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Abstract

Background: Spiroplasma citri is a wall-less bacterium that colonizes phloem vessels of a large number of host plants.
Leafhopper vectors transmit S. citri in a propagative and circulative manner, involving colonization and multiplication of
bacteria in various insect organs. Previously we reported that phosphoglycerate kinase (PGK), the well-known glycolytic
enzyme, bound to leafhopper actin and was unexpectedly implicated in the internalization process of S. citri into Circulifer
haematoceps cells.

Methodology/Principal Findings: In an attempt to identify the actin-interacting regions of PGK, several overlapping PGK
truncations were generated. Binding assays, using the truncations as probes on insect protein blots, revealed that the actin-
binding region of PGK was located on the truncated peptide designated PGK-FL5 containing amino acids 49–154. To
investigate the role of PGK-FL5-actin interaction, competitive spiroplasma attachment and internalization assays, in which
His6-tagged PGK-FL5 was added to Ciha-1 cells prior to infection with S. citri, were performed. No effect on the efficiency of
attachment of S. citri to leafhopper cells was observed while internalization was drastically reduced. The in vivo effect of
PGK-FL5 was confirmed by competitive experimental transmission assays as injection of PGK-FL5 into S. citri infected
leafhoppers significantly affected spiroplasmal transmission.

Conclusion: These results suggest that S. citri transmission by its insect vector is correlated to PGK ability to bind actin.
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Introduction

The plant pathogenic mollicute Spiroplasma citri, available in

culture since 1971 [1,2], has emerged as an outstanding model for

studying spiroplasma interactions with its two experimental hosts:

the periwinkle plant and the insect vector Circulifer haematoceps [3].

Due to its circulative and persistent transmission, S. citri, similarly

to the other plant pathogenic mollicutes, has to complete a

complex journey in the insect. Successful transmission of S. citri by

the leafhopper depends mainly on the ability of spiroplasmas to

pass through the insect gut cells, to multiply in various tissues, and

finally to cross the salivary gland cells. The crossing of these

different barriers doubtlessly requires protein interactions between

the spiroplasma cells and cells of its insect host. The salivary gland

invasion represents the essential and ultimate step. Thus the first

cell-to-cell contact may be crucial for the efficient penetration of

the salivary gland membrane. Following electron microscopy

observations, it has been hypothesized that leafhopper transmis-

sion of spiroplasmas and more precisely the traversal of insect

membranes was mediated by the recognition of specific membrane

proteins, which led to a process of receptor mediated endocytosis

[4,5,6]. Nevertheless, the mechanisms governing these crossings

have not been conclusively determined. Earlier reports on

Spiroplasma kunkelii describe tip structures piercing the basal

laminae of midgut epithelial cells of the leafhopper vector Dalbulus

maidis [6,7]. In order to bind, penetrate and degrade the basal

laminae, these tip structures or attachment organelles very likely

contain specialized enzymes, receptors and/or adhesins as for

human mycoplasmas [8,9].

A few number of S. citri membrane or membrane-associated

proteins potentially involved in leafhopper transmission, including

the solute binding protein Sc76 [10], the P32 protein [11,12], the

adhesion relative proteins ScARPs [13] and spiralin [14] have

been identified. Among these proteins, solely spiralin was

described as interacting with host proteins. Indeed, spiralin acts

as a lectin able to bind, in vitro, insect glycoproteins that may serve

as receptors for the adherence of spiroplasmas [15].

Recently, we reported that confocal analysis focused on

internalization and overall distribution of S. citri at the salivary

gland level revealed spiroplasmas located along the actin

microfilaments [16]. This co-localization was also observed with

Ciha-1 cells, a leafhopper cell line from Circulifer haematoceps,

experimentally infected by S. citri [17]. This preferential

localization of spiroplasma cells suggested that invasion into host
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cells may involve interactions between S. citri proteins and the actin

cytoskeleton. Among phytopathogenic mollicutes, the first inter-

action with actin was identified in ‘Candidatus Phytoplasma asteris’

(OY strain) and involved its immunodominant membrane protein

(Amp). While this interaction has an unclear mechanism, it seems

to be implicated in the insect-vector specificity [18]. The ability to

bind to actin microfilaments is a characteristic feature that has

been reported for many intracellular bacterial pathogens [19,20]

and might represent a general scheme for bacterial invasion into

host cells.

