampling technique (1000 bootstraps sampling 50 frequency values with replacement). Error bars represent standard errors.
doi:10.1371/journal.ppat.1003009.g002

Circulating Virus Load and Population Bottlenecks
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solutions of known virus concentrations, a similar calculation of

the virus load in aphids (as above) gave values about one order of

magnitude lower than that measured in the feeding solutions

(Figure S2 in Text S1). As detailed in the section 6 of the Text S1,

despite clear evidence that aphids feed much less on artificial

membranes than on plant leaves (Figure S3 and Table S5, in Text

S1), we cannot exclude a possible degradation of some virions

within the gut. All caution considered, we thus propose the above

values (55–452 virus copies/nl) as a conservative estimate of the

average CaMV sap load in turnip hosts. In any case, would aphids

partly decrease the number of detectable viral copies per nanoliter

of sap, they would most likely equally do so for all leaves tested,

letting the dynamic pattern in Figure 1 unaffected.

The approximation reported here for the viral sap load is

certainly specific to CaMV infecting turnip; however, it represents

the first estimation of the load of a plant virus circulating within

the vasculature of its host. In addition to the cautionary remark

mentioned above, to reliably reflect the virus load in plant sap, the

technique used in Figure 1 requires the use of an insect species

specifically feeding in sieve tubes, and in which the virus does not

accumulate. This condition is fulfilled in the case of aphids and

non-circulative viruses (like CaMV), because only a few viral

particles are specifically retained within the anterior part of the

feeding apparatus [36–39] (see also dashed line in Figure 1A).

Circulative viruses appear more problematic, as they can

penetrate the body of their vectors and accumulate, or even

replicate, in gut cells, salivary gland cells, or elsewhere [40]. We

propose that by using phloem-feeding insect species that are non-

vector, and by verifying that they do not accumulate the studied

viruses, this technique can be transferred to virtually all plant virus

species.

It is generally and intuitively assumed that the number of viral

particles circulating within the vasculature depends on the

replication rate in the cells that shed virions into the plasma or

sap, and on the number of such infected cells within the host

[6,41,42]. Accordingly, early studies quantifying the accumulation

of Tobacco mosaic virus in different leaves (reviewed in [43])

speculated that changes in within-leaf accumulation might

correlate with changes in sap load. However, because we found

small differences in CaMV accumulation at comparable develop-

ment stages of successive leaf levels (cf Figure 1A and 1C), and

because the CaMV load in the mesophyll does not correlate with

that in the sieve tubes, we believe that changes in the CaMV

replication rate are not responsible for the variations in the sap

observed here. Rather, it is the fact that more cells and leaves are

becoming systemically infected, and thus cumulatively shedding

virions within the sieve tubes, that accounts primarily for the

increase in viral sap load, as previously speculated [20]. In

contrast, the drop in virus load late in infection is surprising and

invites speculation on several hitherto unreported aspects of plant

virus biology, including a possible arrest of virion export from

infected leaves, an increased rate of virion degradation within the

sap, or massive and rapid storage in unknown plant compartments

(for example roots) clearing the vascular system. For animal

Figure 3. Monitoring of the bottleneck size changes during disease progression. A. Among-populations variance of allele frequency of a
diallelic neutral locus over time when the effective size of each population is (i) always equal to 10 (black crosses); (ii) equal to 10 until generation 2,
then equal to 100 until generation 15, and then equal to 10 again (red circles). All populations start with the same initial allele frequency of 0.5. B. At
each indicated leaf level, the variance of Mys4 frequency was estimated among 40 replicate plants. The equi-competitiveness of Mys4 and Mys7 was
again confirmed in this experiment, by showing that the linear regression of Mys4/Mys7 relative frequency over time is not different from 0 (p-
value = 0.053; not shown). Confidence limits for variance values were obtained as in Figure 2B. Error bars indicate standard errors. Two functions were
fitted to the variance values obtained over time. Red line: a hyperbolic-sinus function with the formula: y = d*(b/d+sinh(c*(x2a))); where a = 14.84,
b = 8.37E-03, c = 0.87 and d = 2.28E-07; this function has an AIC = 254504.68. Dashed line: a logarithmic function with the formula: y = a+b*ln(x);
where a = 1.45E-3 and b = 2.764E-3; this function has an AIC = 252021.35.
doi:10.1371/journal.ppat.1003009.g003
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viruses, virion turnover in plasma results from the constant

production by infected cells, and rapid degradation due to intrinsic

instability and attack by the immune system. The half-life of

circulating virions—studied for HCV, HIV and HBV [1,2]—has

been demonstrated to be extremely short, in the range of one to a

few hours. Equivalent studies do not exist in plants, and there is no

mention of any possible virion decay and/or turnover within the

sap in the available literature. Although CaMV produces very

stable virus particles, as demonstrated by purification procedures

involving 1.5 M Urea, 2% Triton, 1 CMC b-OG and butanol

treatments [44], our results suggest that they might be degraded in

(or removed from) the sap with an unknown half-life time.

