

Comparative study of wheat low-molecular-weight glutenin and alpha-gliadin trafficking in tobacco cells

Mathilde Francin-Allami, Axelle Bouder, Yves Popineau

▶ To cite this version:

Mathilde Francin-Allami, Axelle Bouder, Yves Popineau. Comparative study of wheat low-molecular-weight glutenin and alpha-gliadin trafficking in tobacco cells. Plant Cell Reports, 2013, 32 (1), pp.89 - 101. 10.1007/s00299-012-1343-8 . hal-02645519

HAL Id: hal-02645519 https://hal.inrae.fr/hal-02645519

Submitted on 20 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Comparative study of wheat low-molecular-weight glutenin and
2	α -gliadin trafficking in tobacco cells.
3	
4	
5	
6	Mathilde Francin-Allami [*] , Axelle Bouder, Yves Popineau.
7	
8	
9	
10	
11	INRA, UR1268, Biopolymères Interactions Assemblages, 44300 Nantes, France
12	
13	
14	
15	
16	
17	*Corresponding author
18	E-mail: allami@nantes.inra.fr
19	
20	
21	
22	
23	
24 25	
25 26	
20 27	
27	
29	
30	
31	
32	

33 Abstract

34 Wheat prolamins are the major proteins that accumulate in endosperm cells and are largely 35 responsible for the unique biochemical properties of wheat products. They are accumulated in the endoplasmic reticulum (ER) where they form protein bodies (PBs) and are then 36 37 transported to the storage vacuole where they form a protein matrix in the ripe seeds. Whereas 38 previous studies have been carried out to determine the atypical trafficking pathway of 39 prolamins, the mechanisms leading to ER retention and PB formation are still not clear. In 40 this study, we examined the trafficking of a low-molecular-weight glutenin subunit (LMW-41 glutenin) and α -gliadin fused to fluorescent proteins expressed in tobacco cells. Through transient transformation in epidermal tobacco leaves, we demonstrated that both LMW-42 43 glutenin and α -gliadin were retained in the ER and formed mobile protein body-like 44 structures (PBLS) that generally do not co-localise with Golgi bodies. An increased 45 expression level of BiP in tobacco cells transformed with α -gliadin or LMW-glutenin was 46 observed, suggesting the participation of this chaperone protein in the accumulation of wheat 47 prolamins in tobacco cells. When stably expressed in BY-2 cells, LMW-glutenin fusion was 48 retained longer in the ER before being exported to and degraded in the vacuole, compared to 49 α -gliadin fusion, suggesting the involvement of intermolecular disulphide bonds in ER 50 retention, but not in PBLS formation. Co-localisation experiments showed that gliadins and 51 LMW-glutenin were found in the same PBLS with no particular distribution, which could be 52 due to their ability to interact with each other as indicated by yeast two-hybrid assays.

53

54 Keywords

55 Wheat - Gliadin - Low-Molecular-Weight Glutenin - Tobacco cells - Trafficking 56 Fluorescent proteins

57

58 Key message

59 Wheat low-molecular-weight-glutenin and α -gliadin were accumulated in the endoplasmic 60 reticulum and formed protein body-like structures in tobacco cells, with the participation of 61 BiP chaperone. Possible interactions between these prolamins were investigated.

62

63 Abbreviations:

64 BiP: Binding protein

65	BY-2:	Bright Yellow-2
66	ER:	Endoplasmic reticulum
67	GFP:	Green fluorescent protein
68	HMW:	High molecular weight
69	HMW-G:	High-molecular-weight glutenin
70	LMW:	Low molecular weight
71	LMW-G:	Low-molecular-weight glutenin
72	mRFP ₁ :	Monomeric red fluorescent protein
73	PDI:	Protein disulphide isomerase
74	PBLS:	Protein body-like structure
75	PB:	Protein body
76		
77		
78		
79		
80		
81		
82		
83		
84		
85		
86		
87		
88		
89		
90		
91		
92		
93		
94		

95 Introduction

96

97 Wheat is the most widely cultivated cereal and the most widely consumed food crop in the 98 world. Wheat seed storage proteins, prolamins, are the major components that accumulate in 99 wheat endosperm cells, and are largely responsible for the viscoelasticity properties of gluten. 100 Prolamins are divided into two fractions, glutenins and gliadins, according to their 101 polymerisation state. Glutenins are polymers that have intra- and interchain disulphide bonds 102 composed of low-molecular-weight and high-molecular-weight glutenin subunits (LMW-G 103 and HMW-G, respectively) (Payne 1987). Gliadins are monomers with intramolecular 104 disulphide bonds (α and γ -gliadins) or without disulphide bonds (ω -gliadins) (Bietz et al. 105 1977). Gliadins account for about 40-50% of the total proteins in wheat seeds and play an 106 important role in the nutritional and processing quality of flour. y-gliadins have been 107 considered to be the oldest proteins in the wheat prolamin family. HMW-glutenin subunits are 108 composed of a central repetitive domain flanked by two non-repetitive regions containing 109 cysteine residues critical for glutenin cross-linking. LMW-glutenin subunits are structurally 110 related to monomeric α and γ -gliadins except that they contain two additional cysteine 111 residues available for interchain disulphide formation, which would be responsible for the 112 polymeric feature of these proteins (Shewry and Tatham 1997).

113 In seed endosperm cells, prolamins are synthesized in the endoplasmic reticulum (ER), where 114 they accumulate. They form storage structures known as protein bodies (PBs) in the ER, and 115 are then transported to the storage vacuole (Parker and Hawes 1982; Levanony et al. 1992; 116 Altschuler et al. 1993; Galili et al. 1993). It seems that the major part of prolamins are 117 transported from the ER to the storage vacuole, bypassing the Golgi, via the PBs in 118 endosperm cells (Levanony et al. 1992; Galili et al. 1993; Hara-Nishimura et al. 1998; Vitale 119 and Galili 2001). Prolamins were also recently found to accumulate in maize aleurone cells in 120 a similar Golgi-independent pathway (Reves et al. 2011). However, prolamins were also 121 detected in the Golgi stacks, especially during the early stage of seed development (Parker 122 and Hawes 1982; Galili et al. 1993; Shy et al. 2001; Loussert et al. 2008; Tosi et al. 2009).

PBs disappear during seed maturation to form the protein matrix around the starch granules (Rubin et al. 1992). In wheat seeds, the distribution of the different prolamins within the protein bodies is still unclear. No particular spatial organisation of gliadins and glutenins has been observed in wheat PBs (Loussert et al. 2008), contrary to the prolamins found in maize (Coleman et al. 1996, 2004) and rice PBs (Nagamine et al. 2011). However, a segregation of protein type into a specific population of protein bodies can occur within the same endosperm cell (Tosi et al. 2009). A segregation of gluten proteins occurred both between and within the protein bodies during protein deposition. A recent study indicated that differential patterns of distribution were found for the HMW glutenin subunits and γ -gliadin (more abundant in the inner endosperm layers) when compared to the LMW-G and other gliadins (ω and α -gliadins were more abundant in the subaleurone) (Tosi et al. 2011).