For S. citri, we previously reported that phosphoglycerate kinase

(PGK), a key enzyme in glycolysis which is thus classified as a

cytosolic protein, unexpectedly bound actin and mediated the

process leading to internalization of S. citri in eukaryotic cells [16].

Several reports indicate the presence of cytosolic proteins on

surfaces of different bacteria but how these proteins are

translocated to the surface, remains unanswered especially when

conventional secretion or anchoring signals are absent. Thus PGK

joins the group of enzymes including enolase [21], glyceraldehyde-

3-phosphate dehydrogenase [22], and pyruvate dehydrogenase

E1b subunit [23] that besides their apparent metabolic functions

may have some other roles to play in bacteria.

PGK enzyme catalyzes the reversible transfer of a phosphate

group from 1,3-bisphosphoglycerate to ADP, resulting in the

formation of 3-phosphoglycerate and ATP. This function in the

glycolysis requires the formation of a PGK ternary complex

including its two ligands, 1,3-bisphosphoglycerate and ADP,

bound to PGK on the N-terminal domain and C-terminal domain

respectively. These two domains are connected by a conserved

hinge region which allows the conformational change of the

complex structure bringing the two ligands into close proximity

during catalysis (Bernstein et al., 1997). Furthermore, the ADP/

ATP molecule is well known to interact with actin and could thus

play the role of a linking agent between these two proteins. The

question whether the interaction between PGK and actin requires

the ATP/ADP binding C-terminal moiety and/or the N-terminal

1,3-bisphosphoglycerate binding region remains opened. Aiming

at elucidating this point, this study was carried out to identify the

PGK parts that mediate binding to actin of C. haematoceps host cells

and to determine the in vivo effect of the actin-binding region in the

transmission process of spiroplasmas by its insect vector.

Materials and Methods

Bacterial strains, leafhoppers, and cell line culture
Escherichia coli strains DH10B and BL21 (DE3) were grown in

Luria-Bertani (LB) medium and used to clone, express, and purify

S. citri His6-tagged PGK and its truncated forms. S. citri GII3,

originally isolated from its leafhopper vector C. haematoceps

captured in Morocco [24], was cultivated in SP4 medium [25]

at 32uC.

Healthy C. haematoceps were reared in an insect-proof cage on

stock (Matthiola incana) plants at 30uC. Micro-injection of S. citri

GII3 into C. haematoceps has been described previously [26].

The non-phagocyte cell line Ciha-1 from the Cicadellidae C.

haematoceps was cultured at 32uC according to Duret et al. [17].

Cloning, expression, and purification of PGK full length
and PGK truncations

Expression and purification of S. citri His6-tagged PGK was

previously described and PGK truncations were produced from

the pET28 FL plasmid containing the pgk gene, in which the two

UGA codons were replaced by TGG codons [16]. The individual

truncated fragments pgkFL1 to pgkFL5, were PCR amplified

(Table 1) and the resultant DNA fragments were inserted in

pET28a(+) vector (Novagen). The recombinant plasmids

Table 1. Primers used for constructions of His6-tagged PGK and PGK truncationsa.