Whether the leaves stop exporting virions at some point, or

whether unknown mechanisms act to increase degradation, or to

sequester virions in an as yet undetermined compartment, is

unclear, but such questions set an interesting scene for future

investigations.

Virus load in sap drives bottleneck sizes
Variation in the size of the bottlenecks undergone by CaMV

populations at leaf entry has been analyzed here with previously

described procedures. Entry of leaf level 5 was analyzed using a

protocol similar to that described by Sacristan and co-workers

[22], which identified precisely the initial (within leaf 2) and final

(within leaf 5) populations. In contrast, when quantifying the

CaMV genome founders colonizing leaf levels 16 and 21, the

originating population is elusive and has been suggested to be best

illustrated by the overall population present within the plant [25].

Because the two different protocols used in these previous studies

have been suspected to differentially affect the outcome of the

experiments [45], we developed a third and novel approach

(Figure 3), allowing a similar analysis at all leaf levels in a single set

of plants. In this approach, approximately one leaf level out of five

is harvested, thus plant development is affected only minimally.

While the sizes of the bottlenecks cannot be estimated in this way

due to a lack of information on the source population colonizing

each individual leaf, the pattern of dynamic changes in bottlenecks

can be tracked efficiently together with the spread of infection.

This additional experiment demonstrated that bottlenecks are

consistently narrow at early and late time points in infection, and

relaxed at intermediate stages, thus signifying that the two distinct

protocols previously used for bottleneck quantification do not bias

the results. Interestingly, the viral population within the sap

flowing into leaves is the real source population, and we could use

it to calculate and confirm the bottleneck sizes at leaf entry (Figure

S1, in Text S1). Though in this experiment, the leaves were at

early stages of development (still sink), the estimated number of

viral colonizers was remarkably similar to that established from

fully matured leaves (compare Figure 2B and Figure S1 in Text

S1).

The different sets of plants analyzed indicate that the dynamic

pattern of virus load within the sap is very similar to that of

bottleneck size at the entry to successive leaf levels. This strongly

suggests a direct relationship between the two, and we propose

that (i) in the first systemically infected leaf, the virus titer in the sap

is far too low to saturate all existing entry points, and the limiting

factor is thus the availability of virions; (ii) as more leaves become

infected and shed virions within the sap, the virus titer increases

and relaxes the bottleneck during disease progression, with no

apparent limit due to entry points; and finally (iii) the situation

reverts later in infection by unknown mechanisms that either halt

virus export from infected cells, store virions elsewhere than in the

vasculature, or accelerate virion decay in the sap (or a combination

thereof), resulting in a drop in the number of circulating virions

and thus of the size of bottlenecks. Interestingly, we previously

described a very similar pattern of dynamic changes in the MOI of

CaMV at different leaf levels, indicating that the CaMV load in

the sap probably influences the number of viral genomes entering

leaves as well as individual cells within the leaves [20].

In the scenario suggested here for CaMV, the most significant

bottleneck encountered during the virus life cycle is certainly that

imposed by aphid transmission, during which very few genomes

might be inoculated, as suggested by studies with other non-

circulative viruses [36,38,46]. The infection would then evolve

with an increasing population size limited only by the number of

virions produced and loaded into the vascular system. Whether

this scenario holds true for other plant viruses is totally unknown.

Interestingly, the procedure developed here to study in parallel the

fluctuation of virus sap-load and the number of founders entering

each leaf is certainly transferable and may inform on this question.

Materials and Methods

Engineering genetic markers into full-length CaMV
clones

The genome of CaMV (genus Caulimovirus) is a circular dsDNA

of approximately 8000 bp (depending on the strain), encoding

seven independently translated open reading frames (ORF I-VII)

[47]. The QuickChange Site-Directed Mutagenesis kit (Strata-

gene) was used to insert 39-bp oligonucleotides between ORF I

and ORF II of plasmid pW260 [48], to be used as genetic markers

as previously described [49]. Two distinct clones were engineered

with this technique (primer sequences available upon request),

containing 39 additional nucleotides (TCTACATATTCCTGA-

TAACTCAACGGTCGTCGACGGAGT or AGTAAGTGCT-

GTAAGTATAATAAGGATACTTGTCGACAG) between the

stop codon of ORF I and the start codon of ORF II. These two

clones were named Mys4 and Mys7, respectively, and a real-time

PCR protocol was developed for their specific quantification in

DNA mixtures. PCR conditions and primers are detailed in the

online supporting information (Text S1). Clones Mys4 and Mys7

were tested for infectivity, and the stability of the introduced

genetic markers was confirmed by sequencing viral populations

after two serial passages of 21 days each in turnip host plants. The

symptoms induced by both Mys4 and Mys7 were similar to those

induced by the parental pW260 clone. Virus particles were

purified from infected plants, quantified and stored as previously

described [49,50].