134 The mechanisms leading to the trafficking and accumulation of prolamins during seed 135 development are only partially known. Indeed, prolamins do not contain the classical ER 136 retention signals such as HDEL/KDEL, and the process leading to their retention in the ER is 137 not known. Several mechanisms have been suggested, including the involvement of the 138 repeated motif of prolamins for ER retention, as demonstrated for wheat gliadins expressed in 139 yeast (Rosenberg et al. 1993), xenopus oocytes (Altschuler et al. 1993) and, more recently, in 140 Nicotiana tabacum leaves (Francin-Allami et al. 2011). These repeated motifs could be used 141 as an anchor for the interaction of prolamins to the ER membrane, which would explain their 142 retention in the ER (Banc et al. 2009). However, the repeated sequence was not the only one 143 to contribute to the accumulation of prolamins in the ER and PBs. Disulphide bonds could 144 also play an essential role in ER retention and the accumulation of wheat prolamins (Shimoni 145 and Galili 1996; Lombardi et al. 2009). More recently, it was proposed that both cysteine-rich 146 C-terminal and repeated N-terminal domains of γ -gliadin were involved in γ -gliadin ER 147 retention and protein body-like structure formation (Francin-Allami et al. 2011). The 148 participation of chaperone proteins and, in particular, the ER luminal BiP, was also 149 demonstrated (Levanony et al. 1992; Li et al. 1993; Muench et al. 1997; Saito et al. 2009). In 150 rice, it has been suggested that BiP is necessary to maintain prolamins in a competent state for 151 subsequent assembly in the ER (Muench et al. 1997). It has also been suggested that the 152 disulphide isomerase (PDI) participates in the segregation of rice prolamins within the ER 153 lumen (Takemoto et al. 2002).

154 Trafficking of a wheat γ -gliadin and HMW-G subunit fused to a fluorescent protein was 155 recently investigated, demonstrating that tobacco cells are a good model for studying atypical 156 wheat prolamin trafficking (Francin-Allami et al. 2011; Saumonneau et al. 2011). In order to 157 further elucidate the trafficking pathway of wheat seed storage prolamins, we decided to study 158 other typical wheat prolamin components such as a LMW-G subunit and an α -gliadin, which 159 account for the majority of the storage proteins in the endosperm. To do this, we used a 160 fluorescent protein fusion strategy and a tobacco cell model. The results indicated that the two

161	prolamins were accumulated in the ER network and were able to form numerous protein
162	body-like structures in tobacco cells. We also investigated the potentiality of interactions
163	between the different prolamins. Taken together, these results provide global information
164	concerning the trafficking and assembly of wheat seed storage proteins.
165	
166	
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196	
196 197	
198 100	
200	
201 202	
202	
204	
205 206	
200	

- 208 Materials and methods
- 209
- 210 Plasmid constructs
- 211

212 Gateway system cloning was used to perform the different constructs used in this study, 213 according to the manufacturer's instructions (Invitrogen). The binary vectors pMDC83 214 (Curtis and Grossniklaus 2003) and pK7RWG2 (Karimi et al. 2005) were used to construct C-215 terminal GFP/mRFP₁ fusions with the different wheat ("Recital" variety) prolamin cDNAs. 216 The cDNA encoding α -gliadin (see nucleotide and amino acid sequences in supplementary 217 Fig. S1) was amplified using the primers AttB1-A4-PS (5'-aaa aaa gca ggc ggc ttc atg aag acc 218 ttt ctc atc) and AttB2-A4 (5'-caa gaa agc tgg gtc gtt agt acc gaa gat), followed by a second 219 PCR with the primers AttB1 (5'-ggg gac aag aag aag aag ttt gta caa aaa agc agg ct) and AttB2 (5'-220 ggg gac cac ttt gta caa gaa agc tgg gt). The cDNA encoding the low molecular weight 221 glutenin (LMW-G) (see nucleotide and amino acid sequences in supplementary Fig. S2) was 222 amplified using the primers AttB1-LMWG-PS (5'-aaa aaa gca ggc ttc atg aag acc ttc ctc) and 223 AttB2-LMWG (5'-caa gaa agc tgg gtc gta ggc acc aac tcc ggt), followed by a second PCR 224 with the primers AttB1 and AttB2.

The constructs of γ -gliadin in fusion with GFP and mRFP₁ were previously described in Francin-Allami et al. (2011).

227 In order to perform yeast two-hybrid experiments, the cDNAs encoding the α -gliadin and 228 LMW-G were cloned into pACT2 prey and pAS2-1 bait vectors (Clontech). The cDNAs were 229 amplified using the primers A4NcoIVRV-5' (5'-c cat gcc atg gca gtt aga gtt cca gtg cca caa 230 ttg-3') and A4BamHI-3' (5'-cg gga tcc tca gtt agt acc gaa gat gcc aaa tgg-3') for α -gliadin 231 amplification, and the primers L3NcoI-5' (5'-c cat gcc atg gca cag atg gag act aga tgc atc cct-232 3') and L3BamHI-3' (5'-cg gga tcc tca gta ggc acc aac tcc ggt-3') for LMW-G amplification. 233 γ -gliadin cDNA was cloned into pAS2-1 vectors using the primers Gb5ncoI-NIQ-5' (5'-c cat 234 gcc atg gca aat ata cag gtc gac cct agc ggc-3') and Gb5bamHI-3' (5'-cg gga tcc tca ttg gcc acc 235 aat gcc ggc-3'). NcoI and BamHI were used as restriction sites.

236

237 Transient expression in plants

238

Transient expression in tobacco leaf epidermal cells was performed as described by Sparkes etal. (2006). *Nicotiana tabacum* plants were grown in a growth chamber under a 16 h

241 photoperiod control at 21°C for 5-6 weeks prior to Agrobacterium infiltration. The 242 recombinant binary vectors were transferred into Agrobacterium tumefasciens (strain 243 GV3101::mp90) by heat shock transformation. Transformed Agrobacteria were inoculated in 244 a Luria-Bertani (LB) medium supplemented with the appropriate antibiotics at 28°C overnight. Cultures were then centrifuged and washed with infiltration buffer (5 g l⁻¹ glucose, 245 246 50 mM MES, 2 mM Na₃PO₄.12H₂O, 100 µM acetosyringone) before being resuspended with 247 this same buffer at a DO600nm=0.1 and 0.05 for prolamin constructs and marker vectors (ER 248 and Golgi), respectively. The diluted bacteria were delivered to lower leaves of N. tabacum 249 by gentle pressure infiltration using a syringe. For experiments using co-expression, bacteria 250 containing the constructs were mixed in appropriate volumes before performing the 251 infiltration.

252

253 Stable transformation of BY-2 suspension cells

254

255 Suspension-cultured tobacco cells (BY-2, Bright Yellow 2) were provided by Chris Hawes 256 (Oxford Brookes University, UK), and cultured at 24°C in the dark in a Murashige and Skoog-MES medium (Duchefa, no. MO254) supplemented with 20 mg l⁻¹ KH2PO4, 100 mg 257 l^{-1} myo-inositol, 30 g l^{-1} sucrose, 1 mg l^{-1} thiamine and 0.2 mg l^{-1} 2.4 D, pH 5.6. The binary 258 259 gateway-plasmid constructs were transferred into the GV3101::mp90 Agrobacterium 260 tumefaciens strain by heat shock. Transformed Agrobacteria were selected in LB medium 261 supplemented with appropriate antibiotics and were used to transform BY-2 cells as described 262 by Gomord et al. (1998). The transformed BY-2 calli were then screened by fluorescent 263 microscopy and selected calli were used to initiate transgenic suspension cell cultures. One ml 264 of cells was transferred to a fresh 30 ml of medium every week.