Protein Primers Sequence (59 to 39)b Positionc

Amino acid
residue
numero

PGK PGK-F
PGK-R

GTGAGAATTCGGATTTCATATGACAAAC
TTATGAAGCTTTTATTTACTTTGAACAGC

219 to +9 1–412

1222–1250*

PGK FL1 PGKpep-F
PGKpep1-R

TGAGAAGGATTTGAATTCCATATGACAAAC
CAAAACCTAAGCTTTTAGTTGTAACTTTTG

218 to +9 1–302

283–303

PGK FL2 PGKpep-F
PGKpep2-R

TGAGAAGGATTTGAATTCCATATGACAAAC
CATTGTGATAAGCTTTTAAACATTTTTACTTC

218 to +9 1–205

590–615

PGK FL3 PGKpep-F
PGKpep3-R

TGAGAAGGATTTGAATTCCATATGACAAAC
CCAATAAGCTTTTATGTTTTCCTTCAAAGG

218 to +9 1–101

883–906

PGK FL4 PGKpep4-F
PGK-R

GTAAAAATGAATTCCATATGGATTCTGCTTTAGG
TTATGAAGCTTTTATTTACTTTGAACAGC

303-324 101-412

1222–1250*

PGK FL5 PGKpep5-F
PGKpep5-R

TTGATAGAATTCCATATGGCACAAGAAGCAAAAG
AATATTTCCCTAAAAGCTTTTAAGCAGAATC

147-168 49-154

438–462

aAll regions were amplified using the respective mutagenic forward and reverse primers, as required.
bIntroduced EcoRI, HindIII and NdeI sites underlined.
cupstream position of nucleotide from the adenine nucleotide of the starting ATG codon.
*11 nucleotides are downstream the stop codon localized at position 1239.
doi:10.1371/journal.pone.0017357.t001

Minimal Actin-Binding Region of S. citri PGK
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(pET28FL1 to pET28FL5) were used to transform E. coli DH10B.

The desired sequence of the resulting plasmids was verified by

sequencing the insert. Two mg of plasmid representing each

truncation was used to transform E. coli BL21 (DE3). Transfor-

mants were selected on LB solid medium containing kanamycin

(50 mg/ml) at 37uC.

The expression of PGK truncations fused to the N-terminal

hexahistidine sequence was carried out as previously described for

entire PGK [16]. All proteins, purified by affinity chromatography

using Ni2+-nitrilotriacetic acid (Ni-NTA) columns (Qiagen), were

desalted using PD-10 columns according to manufacturer’s

instructions (GE Healthcare) and protein concentrations were

estimated by the Bradford procedure. Two mg of each purified

His6-tagged proteins were subjected to 5–15% linear gradient

SDS-PAGE and visualized by gel staining with colloidal blue.

Parallel gels were transferred onto membranes and blots were used

for (i) immunoblotting performed with anti-His monoclonal (Mab)

antibodies (1:3000 dilutions, Sigma), (ii) far Western blotting

carried out with a mixture of leafhopper cell proteins.

Identification of PGK truncations that interact with
leafhopper actin

Interactions between individual His6-tagged PGK truncations

and leafhopper actin were detected by far Western experiments.

Equal amounts (2 mg) of His6-tagged PGK and its individual

truncations were fractionated by a 5–15% linear gradient SDS-

PAGE before transfer onto a nitrocellulose membrane for 45 min

at 10 V according to the conditions described by Killiny et al [15].

Membrane blots were then overlaid with proteins prepared from

Ciha-1 cells as follows: 56106 Ciha-1 cells, cultured into a 24 mm

diameter well, were trypsinized with TrypLE (Invitrogen) and

centrifuged at 5, 000 g for 5 min. Cells were transferred to a

potter-Elvehjem-grinder with phosphate buffered saline (PBS)

(2 mM KH2PO4, 8 mM Na2HPO4, 0.14 M NaCl, 2 mM KCl

pH 7.4) containing 1 mM phenylmethanesulphonylfluoride

(PMSF) and homogenized. Then the mixture was centrifuged

twice for 1 min at 5006 g. Protein concentration in the

supernatant was determined by the Bradford procedure and

aliquots of 500 mg of proteins were used as overlay for incubation

with the blots of His6-tagged proteins. Interactions were revealed

with rabbit polyclonal antibodies against actin (1:600 dilution,

Sigma) followed by goat anti-rabbit labelled with peroxidase

(1:50,000 dilution, Sigma). All the steps were conducted in the

same conditions as those previously published [16].

All individual His6-tagged truncated proteins were also used as

overlay on a leafhopper total protein blot. These far Western

experiments were conducted as follows: 20 mg of total proteins

prepared from Ciha-1 cell culture (equivalent to 46104 cells),

prepared as described above were separated on 12,5% SDS-

PAGE and transferred to nitrocellulose membrane. Then each

blot was overlaid with 40 mg of individual PGK truncation and

interaction with leafhopper actin was revealed using anti-His MAb

(1:3,000 dilution, Sigma) followed by peroxidase conjugate goat

anti-mouse IgGs (1:20,000 dilution, Sigma).