Aphid rearing, plant growth conditions, inoculation and
sampling

Colonies of the aphid species Myzus persicae were maintained in

insect-proof cages on eggplant, in a growth chamber at a

temperature of 23/18uC and a photoperiod of 14/10 h (day/

night), conditions ensuring that the colonies are reproducing

clonally. The colonies were transferred to a new cage and new host

plants every two weeks, and aphids were always collected at the

moment of the transfer, thus at comparable population densities.

Turnip plants (Brassica rapa cv. ‘‘Just Right’’) were maintained in

an insect-proof growth chamber under controlled conditions

(temperature 24/15uC, photoperiod 15/9 hours day/night). For

all experiments, plantlets at the third leaf stage were inoculated

mechanically by rubbing a virus suspension containing 400 ng of

virus particles and Carborundum abrasive powder, on the second

leaf level. All inoculums were prepared by mixing Mys4 and Mys7

purified virus particles at a 1:1 ratio. The appearance of new leaves

(budding) on the inoculated plants was monitored and noted daily

in order to allow leaf sampling at a precise leaf age. Depending on
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the experiment, either entire leaves or six leaf discs (0.8 cm ø)

distributed evenly over the leaf surface were sampled. DNA from

each leaf sample was extracted as described [51].

Collection of sap from sieve tubes
Twenty replicate plants were inoculated and sampled at four

time points. The different time points corresponded to leaf levels 5,

9, 14 and 28. The first systemically infected leaves appeared at leaf

level 5, the first visual signs of flowering induction (changes in leaf

morphology) appeared irregularly between leaf levels 21 and 28,

and the plants slowly entered senescence after leaf level 28. We

originally planned to collect also leaf level 21, but our aphid colony

unfortunately collapsed at this time and recovered only in time to

use leaf level 28. Because of the length of the experiment, different

aphid cohorts were used at different dates for different leaf levels,

but they all originated from the same clonal rearing, maintained in

constant conditions and collected at comparable population

densities. It is important to note that the sampling dates were

chosen when leaves were in their 5th day of development. At this

stage, the sink-to-source transition has not yet occurred and the

phloem sap flows into the developing leaves, whereas this flow is

inverted after the transition that occurs on approximately the 10th

day of leaf development, when each leaf exceeds 1/3 of its final

size [52].

For each time point, fifty aphids were confined in a ‘‘cage’’

enclosing the defined leaf level (see above) on each of 20 replicate

plants. Three groups of five immobile aphids—those most likely

feeding—were collected from each leaf after an acquisition period

of 10 minutes in epidermal and mesophyll cells [29], and instantly

frozen in liquid nitrogen. The remaining aphids were caged again

and left on the leaves overnight (16 hours). After this overnight

period, three groups of five immobile aphids were collected from

each leaf and similarly frozen in liquid nitrogen. M. persicae

generally settle and feed continuously within the sieve tubes during

such a long period [29], and we thus assumed that most of them

would contain sap from which the CaMV genome copy number

could be quantified. As CaMV is transmitted in a non-circulative

manner, it does not accumulate within the vector body and is

believed simply to follow the sap flow in the aphid’s gut, from

ingestion in the stylets to the excretion of honeydew [30]. Finally,

all remaining aphids were discarded and the entire corresponding

leaves were immediately collected and stored at 220uC until use.

The DNA from each group of 5 aphids was extracted as previously

described [53] and analysed by Q-PCR. The total DNA from each

leaf was also extracted as described [51], and analyzed by Q-PCR.

The validation of this approach by feeding aphids with artificial

suspensions with known virus concentrations is presented in the

point 6 of the Text S1.

Estimating the size of the CaMV population bottleneck at
leaf entry

We estimated the size of the CaMV population bottlenecks

during colonization of leaf levels 5, 16 and 21, which appear

successively on infected plants. In this experiment, leaves were

collected on the 13th day of development, after the sink-to-source

transition, when colonization by viruses imported from the phloem

sap is over [52].