To compare the growth rate curves in the different BY-2 lines, the cells were filtered each day
from independent Erlenmeyer flasks on a 0.45 µm Millipore filter, and the fresh cell weight
determined.

268

269 Confocal laser scanning microscopy

270

271 Confocal microscopy experiments were performed at the Biopolymers-Structural Biology 272 platform, INRA Nantes (France). An inverted Nikon A1 confocal laser scanning microscope 273 was used to examine the subcellular localisation of GFP and mRFP₁ fluorescence. The 274 samples were examined with a water-immersion X40 objective. GFP and mRFP channels were acquired by alternately scanning with line switching, using a 488 nm argon laser line for excitation of the GFP and a 561 nm laser line for mRFP₁: emissions were collected via a photomultiplier through a 515+/-30 nm and a 595+/-50 nm band-pass filters, with the same gain settings for every experiments. Images were processed using NIS-Element (Nikon) and Image J software.

- 280
- 281

282 Transmission electron microscopy

283

Infiltrated leaves were cut in 1 mm³ samples and placed in a fixation solution consisting of 284 285 2% (w/v) paraformaldehyde and 2.5% (v/v) glutaraldehyde in 0.1M phosphate buffer (pH 286 7.2). Air was removed from leaf samples with air vacuum cycles. Samples were then fixed at 287 4°C in the fixation solution overnight. Fixed samples were rinsed in phosphate buffer and de-288 ionised water prior to postfixation with 1% osmium tetraoxide during 1 hour. Dehydration 289 was performed in 30, 50, 70, 85, 95 and 100% ethanol solutions. Samples were successively 290 impregnated with 50/50 and 0/100 ethanol/propylene oxide (v/v) for 1 hour, then 50/50 291 propylene oxide/Epon (Epoxy Embedding Medium Kit, 45359-1EAF Sigma Aldrich) (v/v) 1 292 hour and 0/100 overnight. The impregnated samples were polymerised for 24 h at 55°C and 293 60 h at 72°C. A Leica EM UC7 Ultramicrotome (Leica) was used for making ultrathin 294 sections (80 nm) for electron microscopy. Sections were collected on copper grids, 295 counterstained with 2% uranyl acetate and examined on a JEOL 1230 TEM (JEOL; 296 accelerating voltage of 80 kV).

297

298 Treatments with Latrunculin B inhibitor

Tobacco leaf sections were incubated for 40 min in a 25-µM solution of Latrunculin B 300 (Calbiochem). Treated cells were then visualised by confocal microscopy. Each treatment 301 with inhibitor was repeated at least twice with similar results.

302

303 Protein extraction and immunoblot analysis

304

Tobacco BY-2 cells were harvested by filtration and resuspended in a SDS sample buffer (100 mM TRIS-HCL, pH 6.8, 4% SDS, 20% glycerol, 5% 2-mercaptoethanol, 100 μ g ml⁻¹ bromophenol blue) prior to boiling for 5 min, and then centrifuged. The supernatant was subjected to SDS-PAGE according to Laemmli (Laemmli, 1970) with a separating gel containing 4-20% acrylamide in gradient (mini-PROTEAN TGX gels, Biorad). Each protein
extract loaded on the gel corresponded to the same volume of filtered cells.

Infiltrated tobacco leaf sections were cut, crushed in liquid nitrogen, rinsed in acetone, and dried. The leaf powders were weighed and an equal amount of powders was resuspended in SDS sample buffer. 15 mg of leaf extracts were loaded to the each lanes of gel for immunoblotting.

Proteins were then electrotransferred to a nitrocellulose membrane (IBlot Gel Transfer Stacks Nitrocellulose, Invitrogen) before immunodetection by specific antibodies. Immunoblotting was performed using mouse monoclonal anti-GFP antibodies (dilution: 1:2500) (Clontech), or rabbit polyclonal anti-BiP antibodies (dilution: 1:4000) (Hatano et al. 1997). An alkaline phosphatase-conjugated goat anti-mouse (dilution: 1:2000) or anti-rabbit (dilution: 1:3000), respectively, were used for the detection. Proteins were stained with BCIP-NBT (Promega kit) according to the manufacturer's instructions.

322

323 Yeast two-hybrid assays

324

Yeast two-hybrid assays were performed in *Saccharomyces cerevisiae* strain Y190 (*MATa*, *gal4, gal80, his3, trp1, ade2, ura3, leu2, URA3::GAL1::lacZ, LYS2::GAL4(UAS)::HIS3 cyh^R*). Y190 was transformed with a pair of plasmids expressing Gal4BD fusion TRP1 (bait) and Gal4AD fusion LEU2 (prey), plated onto selected media (YNBD medium (0.17% yeast nitrogen base without amino acids, 2% glucose, 2% agar) supplemented with appropriate amino acids and bases) for 4-5 days at 28°C, and tested for β-galactosidase production in an overlay plate assay.

- 332
- 333
- 334
- 335
- 336
- 337

338

339

- 340
- 341
- 342

343

344 **Results**

345

346 Prolamin constructs

347

348 Wheat α -gliadin has two main domains: a repeated N-terminal domain rich in glutamine and 349 proline residues, and a C-terminal domain containing six cysteines to form intramolecular 350 bonds. LMW-G has three domains: one repeated domain rich in glutamine and proline 351 surrounded by a small non-repeated domain with one cysteine at the N-terminal extremity, 352 and a larger non-repeated domain containing seven cysteines at the C-terminal extremity (Fig. 353 1). Both α -gliadin and LMW-G have a signal peptide that is cleaved off during protein 354 synthesis. In order to investigate the trafficking of wheat α -gliadin and LMW-G, the 355 corresponding genes were isolated from wheat endosperm cDNA at 250 degree days after 356 anthesis. They were then cloned into binary vectors containing a double 35S promoter of 357 cauliflower mosaic virus and the enhanced green fluorescent protein (eGFP) or monomeric 358 red fluorescent protein (mRFP₁) coding sequences downstream from the gateway cassette, 359 leading to a C-terminal GFP/mRFP₁ fusion of the prolamins (Fig. 1). These constructs were 360 used to transform tobacco leaf epidermal cells and BY-2 suspension cultured cells in order to 361 study the subcellular localisation of α -gliadin and LMW-G.

362

363 Gliadin and glutenin localisation in tobacco cells

364

365 The subcellular localisation of α -gliadin and LMW-G was first investigated after transient 366 transformation in epidermal tobacco leaf cells via Agrobacterium infiltration. Cells expressing 367 the α -gliadin fused to GFP presented fluorescence in the ER compartment, which was 368 confirmed by the co-localisation with an ER marker (mRFP₁-DPL1; Marion et al. 2008; 369 Tsegaye et al. 2007) (Fig. 2a, b). The fluorescence observed by confocal microscopy was 370 mainly represented by punctate structures instead of a typical ER network. These punctate 371 structures have already been described for γ -gliadin transformed tobacco leaves where they 372 were identified as protein body-like structures (PBLS) (Francin-Allami et al. 2011). α-gliadin 373 PBLS often form clusters that look like bunches of grapes, leading to large aggregated 374 structures. We also fused LMW-G with green fluorescent protein and used it to transiently 375 transform tobacco leaf cells. The observation of fluorescence by confocal microscopy 376 indicated that LMW-G was also expressed in ER and forms large PBLS (> 4 µm in diameter), 377 which tended to group together to form clusters (Figs. 2d, e). Like those formed by the 378 expression of gliadin, these PBLS seemed to be surrounded by the ER marker DPL1, which is 379 an ER membrane lyase, indicating that ER membranes encapsulate the bodies (Fig. 2e, high 380 magnification of the inset). a-gliadin and LMW-G seemed to be able to form more 381 systematically and well-defined PBLS compared to those previously obtained with γ -gliadin 382 constructs. Moreover, quantitative data indicated that whereas α -gliadin was accumulated as 383 numerous and relatively small PBLS, LMW-G formed less numerous but often larger PBLS 384 (Fig. 3). Western blot analysis of leaf cells expressing α -gliadin-GFP and LMW-G-GFP with 385 anti-GFP antibodies confirmed the integrity of the fused proteins, with an apparent molecular 386 mass of approximately 70 kDa (Fig. 4a). A fragment of lower mobility was also present at a 387 very low level, and corresponded to the mass of free GFP (27 kDa).