Effect of recombinant PGK and its truncations on S. citri
attachment to and entry into Ciha-1 cells

Monolayers of Ciha-1 cells grown in 24-well plates (26105 cells

per well) were incubated with various concentrations of S. citri

His6-tagged PGK and truncations PGK-FL4 and PGK-FL5

diluted in Ciha-1 cell culture medium [17]. Cells without PGK

treatment represent positive control. Cells treated with 400 mg/ml

of BSA were also included as a control. Each assay was carried out

in triplicate. After incubation with proteins for 2 h at 32uC, the

cells were infected with a 100-ml S. citri suspension at a multiplicity

of infection (MOI) of 15 to 30. After infection with S. citri,

spiroplasma attachment to and internalization into Ciha-1 cells

were estimated by counting colonies on solid SP4 medium as

described previously [16]. Briefly, for attachment assay, cells were

incubated for 4 h at 4uC allowing spiroplasma adhesion but at this

temperature eukaryotic cell processes required for internalization

were inhibited. Then cells were washed three times with 500 ml of

Schneider’s Drosophila medium to remove any spiroplasmas that

had not attached to the monolayer. After trypsinization for 10 min

at 32uC with TrypLETM (Invitrogen), dilutions of the cells

associated with adherent spiroplasmas were directly plated onto

solid SP4 medium. After incubation at 32uC for 1 week, the

number of spiroplasma colonies on each plate was counted to

estimate the number of Ciha-1 cells that had adherent spiroplas-

mas. Relative percentage of adhesion was calculated as follows:

[(number of CFU for cells with protein treatment/number of CFU

for untreated control cells) 6100%].

The invasion assay was conducted similarly than the

attachment test except that, after infection with a 100-ml S. citri

culture for 18 h at 32uC, a gentamicin protection assay was used.

Briefly, cells were incubated with 1 ml of fresh culture medium

containing 400 mg/ml of gentamicin (10 fold the minimum

inhibitory concentration) during 3 h at 32uC in order to kill

extracellular bacteria. The cells were thereafter washed three

times with 500 ml of Schneider’s Drosophila medium followed by

three additional washes with PBS. After washes, a 100-ml aliquot

of the last wash was plated onto SP4 medium to ensure that all

extracellular bacteria had been killed.

S. citri experimental transmission assays
Female leafhoppers were microinjected with 0.1 ml of a

spiroplasma culture (108 spiroplasmas/ml) and caged on healthy

stock (Matthiola incana) plants at 3062uC as previously described

[26]. At day 4 after injection when the highest titer of spiroplasma

cells in the insect hemolymph was reached (106 spiroplasma cells/

insect), they were microinjected again with 0.2 mg of His6-tagged

PGK or truncations (PGK-FL4 or PGK-FL5) in phosphate buffer

(8 mM NaH2PO4, 2 mM Na2HPO4 [pH 7,4]). Injections with

phosphate buffer and with a His6-tagged protein (subunit of

Mycoplasma mycoı̈des SC ATPase) were included as controls in the

experiment. Then, for each tagged protein or control, injected

insects were randomly divided in subgroups of 3 among

EppendorfH tubes on which a ParafilmH membrane separated

the leafhoppers from SP4 medium as previously described [26].

When feeding through the ParafilmH membrane, infected

leafhoppers injected S. citri into the medium. After 24 h at room

temperature, the SP4 medium was collected and incubated at

32uC. After one week, the yellow colour in the tube, indicating the

growth of S. citri, was noticed and the presence of spiroplasmas was

verified with optical microscopic observations.

Statistical analyses
For attachment to and invasion of S. citri into Ciha-1 cells,

Student’s t test was used. For S. citri transmission assay, a chi-square

test (two-tailed) was performed to identify significant differences.

Results

Production of recombinant PGK truncations
The predicted amino acids on S. citri PGK involved in substrate

binding domains were identified by searches against the conserved

domain databases [27] and are indicated on figure 1A.