Two sets of 50 plants were inoculated with a mixture of Mys4

and Mys7 purified virions, on leaf level 2. In both sets, we collected

the inoculated leaves just before their death in order to minimally

affect (if at all) virus exit and migration towards systemically

infected leaves. In addition, in one of the sets of plants, we sampled

leaf discs on leaf level 5 and let the plants grow until leaf level 16

appeared. Using an approach similar to [25], we then collected a

leaf pool containing all leaves except leaf 16, which was left to

develop for 13 days and finally harvested. The second set of plants

was treated similarly for analysis at leaf level 21, collecting pooled

leaves below nascent leaf 21, which was finally collected 13 days

later.

DNA was extracted from all leaf samples, and the relative

frequency of Mys4/Mys7 was estimated using Q-PCR as indicated

above. In the first plant set, we determined the variance of Mys4/

Mys7 relative frequency among leaves 2 (a), among leaves 5 (b),

among pools of leaves below leaf 16 (c), and among leaves 16 (d).

In the second plant set, we determined the variance of Mys4/

Mys7 relative frequency among pools of leaves below leaf 21 (e),

and among leaves 21 (f). Comparing a–b, c–d, and e–f allowed

evaluation of the size of the bottlenecks at the entry of leaf levels 5,

16 and 21, respectively, as described [25].

Alternative method to reveal the pattern of bottleneck
changes during plant invasion

In order to rapidly establish the pattern of bottleneck changes in

a viral population invading successive leaf levels, we tracked the

among-plant variance in relative marker frequency over time.

Severe bottlenecks should increase among-plant variance, while

mild bottlenecks should affect it only slightly. We expected that if

the viral effective population size was constant throughout the

infection the among-plant variance would increase monotonically,

while temporal variation in the effective size would induce non-

monotonicity in the pattern of variation of among-plant variance.

To illustrate the patterns that could arise from such temporal

variation in the effective population size, we simulated the

evolution of a single diallelic neutral locus in a number of

unconnected populations, representing the different host plants.

All populations had the same effective size at any given time, but

their effective size could vary over time. We computed the among-

population variance in allele frequencies over time. The results,

e.g. Figure 3A, confirmed our expectation: when the populations

evolve under constant effective size, the among-populations

variance increases monotonically. When the effective population

size varies over time, the increase in among-populations variance

is fast when the effective population size is small and slow when it

is large.

To experimentally investigate how among-plant variance in

relative marker frequency evolved over time, 40 plants were

inoculated in parallel and sampled at six different time points,

corresponding to leaf levels 2 (inoculated leaf), 5, 10,16, 21 and 27.

Each leaf level (except leaf level 2, which was collected just before

death) was sampled when leaves were in their 13th day of

development by collecting the entire leaf. The Mys4/Mys7 relative

frequency was estimated (by Q-PCR as above) in successive leaf

levels on the 40 repeated plants, and the function best describing

changes of the Mys4/Mys7 variance was determined as follows.

To test whether the empirical results were better explained by

monotonic or non-monotonic functions, we fitted phenomenolog-

ical models whose behaviour a priori fitted that of the simulation

results in Figure 3A. Thus a logarithmic function (y = a+b*ln(x)),

and a hyperbolic-sinus function (y = d*(b/d+sinh(c+(x2a)))) were

fitted to the data, plotting changes in the Mys4/Mys7 variance

over leaf levels, using a maximum likelihood approach. These two

functions were chosen because they could correspond to different

possible patterns of changes of the viral population bottlenecks

during disease progression. The logarithmic function illustrates

cases where the bottleneck size is constant. The hyperbolic-sinus

function illustrates the case where bottlenecks are severe at first,

then relaxed for a while, and become severe again late in infection

(see text of the Results section). The AIC was used to decide which
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of these functions best explains the observed distribution of the

variance values at successive leaf levels.

Statistical analysis
We previously reported two methods for evaluating the size of

CaMV population bottlenecks, one based on a simple analysis of

changes in the variance of Mys4/Mys7 relative frequency at

different leaf levels, and the other using Fst statistics [25]. The

application of both methods, including a slight adjustment

required for the analysis of bottlenecks at leaf level 16, to our

data sets is provided in the online Text S1. As already noted when

first describing these methods [25], they provide very similar

estimations of the bottleneck sizes, and we used only results

obtained with the former in the Results section.

Other statistical analyses used various classical tests, which were

all performed with the R (v2.11) package. The nature of the tests

and their results are indicated in the text.

Supporting Information

Text S1 Online supporting information. The online Text

S1 contains additional detailed information on: i) full data sets

corresponding to all results presented in this study, ii) the two

statistical methods used to estimate the size of viral population

bottlenecks at leaf entry, iii) the experiment showing the CaMV

sap load and bottleneck size estimates on a single set of plants, iv)

the Q-PCR conditions and primers, v) the detailed method for

stylectomy and the problems encountered, and finally vi) the

estimates of the CaMV load in aphids fed on artificial Parafilm

membranes.
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