388 α -gliadin and LMW-G PBLS are highly mobile, and we demonstrated using Latrunculin treatment that this mobility is actin-dependent (see movies S3 and S4 in supplementary data). 389 390 Because PBLS are very mobile and similar to Golgi bodies, we tested the co-localisation with 391 the Golgi marker, ST-RFP (sialyl transferase signal anchor-mRFP₁). As previously seen for 392 γ -gliadin-GFP, the result indicated that α -gliadin and LMW-G PBLS generally did not appear 393 to be co-localised with Golgi bodies (Figs. 2c, f), which was confirmed by a different pattern 394 of movement of PBLS and Golgi bodies when time-lapse series of confocal images were 395 analysed (see movie S3 in supplementary data).

396

397 PBLS morphology

398

399 In order to reveal the morphology of the gliadins and glutenin PBLS, the transformed tobacco 400 leaves were submitted to appropriate treatment (see the Materials and Methods section), and 401 examined by electron microscopy. The focalisation on the ER region of tobacco cells showed 402 relatively round shape structures next to conventional tubular ER when cells expressed a-403 gliadin or LMW-G (Figs. 5a, b). These structures reflected the PBLS structures observed with 404 confocal microscopy. The PBLS structures were not seen to be continuous with the ER in 405 these images. It is however not excluded that PBLS were still linked to the ER network, or in 406 contrary they bud off the ER and localized in the cytosol. Their size ($< 1\mu m$) corresponded to 407 the smallest PBLS observed with fluorescent microscopy. This was consistent with previously

408 studies describing PBLS formed in tobacco leaves after expression of maize β -zein (Randall 409 et al. 2005) or wheat γ -gliadin (Francin-Allami et al. 2011).

410

411 Gliadin and LMW-glutenin are degraded in the vacuole of BY-2 cells

412

413 In order to examine the dynamic trafficking of prolamins in a stable system, we expressed α -414 gliadin and LMW-G fused to GFP in BY-2 suspension cultured cells. As previously seen after transient infiltration in tobacco leaves, α -gliadin and LMW-G were localised in the ER 415 416 network (Fig. 6a). Numerous and well-defined PBLS were formed with both prolamins. 417 Quantitative data indicated that both prolamins could form PBLS with a diameter larger than 418 1 μ m, and that α -gliadin tended to include more cells with numerous and larger PBLS than 419 cells expressing LMW-G (Fig. 3). After 2-4 days of subculturing, no fluorescence was seen in 420 the vacuole (Table 1). After four days of subculturing, in addition to the ER and PBLS, 421 fluorescence was also seen in the vacuole of the α -gliadin transformed cells. At 7 days of 422 subculturing, almost all of the fluorescence was localised in the vacuole. These results were in 423 accordance with the changes previously observed in the case of γ -gliadin, where fluorescence 424 in the vacuole corresponded to the release of GFP core after transport of γ -gliadin-GFP to the 425 vacuole (Francin-Allami et al. 2011). In LMW-G expressing cells, fluorescence was also 426 clearly detected in the ER with the formation of numerous PBLS. The release of fluorescence 427 into the vacuole was slower since no or little fluorescence was observed in the vacuole of 428 cells at 7 days after subculturing, and even at 10 days after subculturing, there was still 429 fluorescence in the ER network in addition to the vacuole (Fig. 6a, Table 1). These results 430 were confirmed by immunoblotting analysis where LMW-G-GFP was still detected at 10 days 431 after subculturing, whereas only GFP is detected in the cells expressing α -gliadin as early as 7 432 days of subculturing (Figs. 7a, b). It is noteworthy that no cell growth difference was detected 433 between the two lines expressing α -gliadin or LMW-G (supplementary Fig. S5). The same 434 pattern of degradation was obtained for α - and γ -gliadin-GFP, whereas LMW-G showed a 435 slower degradation than gliadins. It is also interesting to note that the amount of PBLS 436 decreased with the stage of cell development for both transformed BY-2 cell lines (Table 1). 437 Whereas α -gliadin-GFP transformed cells tended to have more PBLS at 5-7 days of 438 subculturing but with rapid degradation in the vacuole, LMW-G-GFP transformed cells 439 presented a fluorescence mainly localised in the ER network with less PBLS at these stages 440 (Table 1, Fig. 6).

441

442 BiP expression in transformed tobacco cells

443

444 Because BiP is a typical ER-resident protein, and some studies have indicated that it is 445 involved in the folding and assembly of proteins in the ER, we decided to follow the 446 expression of this chaperone protein during the expression of gliadin and glutenin in tobacco 447 cells. Immunoblotting indicated an increased expression of BiP in epidermal tobacco cells 448 infiltrated with α -gliadin-GFP or LMW-G-GFP compared to the non-transformed plant (Fig. 449 4b). In the same way, expression of BiP is increased in the BY-2 suspension cultured cells 450 stably transformed with α-gliadin and LMW-G (Figs. 7a, b). Moreover, the expression of BiP 451 decreased as days of subculturing increased, which is in relation to the progressive 452 degradation of fused prolamins. At 10 subculturing days of cells expressing LMW-G or 7 453 subculturing days of cells expressing α -gliadin, the expression level of BiP was identical to 454 that of non-transformed BY-2. Besides, we demonstrated that the expression level of BiP was 455 relatively constant during subculturing of non-transformed BY-2 cells (Fig. 7c). In addition, 456 differential centrifugation indicated that a part of the BiP in BY-2 cells expressing α -gliadin-457 GFP at four days of subculturing was found in the vacuolar fraction (Fig. 7d). This result is 458 consistent with those previously found (Tamura et al. 2004).