Minimal Actin-Binding Region of S. citri PGK
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In an attempt to identify the actin-binding region of PGK, we

generated by deletion of the carboxyl-terminal region of the PGK

(PGK full length: 412 amino-acids) three truncated polypeptides of

varying lengths namely PGK-FL1 (302 aa), PGK-FL2 (205 aa) and

PGK-FL3 (101 aa) (Figure 1B). The latter fragment corresponded

to the shortest fragment bearing the 1,3-bisphosphoglycerate

binding domain that was tested (Figure 1A). PGK-FL4 (312 aa)

was the result of the deletion of the first hundred PGK amino acids

and represented the PGK ATP/ADP binding site-containing, C-

terminal part. A truncated form of PGK-FL2 containing amino

acids 49-154 designed PGK-FL5 (106 aa) was also produced

(Figure 1B). His6-tagged PGK and all the His6-tagged truncated

proteins were expressed in E. coli and purified. His6-tagged

proteins, PGK, PGK-FL1, PGK-FL2, PGK-FL3, PGK-FL4 and

PGK-FL5 have respectively predicted molecular masses of 44.0,

33.7, 23.5, 12.2, 34.0, 12.5 kDa. On the colloidal blue-stained

polyacrylamide gel, His6-tagged PGK, and His6-tagged trunca-

tions PGK-FL1, PGK-FL2 and PGK-FL4 matched their predict-

ed molecular masses (Figure 1C, lanes 1). His6-tagged PGK-FL3

and PGK-FL5 migrated higher than their predicted molecular

masses of 12.2 and 12.5 kDa and preparations of these two

truncations were slightly contaminated by other E. coli proteins

(Figure 1C, lanes 1). However, anti-His Mab recognized only the

tagged proteins in all cases in spite of protein contaminations in

PGK-FL3 and PGK-FL5 preparations (Figure 1C, lanes 2).

Identification of the minimal PGK actin-binding region
To identify the truncated proteins that displayed a significant

affinity for actin, a far Western assay was performed on a blot of

Ciha-1 cellular proteins overlaid with individual truncated PGK

proteins. Ciha-1 cell protein mixture was visualized on a 12.5%

colloidal blue-stained polyacrylamide gel (Figure 2A, lane 1), and

the presence of actin in the Ciha-1 cell protein mixture was

confirmed by Western blotting using anti-actin antibodies

(Figure 2A, lane 2). As shown on Figure 2A (lanes 3, 4, 5, 6, 8)

for PGK, PGK-FL1 to FL3 and PGK-FL5 truncations, significant

binding signals located at approximately 42 KDa corresponding to

actin molecular mass were revealed by anti-His MAb. No signal

was observed with PGK-FL4 (Figure 2A lane 7). From these results

we deduced that the region in PGK from amino acid 49 to 101

possessed the capacity to bind actin.

To verify these findings, a second far Western assay was

performed in which a blot of His6-tagged PGK or its truncations

was overlaid with a Ciha-1 cells protein mixture (Figure 2B).

Binding signals between PGK, its truncations and leafhopper actin

were revealed by polyclonal antibodies against actin. As expected,

an interaction signal was detected between PGK and actin

(Figure 2B, lane 1). Truncation of PGK from the N-terminal (1–

101), resulting in PGK-FL4 truncated protein (101 to 412),

abrogated the binding activity (Figure 2B, lane 5), suggesting that

this region played an important role for PGK interaction with

actin. Binding signals detected with PGK-FL1, PGK-FL2 and

PGK-FL3 (Figure 2A, lane 2, 3, 4) indicated that truncation from

the PGK carboxyl-terminal had no effect on the actin-binding

capacity of the PGK moieties. Thus, the 101-amino acid N-

terminal region of PGK-FL3 was required for actin binding. The

signal observed with PGK-FL5 (amino acid 49 to 154) (Figure 2B,

lane 6) confirmed that an actin-binding site was located on this

truncation. From these results, we conclude that the region from

amino acids 49 to 101 is the minimal region that possessed the

capacity to bind actin.

Competitive binding assay with S. citri and truncated PGK
proteins

To determine whether the minimal actin-binding region of PGK

(PGK-FL5) is sufficient to interfere with the interactions between

spiroplasma PGK and host actin, thus preventing spiroplasma from

entering into insect cells, competitive adhesion and invasion assays

with PGK truncations were performed. No difference was observed

Figure 1. Construction and purification of the truncated PGK
proteins. (A) Schematic illustration of PGK protein showing positions
of amino acids interacting with its two substrates in glycolysis. The N-
terminal part of the PGK and more precisely, amino acids D23, N25, R38,
H62 and R121 are implicated in 1,3-biphosphoglycerate binding. The C-
terminal part of the PGK containing amino acids G236, G310, N334,
P336, G338 to E341 and G371 to T373 are implicated in ADP binding.
Hinge regions containing amino acids L198 to P201 and V389 to T391
connect the two others domains of PGK and are responsible for
inducing conformational change during catalysis. (B) Schematic
illustration of the PGK and deletion constructs. Full-length PGK protein
(amino acids 1 to 412) was deleted from C-terminus and PGK-FL1
(amino acids 1 to 302), PGK-FL2 (amino acids 1 to 205), PGK-FL3 (amino
acids 1 to 101), were produced. N-terminal deletion produced PGK-FL4
(amino acids 101 to 412). PGK-FL5 (amino acids 49 to 154) was
constructed by deleting both amino terminal and carboxy-terminal
ends of PGK. (C) All His6-tagged proteins were purified as described in
Materials and Methods, and subjected to SDS-PAGE (lane 1). Parallel
gels were transferred onto nitrocellulose membranes. Saturated blots
were probed with anti-His monoclonal antibodies (lane 2).
doi:10.1371/journal.pone.0017357.g001

Minimal Actin-Binding Region of S. citri PGK
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between the relative percentage of adhesion obtained in Ciha-1 cells

without any treatment or treated with BSA prior to infection with S.

citri (Figure 3A). Competition of His6-tagged PGK (400 mg/ml) with

Ciha-1 cells before S. citri infection did not reduce the binding of

S. citri to cells. Competition with 50 and 400 mg/ml of either PGK-

FL4, which has no actin-binding activity, or PGK-FL5, which is the

minimal actin-binding region, did not noticeably alter the

spiroplasmas attachment to cells.

Spiroplasma invasion of Ciha-1 cells was estimated similarly to

the attachment test after a gentamicin protection assay. As shown

in Figure 3B, the percentage of internalization of S. citri in cells

incubated with BSA (400 mg/ml) was close to those of the positive

controls. Competition with His6-tagged PGK (400 mg/ml) showed

the greatest inhibition rate in invasion (85%). Preincubation with

two concentrations of PGK-FL4 did not significantly reduce the

invasion of S. citri in Ciha-1 cells. In contrast, preincubation with

50 and 400 mg/ml of PGK-FL5 significantly reduced S. citri

Figure 2. Determination of the minimal PGK region required
for actin binding activity. (A) Far Western experiment performed on
Ciha-1 cell proteins overlaid with His6-tagged PGK and His6-tagged PGK
truncations. Lane 1, gel electrophoresis pattern of Ciha-1 cell proteins
stained with colloidal blue. Lane 2, proteins from Ciha-1 cells were
probed with rabbit polyclonal antibodies against chicken actin followed
by immunological detection. The band at 42 kDa reflects the presence
of actin in the protein mixture. Lanes 3 to 8, blots from Ciha-1 cell
proteins were overlaid with PGK or individual PGK truncations. His6-
tagged PGK and His6-tagged PGK-FL1 to PGK-FL3 and PGK-FL5 were
bound to actin (lanes 3, 4, 5, 6, 8). With His6-tagged PGK-FL4, no binding
signal was observed (lane 7). (B) Far-western experiments performed on
PGK and its truncations overlaid with Ciha-1 cell proteins. Blots of His6-
tagged PGK and His6-tagged PGK truncations were probed with the
mixture of Ciha-1 cell proteins containing actin. Binding was detected
with rabbit anti-actin antibodies followed by goat anti-rabbit antibodies
labelled with peroxydase. Binding signals were observed with PGK and
PGK-FL1 to PGK-FL3 and PGK-FL5 (lanes 1, 2, 3, 4, 6). No binding was
observed with PGK-FL4 (lane 5).
doi:10.1371/journal.pone.0017357.g002