459

460 Co-localisation of prolamins in tobacco cells

461

462 The distribution of the different prolamins within the protein bodies in wheat endosperm is 463 not really clear. To determine their distribution in PBLS, gliadins and LMW-G were co-464 expressed in tobacco leaf epidermal cells (Fig. 8). Confocal images indicated that γ -gliadin 465 and α-gliadin co-localised in protein bodies. All PBLS inside the tobacco cells contained both 466 gliadins. In the same way, we demonstrated that LMW-G was co-localised with α -gliadin or 467 γ -gliadin in all protein bodies. In addition, at the resolution provided by confocal microscopy, 468 all these combinations of proteins appeared to be homogeneously distributed inside PBLS. 469 These co-localisations within PBLS lead to the possibility that prolamins could interact with 470 each other. In order to test this possibility, a yeast two-hybrid experiment was performed 471 using the different combinations of prolamins. A yeast two-hybrid system was previously 472 used to detect interactions between maize prolamins (Kim et al. 2002) or wheat γ -gliadin 473 domains (Francin-Allami et al. 2011). For this, gliadins and LMW-G genes were cloned into

474	specific yeast two-hybrid vectors, in order to fuse the genes at their N-terminals with the
475	activation domain or binding domain of the yeast GAL4 transcription factor. The results
476	indicated that all prolamins could interact with each other in an in vitro yeast two-hybrid
477	system (Table 2). α -gliadin seemed to have a particularly good ability to interact with other
478	proteins, revealed by the fact that the detected interactions were strong when one of the
479	interacting proteins was α -gliadin. We also demonstrated that α -gliadin and LMW-G were
480	able to interact with themselves in this yeast two-hybrid context. Negative controls were
481	performed to check that proteins were not able to directly interact with the GAL4 activation
482	or binding domain. Thus, interactions tested by the yeast two-hybrid system reinforced the
483	possible interaction between gliadins and LMW-G in PBLS, as suggested by co-localisation
484	experiments with confocal microscopy.
485	
486	
487	
488	
489	
490	
491	
492	
493	
494	
495	
496	
497	
498	
499	
500	
501	
502	
503	

504 **Discussion**

505

506 We demonstrated that wheat α -gliadin and LMW-G fused to GFP are stably expressed in non-507 seed tissue, indicating that intrinsic molecular properties of these proteins are involved in ER 508 retention and PBLS biogenesis. This result was also found in the case of the expression of γ -509 gliadin (Francin-Allami et al. 2011), HMW-glutenin (Saumonneau et al. 2011) and y-zein 510 (maize storage protein) (Randall et al. 2005) in tobacco leaves. In addition, ER retention of 511 LMW-G was also demonstrated in tobacco protoplasts (Lombardi et al. 2009). Both α-gliadin 512 and LMW-G have a repeated proline-rich N-terminal domain and a more hydrophobic 513 disulphide-rich domain, like the majority of wheat prolamins. As previously suggested, these 514 particular domains are both probably involved in prolamin trafficking. It has been proposed 515 that the hydrophobicity and disulphide bond formation promote specific interactions that 516 result in the formation of large self-assemblies that are responsible for retention in ER and PB 517 formation (Kawagoe et al. 2005; Pompa and Vitale 2006). The isolated C-terminal domain of 518 wheat γ -gliadin in fusion with GFP was retained and was able to form PBLS when expressed 519 in tobacco leaves or BY-2 cells (Francin-Allami et al. 2011). Based on site-directed 520 mutagenesis of prolamin cysteine residues, the critical role of specific cysteines for PB 521 formation was demonstrated for maize γ -zein (Llop-Tous et al. 2010).

522 It has been shown that the N-terminal proline-rich repeated domain of prolamins participates 523 in ER retention and PB formation in maize (Geli et al. 1994; Llop-Tous et al. 2010) and wheat 524 (Francin-Allami et al. 2011), although the repeated motif sequences of γ -zein are different 525 from those of wheat prolamins. A minimal repeated motif sequence is required for PB 526 induction. For example, the deletion of 105 amino acids from the repeated sequence of the 527 HMW-glutenin fused to GFP reduces the ability of the glutenin to form PBLS in the ER 528 (Saumonneau et al. 2011). The ability of a hydrophobic elastin-like protein (ELP) fusion to 529 induce PB formation in plant leaves was recently shown, indicating the generally powerful 530 impact of repeated motif sequences on PB formation for heterologous expression (Conley et 531 al. 2009; Saumonneau et al. 2011).

532

533 In contrast to gliadins, glutenins form intermolecular disulphide bonds. The LMW-G 534 sequence is very similar to monomeric α and γ -gliadins, except that it contains two additional 535 cysteine residues available for interchain disulphide formation. In tobacco cells, gliadin and 536 glutenin can be retained in the ER and form PBLS. However, we showed that LMW-G-GFP 537 was less extensively and more slowly degraded when expressed in BY-2 cells. This could be 538 linked to the presence of these two supplementary cysteine residues and the possibility of 539 LMW-G to form intermolecular bonds. It was previously shown that a fusion between the 540 Phaseolus vulgaris vacuolar storage protein, phaseolin, and the N-terminal half of the Zea 541 mays prolamin, γ -zein, forms interchain disulphide bonds that facilitate the formation of ER-542 located protein bodies (Pompa and Vitale 2006). Regarding the transient expression in 543 tobacco leaves or stable transformation of BY-2 suspension cells, the quantitative data do not 544 make it possible to distinguish a significant difference in PBLS formation between α -gliadin 545 and LMW-G. However, we noted that in BY-2 cells, the amount of PBLS tends to decrease 546 with the age of subculturing. Although α -gliadin was more rapidly degraded with the release of GFP in the vacuole, more PBLS were observed at the exponential phase growth compared 547 548 to the LMW-G-GFP expressing cells, where fluorescence was preferentially in the ER 549 network. Although it seems difficult to directly link the quantity of PBLS to the degradation 550 of prolamins and the release of GFP in the vacuole, this result suggested that aggregated 551 prolamins in PBLS could be more easily degraded in the vacuole than prolamins localised in 552 the ER network, but this remains to be proven.

In wheat endosperm, prolamins are expressed in abundance. Protein concentration may play an important role in prolamin accumulation and PB formation. This is probably the reason why zein-GFP expressed in tobacco was not assembled into stable PBs, whereas when it was expressed in a higher concentration, it was stably retained in the ER and forms PBs (Foresti et al. 2008; Llop-Tous et al. 2010). In this case, a double 35S promoter was used to allow a high expression of α -gliadin or LMW-G in tobacco cells in order to mimic the strong expression of prolamin in wheat endosperm cells.

560

561 Molecular chaperones such as BiP and PDI are involved in ER quality control, and are known 562 to increase in cells under ER stress (Vitale and Ceriotti 2004). Several studies have 563 demonstrated that BiPs are involved during storage protein synthesis and stress response (Hatano et al. 1997; Muench et al. 1997; Takaiwa et al. 2009). In addition to the intrinsic 564 565 prolamin properties and their expression level, molecular chaperones could play an important 566 role in ER retention and PB formation (Levanony et al. 1992; Muench et al. 1997; Saito et al. 567 2009). It was suggested that the interaction of the ER luminal BiP with zein proteins could 568 contribute to their stability and the ability to form protein bodies (Randall et al. 2005). In our 569 study, immunoblotting revealed an increase of the BiP expression level in tobacco cells

570 transformed with α -gliadin or LMW-G, compared to the basal BiP expression level of non-571 transformed cells. Therefore, as previously reported, BiP seems to participate in the 572 accumulation of prolamins in the heterologous tobacco cells. In addition to assist in protein 573 folding, BiP participates in the protein degradation process known as ER-associated 574 degradation (ERAD). In this case, BiP expression decreased according to the days of 575 subculturing in transformed BY-2, which is concomitant to the degradation of the prolamin 576 fusions. Differential centrifugation indicated that a part of the BiP in BY-2 cells expressing α-577 gliadin-GFP was found in the vacuolar fraction. These results imply that BiP could contribute 578 to the degradation process of α -gliadin or LMW-G-GFP constructs and their transport to the 579 vacuole of tobacco cells, as previously demonstrated for other ER-resident protein 580 degradation (Tamura et al. 2004; Pimpl et al. 2006). Further experiments would have to be 581 carried out to determine the role of BiP and other folding proteins such as PDI on the 582 retention and accumulation of prolamins. Moreover, it was demonstrated that ER protein 583 aggregates expressed in transgenic cultured cells are degraded by autophagy when cells reach 584 the stationary phase (Tamura et al. 2004; Toyooka et al. 2006). The degradation of α -gliadin 585 or LMW-G in BY-2 cells could also be the result of an autophagy mechanism. However, 586 neither ERAD nor autophagy processes involved traffic through the Golgi apparatus, in 587 contrast with the observation made in this study for the degradation of α -gliadin-GFP and 588 LMW-G-GFP in BY-2 cells. The processing of α -gliadin-GFP and LMW-G-GFP could 589 involve an alternative pathway of vacuolar delivery via a Golgi-dependent transport, which 590 also implies the BiP chaperone (Frigerio et al. 2001; Pimpl et al. 2006).

591

592 Through the co-localisation experiment, we demonstrated that α -gliadin and LMW-G were 593 found in the same PBLS after transient infiltration in epidermal tobacco cells, and seemed to 594 be homogeneously distributed in these protein bodies. This was consistent with results 595 previously reported in wheat seed by immunostaining (Loussert et al. 2008; Tosi et al. 2009). 596 However, this does not exclude the possibility that differential patterns of distribution of the 597 seed storage prolamins exist in endogenous wheat endosperm tissue, as was recently 598 demonstrated (Tosi et al. 2009, 2011). We demonstrated that all prolamins were able to 599 interact with each other in a yeast two-hybrid assay. However, in this yeast two-hybrid 600 system, protein interactions take place in a reducing environment, which is not totally 601 appropriate to permit the formation of intrachain disulphide bonds, which could lead to a 602 misfolding (Orsi et al. 2001). In vivo experiments should be assessed in order to confirm

these interactions in an appropriate environment context, in particular, to highlight the role of inter- and intrachain disulphide bonds in the trafficking of gliadins and glutenins. It would also be important to determine which part of the proteins contribute to the interaction in order to better understand the molecular mechanisms involved in the prolamin assembly formation.

608 To our knowledge, this is the first time that a LMW-G was fused to GFP and expressed in a 609 plant model. Certainly due to the numerous repeated motifs and disulphide bonds along the 610 sequences, prolamins, and particularly glutenins, are difficult to manipulate at the genetic 611 level. We recently investigated the trafficking of high-molecular-weight glutenin fused to 612 GFP in tobacco cell suspension BY-2, and we demonstrated its retention in ER and its ability 613 to form PBLS (Saumonneau et al. 2011). The role of the repeated and cysteine-rich domains 614 of γ -gliadin was explored using a similar strategy, leading to the conclusion that tobacco cells 615 are a good model for studying atypical wheat prolamin trafficking with fluorescent protein 616 fusions (Francin-Allami et al. 2011). Our study was focused on wheat LMW-glutenin and αgliadin, which are two major types of wheat prolamins, and demonstrated their trafficking in 617 618 tobacco cells. Taken together, these studies provide general information on the trafficking 619 pathway of all wheat seed storage prolamins.

- 620
- 621

622 Supplementary material

623

624 Supplementary data are available at Plant Cell Reports online.

625 **Supplementary Fig. S1**. Nucleotide and amino acid sequences of α-gliadin used in this study.

626 **Supplementary Fig. S2**. Nucleotide and amino acid sequences of LMW-G used in this study.

Supplementary Movie S3. α-gliadin protein body-like structures (α-gliadin-GFP in green)
 moved throughout the cell along the ER network and are not co-localised with Golgi bodies

 $629 \qquad (ST-mRFP_1 in red).$

630 Supplementary Movie S4. Movie showing the absence of PBLS movement after Latrunculin631 B treatment.

632 Supplementary Fig. S5. No cell growth difference was detected between the non633 transformed BY-2 and BY-2 expressing α-gliadin-GFP or LMW-G-GFP.

- 634
- 635

636 Acknowledgements

We are extremely grateful to Dominique Bozec (Nantes University, France) for culturing tobacco plants used for agrobacterium infiltration, Camille Alvarado (BIBS Platform, INRA Nantes, France) for technical assistance with TEM, Chris Hawes and Imogen Sparkes (Oxford Brookes University, UK), and to Lionel Gissot (Plateforme de Cytologie et d'Imagerie Végétale, INRA Versailles-Grignon, France) for providing some of the vectors and markers used in this study. BY-2 cells were kindly provided by Chris Hawes' laboratory, and anti-BiP antibodies were kindly provided by Ikuko Hara-Nishimura (Kyoto University, Japan).

References

- Altschuler Y, Rosenberg N, Harel R, Galili G (1993) The N- and C-terminal regions regulate the transport of wheat γ-gliadin through the endoplasmic reticulum in Xenopus oocytes. Plant Cell 5:443-450
- Banc A, Desbat B, Renard D, Popineau Y, Mangavel C, Navailles L (2009) Exploring the interactions of gliadins with model membranes: effect of confined geometry and interfaces. Biopolymers 91:610-622
- Bietz JA, Huebner FR, Sanderson JE, Wall JS (1977) Wheat gliadin homology revealed through N-terminal amino-acid sequence-analysis. Cereal chemistry 54:1070 -1083
- Coleman CE, Herman EM, Takasaki K, Larkins BA (1996) The maize gamma-zein sequesters alpha-zein and stabilizes its accumulation in protein bodies of transgenic tobacco endosperm. Plant Cell 8:2335-45
- Conley AJ, Joensuu JJ, Menassa R and Brandle JE (2009) Induction of protein body formation in plant leaves by elastin-like polypeptide fusions. BMC Biol 7:48
- Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462-469
- Foresti O, De Marchis F, De Virgilio M, Klein EM, Arcioni S, Bellucci M and Vitale A (2008) Protein domains involved in assembly in the endoplasmic reticulum promote vacuolar delivery when fused to secretory GFP, indicating a protein quality control pathway for degradation in the plant vacuole. Mol Plant 1:1067-76
- Francin-Allami M, Saumonneau A, Lavenant L, Bouder A, Sparkes I, Hawes C, Popineau Y (2011) Dynamic trafficking of wheat γ-gliadin and of its structural domains in tobacco cells, studied with fluorescent protein fusions. J Exp Bot 62:4507-20
- Galili G, Altschuler Y and Levanony H (1993) Assembly and transport of seed storage proteins. Trends Cell Biol 3:437-42
- Geli MI, Torrent M, Ludevid D (1994) Two Structural Domains Mediate Two Sequential Events in γ-Zein Targeting: Protein Endoplasmic Reticulum Retention and Protein Body Formation. Plant Cell 6:1911-1922
- Gomord V, Fitchette AC, Denmat LA, Michaud D, Faye L (1998) Production of foreign proteins in tobacco cell suspension culture. In Cunningham C, Porter AJR, eds. Methods in Molecular Biotechnology. Totowa, NJ, Humana Press 3:155-164
- Hara-Nishimura II, Shimada T, Hatano K, Takeuchi Y, Nishimura M (1998) Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10:825-836
- Hatano K, Shimada T, Hiraiwa N, Nishimura M, Hara-Nishimura I (1997) A rapid increase in the level of binding protein (BiP) is accompanied by synthesis and degradation of storage proteins in pumpkin cotyledons. Plant Cell Physiol 38:344-51
- Karimi M, De Meyer B and Hilson, P (2005) Modular cloning in plant cells. Trends Plant Sci 10:103–105
- Kawagoe Y, Suzuki K, Tasaki M, Yasuda H, Akagi K, Katoh E, Nishizawa NK, Ogawa M, Takaiwa F (2005) The critical role of disulfide bond formation in protein sorting in the endosperm of rice. Plant Cell 17:1141-53
- Kim CS, Woo Ym YM, Clore AM, Burnett RJ, Carneiro NP, Larkins BA (2002) Zein protein interactions, rather than the asymmetric distribution of zein mRNAs on endoplasmic reticulum membranes, influence protein body formation in maize endosperm. Plant Cell. 14:655-72
- Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 15:680-5
- Levanony H, Rubin R, Altschuler Y and Galili G (1992) Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol 119:1117-28
- Li X, Wu Y, Zhang DZ, Gillikin JW, Boston RS, Franceschi VR, Okita TW (1993) Rice prolamine protein body biogenesis: a BiP-mediated process. Science 12:1054-1056
- Llop-Tous I, Madurga S, Giralt E, Marzabal P, Torrent M, Ludevid MD (2010) Relevant elements of a maize gamma-zein domain involved in protein body biogenesis. J Biol Chem 285:35633-44
- Lombardi A, Barbante A, Cristina PD, Rosiello D, Castellazzi CL, Sbano L, Masci S, Ceriotti A (2009) A relaxed specificity in interchain disulfide bond formation characterizes the assembly of a low-molecular-weight glutenin subunit in the endoplasmic reticulum. Plant Physiol 149:412-23
- Loussert C, Popineau Y and Mangavel C (2008) Protein bodies ontogeny and localization of prolamin components in the developing endosperm of wheat caryopses. J. Cereal Sc 47:445-456
- Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD (2008) Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J 56:169-79