Figure 3. Competitive assays between recombinant PGK or its
truncations and S. citri for attachment to and entry into Ciha-1
cells. Monolayers of Ciha-1 cells were incubated 2 h at 32uC with
400 mg of His6-tagged PGK (white bars), 50 and 400 mg of His6-tagged
PGK-FL4 (spot-filled bars), 50 and 400 mg of His6-tagged PGK-FL5 (brick-
filled bars), 400 mg of BSA (gray bars). Untreated cells infected in the
same conditions were the positive controls (black bars). Each value
represents the mean of two independent triplicate assays. Vertical lines
represent standard error of the mean. (A) Effect of PGK treatment on S.
citri attachment to Ciha-1 cells. After infection with S. citri for 4 h at 4uC,
the cells were washed, trypsinized and plated on SP4 solid medium.
After spiroplasma growth at 32uC, the number of colonies was counted
to evaluate the number of cells associated with adherent spiroplasmas.
Student’s t test was carried out and no statistical differences were
found. (B) Inhibition of S. citri internalization into Ciha-1 cells by a PGK
treatment. Following infection with S. citri for 18 h at 32uC, the cells
were treated with gentamicin (400 mg/ml) during 3 h at 32uC for killing
attached spiroplasmas. Then the cells were trypsinized, plated on SP4
medium, for counting the infected cells. Significant differences between
S. citri internalization following His6-tagged PGK, or PGK-FL5 treatment,
and positive control without any protein treatment (P,0.001, Student’s
t test) are indicated by asterisks.
doi:10.1371/journal.pone.0017357.g003
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internalization into Ciha-1 cells by 45% and 80% respectively

similarly to preincubation with the entire His6-tagged PGK.

Effect of PGK or PGK truncations on S. citri transmission
To further assess the effect of PGK in S. citri transmission by

leafhoppers we compared the ability of S. citri to be inoculated in SP4

medium by infected leafhoppers injected with phosphate buffer

versus infected leafhoppers injected with PGK or PGK truncations.

Two hundred and fifty seven groups of 3 infected leafhoppers

injected with phosphate buffer (positive controls) were allowed to

feed for 24 h on SP4 medium. As shown on Table 2, a spiroplasma

culture was obtained for 149 out of the 257 batches. Thus, in 58% of

the batches, insects succeeded in inoculating S. citri into SP4 medium.

A relative percentage of 100 was attributed to this maximal

transmission rate. There was no significant difference in the

percentage of S. citri inoculation in SP4 medium between the

controls and infected insects microinjected with a His6-tagged

protein or PGK-FL4 (96.5% and 100%). Injection with the His6-

tagged PGK protein or PGK-FL5 peptide in the S. citri infected

leafhoppers resulted in a significant reduction of bacterial inoculation

in SP4 medium, compared with controls. The percentage of

leafhoppers which introduced S. citri in SP4 medium was not

significantly different following injection with the His6-tagged PGK

protein or the PGK-FL5 peptide (51.7% and 58.6%, respectively).

Discussion

In this study we identified regions of S. citri PGK protein that

interact with leafhopper actin and attempted to determine whether

PGK, through its binding with actin, play a role in transmission of

S. citri by the leafhopper C. haematoceps.

Based on our experimental data using PGK truncated

derivatives, we determined that the region of the PGK which

binds to actin was located on the PGK-FL3 truncation,

corresponding to the N-terminal part of PGK (amino acids 1 to

101). Four out of the 5 well defined substrate binding sites of PGK

(D22, N24, R37, H60) mediating interaction with phosphoglyc-

erate during glycolysis are present on this fragment [27,28]. In

contrast, the PGK-FL4 fragment (amino acids 101 to 412)

corresponding to the C-terminal part of PGK, exhibited no

binding to actin. This PGK-FL4 fragment mainly includes the

ADP/ATP binding sites and the catalytic site. The fact that the C-

terminal part of PGK is not required for actin-binding capacity of

PGK seems to prove that the interaction between PGK and actin

is not mediated by ATP/ADP. To determine more precisely the

actin-binding region, we constructed a PGK-FL5 truncation with

an overlapping region of 53 amino acids with PGK-FL4 and in

which the first 48 amino acids of PGK-FL3 were missing.

Interestingly, PGK-FL5 repeatedly showed a marked decrease

in its actin-binding ability (Figure 2A lane 8), especially compared

to PGK-FL1, PGK-FL2, and PGK-FL3 (Figure 2A lanes 4, 5, 6).