Muench D.G, Wu Y, Zhang Y, Li X, Boston RS and Okita TW (1997) Molecular cloning, expression and subcellular localization of a BiP homolog from rice endosperm tissue. Plant Cell Physiol 38:404-12

- Nagamine A, Matsusaka H, Ushijima T, Kawagoe Y, Ogawa M, Okita TW, Kumamaru T (2011) A role for the cysteine-rich 10 kDa prolamin in protein body I formation in rice. Plant Cell Physiol 52:1003-16
- Parker ML and Hawes CR (1982) The Golgi-apparatus in developing endosperm of wheat (triticum aestivum L). Planta 154:277-283
- Payne, PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annual Review of Plant physiology and Plant Molecular Biology 38:141-153
- Pompa A, Vitale A (2006) Retention of a bean phaseolin/maize gamma-Zein fusion in the endoplasmic reticulum depends on disulfide bond formation. Plant Cell 18:2608-21
- Randall JJ, Sutton DW, Hanson SF and Kemp JD (2005) BiP and zein binding domains within the delta zein protein. Planta 221:656-66
- Rosenberg N, Shimoni Y, Altschuler Y, Levanony H, Volokita M, Galili G (1993) Wheat (Triticum aestivum L.) γ-Gliadin Accumulates in Dense Protein Bodies within the Endoplasmic Reticulum of Yeast. Plant Physiol 102:61-69
- Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS (2011) Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 2011:769-84
- Rubin R, Levanony H and Galili G (1992) Evidence for the Presence of Two Different Types of Protein Bodies in Wheat Endosperm. Plant Physiol 99:718-724
- Saito Y, Kishida K, Takata K, Takahashi H, Shimada T, Tanaka K, Morita S, Satoh S, Masumura T (2009) A green fluorescent protein fused to rice prolamin forms protein body-like structures in transgenic rice. J Exp Bot 60, 615-627
- Saumonneau A, Rottier K, Conrad U, Popineau Y, Guéguen J, Francin-Allami M (2011) Expression of a new chimeric protein with a highly repeated sequence in tobacco cells. Plant Cell Rep 30:1289-302
- Shewry PR, Tatham AS (1997) Disulphide bonds in wheat gluten proteins. Journal of Cereal Science 25:207-227
- Shy G., Ehler L, Herman E and Galili G (2001) Expression patterns of genes encoding endomembrane proteins support a reduced function of the Golgi in wheat endosperm during the onset of storage protein deposition. J Exp Bot 52:2387-8
- Shimoni Y, Galili G (1996) Intramolecular disulfide bonds between conserved cysteines in wheat gliadins control their deposition into protein bodies. J Biol Chem 271:18869-18874
- Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019-2025
- Tamura K, Yamada K, Shimada T, Hara-Nishimura I (2004) Endoplasmic reticulum-resident proteins are constitutively transported to vacuoles for degradation. Plant J 39:393-402
- Takemoto Y, Coughlan SJ, Okita TW, Satoh H, Ogawa M, Kumamaru T (2002) The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol 128:1212-22
- Tosi P, Parker M, Gritsch CS, Carzaniga R, Martin B and Shewry PR (2009) Trafficking of storage proteins in developing grain of wheat. J Exp Bot 60:979-91
- Tosi P, Gritsch CS, He J, Shewry PR (2011) Distribution of gluten proteins in bread wheat (Triticum aestivum) grain. Ann Bot 108:23-35
- Tsegaye Y, Richardson CG, Bravo JE, Mulcahy BJ, Lynch DV, Markham JE, JaworskiJG, Chen M, Cahoon EB, Dunn TM (2007) Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long chain base phosphate. J Biol Chem 282:28195-206
- Vitale A, Ceriotti A (2004) Protein quality control mechanisms and protein storage in the endoplasmic reticulum. A conflict of interests? Plant Physiol 136:3420-3426
- Vitale A and Galili G (2001) The endomembrane system and the problem of protein sorting. Plant Physiol 125:115-8

Figure legends

Figure 1 Schematic representation of the α -gliadin and LMW-glutenin constructs used in the study. The Gateway recombination system was used to replace the CmR/*ccd*B vector cassette by the α -gliadin or LMW-glutenin cDNA, in order to construct C-terminal GFP/mRFP₁ fusions. All fusion constructs were placed under the control of the cauliflower mosaic virus double 35S promoter (2X35S) and the nopaline synthase terminator (T). Repeats (light grey box): N-terminal repeated sequence; C-rich (dark grey box): C-terminal cysteine-rich sequence; GFP/mRFP₁: green fluorescent protein/monomeric red fluorescent protein; black square: ER signal peptide; B1/B2/R1/R2: recombination sites; CmR/ccdB: Chloramphenicol resistance gene/*ccd*B gene; short lines: cysteine residues. The diagram is not drawn to scale.

Figure 2 Subcellular localisation of α -gliadin and LMW-glutenin fluorescent fusions in tobacco epidermal cells. Confocal microscope images showing GFP fusion proteins (green) expressed alone or coexpressed with mRFP₁ fusion markers (red) in tobacco leaf epidermal cells, 2-3 days after infiltration with Agrobacterium suspension cultures. Images of cells expressing α -gliadin-GFP (green) (a); α -gliadin-GFP (green) coexpressed with an mRFP₁-DPL1 ER marker (red) and merged image (b); α -gliadin-GFP (green) coexpressed with a Golgi marker, ST-mRFP₁ (red), and merged image (c); LMW-glutenin-GFP (green) (d); LMW-glutenin-GFP (green) coexpressed with an mRFP₁-DPL1 ER marker (red) and merged image image (e); LMW-glutenin-GFP (green) coexpressed with a mRFP₁-DPL1 ER marker (red) and merged image (e); LMW-glutenin-GFP (green) coexpressed with a Golgi marker, ST-mRFP₁ (red) and merged image (f). Scale bars = 10 µm.