As no significant difference in band intensity was visualized on the

reciprocal far-Western (figure 2B lanes 4 and 6) the difference in

signal levels between PGK moieties could depend on the relative

concentrations of actin and PGK truncations. A difference in

actin-binding efficiency of PGK-FL5 and PGK-FL3 could be

explained by the occurrence of two distinct actin-interacting sites

located in PGK N-terminal part, the first one being specific to

PGK-FL3 and located within the amino acids 1-48, and the

second site being common to both fragments within amino acids

49-101. Based on sequence similarity, the molecular model

proposed for S. cerevisiae PGK [29] was used to predict the surface

accessibility of the two hypothetical actin-binding domains in S.

citri PGK. In the modelled S. cerevisiae PGK N-terminal part, two

blocks of amino acids (M27 to E52 and K63 to Q88) were found to

be localized side by side with a majority of the amino acids

residues located at the outer surface of the molecule (data not

shown). In S. citri PGK, the surface exposure of the corresponding

amino acids residues would allow their interaction with actin. In

addition, except for R37, amino acids that are believed to

participate in actin-binding differ from those involved in PGK

interactions with its substrate 1,3-biphosphoglycerate.

Previously we have described that PGKs from S. citri and S.

cerevisiae do not interfere with adhesion of spiroplasmas to Ciha-1

cells but inhibit the internalization in the cells in a dose dependant

manner [16]. In this study, as expected, PGK-FL4 and PGK-FL5

truncations or PGK full length had no effect on spiroplasmas

adhesion to Ciha-1 cells. The fact that PGK-FL5, the minimal

actin-binding region, conserved the inhibitory activity on the

internalization process reinforces the hypothesis that the actin-

binding efficiency of PGK is directly related to the relevance of

such an interaction in the internalization process. This is also

confirmed by the fact that PGK-FL4, which has no effect on

internalization, does not possess any actin-binding activity.

These results prompted us to speculate that PGK and PGK-FL5

fragment are candidates for playing a role in transmission of S. citri.

The penultimate event before the infectious bite in the phloem is

invasion of C. haematoceps salivary glands by the spiroplasmas. To

ascertain the role of PGK and PGK-FL5 truncation peptide in

salivary gland invasion we developed an in vivo spiroplasma

invasion blocking assay. Infected leafhoppers were injected with

phosphate buffer or tagged proteins on the 4th day after infection.

This time period corresponds to the maximum of spiroplasmas in

insect [10] and a large majority of them would be expected to still

be circulating in the haemolymph that is the main place of S. citri

multiplication. Because transmission rates of S. citri between

Table 2. Effect of PGK and its truncations PGK-FL4 and PGK-FL5 on S. citri transmission.

Number of
independant
experiments

Number of batches (3
leafhoppers per batch)

Number of batches
with positive culture

Percentage of batches
with positive culture

Relative percentage of
batches with positive
culture

Phosphate buffer 12 257 149 58 100

His6 control 3 100 56 56 96.5

PGK 8 176 52 30* 51.7*

PGK FL4 3 82 48 58 100.9

PGK FL5 4 112 38 34* 58.6*

*p,0.0001, chi-square test (two-tailed).
doi:10.1371/journal.pone.0017357.t002
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infected leafhoppers treated with His6-tagged PGK-FL4 and those

of control groups (phosphate buffer or tagged protein) were

similar, it is highly unlikely that PGK-FL4 inhibits the ability of

spiroplasmas to enter in salivary glands. The infected leafhoppers

injected with PGK or with PGK-FL5 displayed an average

reduction of almost 50% in the transmission of S. citri when

compared with controls. Therefore PGK-FL5 truncation, with its

minimal actin-binding region, sufficient to block the entry of

spiroplasmas into Ciha-1 cells, plays an important role in

transmission. The competition between exogenous PGK and

PGK-FL5 with the spiroplasmas could reduce the available

number of target sites that participate in entry of spiroplasmas

in salivary glands.

In summary, our results suggested a correlation between the

PGK-actin interaction and the inhibitory effect during internal-

ization in insect cells. In agreement with these data, as we show

with our in vivo experimental model, S. citri could use this

interaction for crossing salivary glands barrier and completing its

life cycle in insects.
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