Figure 3 Classification of the transformed cells according to the protein body-like structures they contain. Analysed cells were classified into three categories according to the density of prolamin protein body-like structures (PBLS) within the ER. The analysis was generated from confocal sections of transformed cells. The first category corresponds to cells containing a high PBLS density (more than 5 puncta/10 μ m²); the second category corresponds to cells containing a low PBLS density (less than 5 puncta/10 μ m²); and the third category corresponds to cells containing a low PBLS. The size of PBLS was taken into account in cell classification. Cells were provided from at least three individual transformation experiments in tobacco leaf cells or BY-2 cells, transformed with each of the two constructs. A total of about 50 cells were examined for each transformation. The data were collected from transformed BY-2 cells comprised between 3 to 7 days of subculturing. The values are expressed as a percentage.

Figure 4 Immunoblotting from tobacco leaf epidermal cells expressing α -gliadin-GFP and LMW-glutenin-GFP. An immunoblot was performed with anti-GFP antibodies (a) or anti-BiP antibodies (b). (M): protein marker; (1): tobacco leaf expressing α -gliadin-GFP; (2): tobacco leaf expressing LMW-glutenin-GFP; (3): non-infiltrated tobacco leaf.

Figure 5 Electron micrographs of tobacco leaf epidermal cells expressing fused prolamins. Electron microscope images representing tobacco leaf epidermal cells 2-3 days after infiltration with Agrobacterium suspension cultures. Electron micrographs show areas in leaf epidermal cells expressing α -gliadin-GFP (a) or LMW-G-GFP (b) where PBLS (arrows) is demonstrated next to conventional rough ER. CW: cell wall; ER: endoplasmic reticulum; V: vacuole; C: cytosol. Scale bars = 0.5 µm.

Figure 6 Subcellular localisation of α -gliadin and LMW-glutenin fused to GFP in stable transgenic BY-2 cells. Subcellular localisation of α -gliadin-GFP or LMW-glutenin-GFP expressed in BY-2 cells 3, 5, 7 days or 10 days after subculturing. Scale bar = 20 µm.

Figure 7 Immunoblotting from tobacco cell suspension BY-2 expressing α -gliadin-GFP or LMW-glutenin-GFP. α -gliadin-GFP and GFP core, resulting from the same immunoblot, were revealed by an anti-GFP antibody from BY-2 cells expressing α -gliadin-GFP 2, 4 or 7 days after subculturing (a). LMW-glutenin-GFP and GFP core, resulting from the same immunoblot, were revealed by an anti-GFP antibody from BY-2 cells expressing LMW-glutenin-GFP 2, 4, 7 or 10 days after subculturing (b). BiP was revealed with an anti-BiP antibody (Hatano et al. 1997) (a, b). nt: non-transformed BY-2 cells. Immunoblotting performed with anti-BiP antibody from cells expressing α -gliadin-GFP 2, 4, 7 and 10 days after subculturing (c). Immunoblotting performed with anti-BiP antibody from 4-day-old BY-2 cells expressing homogenate subjected to differential centrifugation as previously described (Tamura et al. 2004) (d). P1: pellet fraction after a 1000 g centrifugation of the homogenate; P10: pellet fraction after a 1000 g centrifugation of the fraction.

(microsomal fraction) after a 100 000 g centrifugation of the S10 supernatant; S100: 100 000 g supernatant (soluble vacuolar fraction).

Figure 8 α and γ -gliadins and LMW-glutenin fused to fluorescent protein locate to the same protein body-like structures in tobacco leaf epidermal cells. Confocal images of tobacco leaf epidermal cells transiently expressing LMW-glutenin-GFP (green), α -gliadin-mRFP₁ (red) and merge (a). Confocal images of tobacco leaf epidermal cells transiently expressing LMWglutenin-GFP (green), γ -gliadin-mRFP₁ (red) and merge (b). Confocal images of tobacco leaf epidermal cells transiently expressing α -gliadin-GFP (green), γ -gliadin-mRFP₁ (red) and merge (c). Constructs were infiltrated and imaged 3 days after inoculation. Scale bars = 10 µm.

Figures

Figure 1

LMW-G-GFP

Figure 2

Figure 3

100% T				
90% -				
80% -				
70% -				
60% -				
50% -				
40% -				
30% -				
20% -		inininin		
10% -				
0%	leaves c⊱g	liadin BY-2	leaves LM	WG BY-2
■ high ER puncta density (presence of puncta>1µm)	26,2	6,4	22,7	5,5
high ER puncta density (puncta<1µm)	55	31	28,4	16,7
□ low ER puncta density (presence of puncta>1µm)	12,3	45,6	37,2	38,9
Iz low ER puncta density (puncta<1µm)	5,3	13,8	10,4	30,5
without apparent ER puncta	1,2	3,2	1,3	8,4

Figure 4

Figure 5

Figure 8

Tables

 Table 1 Classification of transformed BY-2 cells according to their PBLS amount and vacuolar fluorescence during culture stages

Days	cells with hig	h PBLS density	cells with low	PBLS density	cells with	out PBLS	vacuole flu	orescence
	(a)			b)	(0	;)	(0	4)
of subculturing	α-gliadin	LMW-G	α-gliadin	LMW-G	α-gliadin	LMW-G	α-gliadin	LMW-G
3 d	85	63	14	25	1	12	0	0
5 d	15	13	77	72	8	15	73	2
7 d	2	5	62	43	36	52	98	56
10 d	0	0	0	9	100	91	100	91

Analysed cells were classified into three categories according to the density of PBLS at different stages of subculturing. The first category corresponds to cells with high PBLS density (more than 5 puncta/10 μ m²) (a); the second category corresponds to cells containing a low PBLS density (less than 5 puncta/10 μ m²) (b); and the third category corresponds to cells containing no apparent PBLS (c). In addition cells were also classified according to the vacuolar fluorescence they contain during subculturing stages (d). Cells provided from at least three individual transformation experiments in BY-2 cells transformed with each of the two constructs. A total of about 20 cells were examined for each transformation and culture stage. The values are expressed as a percentage.

Table 2 The interaction between α -gliadin, γ -gliadin and LMW-glutenin was performed using
a yeast two-hybrid assay.

BD	β⊦Gal
∝gliadin	++
Ƴgliadin	+
LMWG	+
-	-
LMWG	-
∝gliadin	++
Ƴgliadin	++
LMWG	++
∝gliadin	-
-	-
	BD c⊷gliadin y•gliadin LMWG - LMWG c⊷gliadin y•gliadin LMWG c⊷gliadin

Column labelled "AD": each prolamin was fused to the activator domain of GAL4 using the pACT prey vector; column labelled "DB": each prolamin was fused to the binding domain of GAL4 using the pAS2.1 bait vector. Negative controls were performed by interacting constructs with empty prey or bait vectors (-). Results from β -galactosidase activity are summarised in the " β -Gal" column, and marked with +, ++, or – in accordance with the blue coloration intensity.