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Abstract

Background: Culicoides imicola KIEFFER, 1913 (Diptera: Ceratopogonidae) is the principal vector of Bluetongue
disease in the Mediterranean basin, Africa and Asia. Previous studies have identified a range of eco-climatic
variables associated with the distribution of C. imicola, and these relationships have been used to predict the
large-scale distribution of the vector. However, these studies are not temporally-explicit and can not be used to
predict the seasonality in C. imicola abundances. Between 2001 and 2006, longitudinal entomological surveillance
was carried out throughout Italy, and provided a comprehensive spatio-temporal dataset of C. imicola catches in
Onderstepoort-type black-light traps, in particular in Sardinia where the species is considered endemic.

Methods: We built a dynamic model that allows describing the effect of eco-climatic indicators on the monthly
abundances of C. imicola in Sardinia. Model precision and accuracy were evaluated according to the influence of
process and observation errors.

Results: A first-order autoregressive cofactor, a digital elevation model and MODIS Land Surface Temperature (LST)/
or temperatures acquired from weather stations explained ~77% of the variability encountered in the samplings
carried out in 9 sites during 6 years. Incorporating Normalized Difference Vegetation Index (NDVI) or rainfall did not
increase the model's predictive capacity. On average, dynamics simulations showed good accuracy (predicted vs.
observed r corr = 0.9). Although the model did not always reproduce the absolute levels of monthly abundances
peaks, it succeeded in reproducing the seasonality in population level and allowed identifying the periods of low
abundances and with no apparent activity. On that basis, we mapped C. imicola monthly distribution over the
entire Sardinian region.

Conclusions: This study demonstrated prospects for modelling data arising from Culicoides longitudinal
entomological surveillance. The framework explicitly incorporates the influence of eco-climatic factors on
population growth rates and accounts for observation and process errors. Upon validation, such a model could be
used to predict monthly population abundances on the basis of environmental conditions, and hence can
potentially reduce the amount of entomological surveillance.

Keywords: Spatial ecology, Infectious disease, Remote-sensing, Dynamic model, Longitudinal entomological
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Background
Culicoides imicola, one of the major Bluetongue disease
(BT) and African horse sickness (AHS) vectors in the
old world [1-3] has probably been the most investigated
Culicoides species over the last decades. A good know-
ledge of its ecology helps in quantifying potential disease
transmission, and assessing the risk of resurgence or ex-
pansion of BT/AHS. Therefore, a large number of stud-
ies have investigated the spatio-temporal distribution of
C. imicola in the old world [4-10]. Furthermore, since
the establishment of BT in southern Europe in 2000
[11], systematic entomological samplings were carried
out in many countries in order to monitor the vector
populations. An important number of descriptive studies
followed [12-19]. Long-term and wide-scale surveys also
provided adequate datasets that have supported predict-
ing the vector distribution at large scale as a function of
a variety of environmental predictors ([20-32], summed
up in Table 1). However, the interpretation of the results
across those studies is not straightforward (Table 1).
First, because these studies used various modelling
approaches, scale and set of environmental predictors.
Second, because the correspondence between the timing
of the catches and timing of the observation of eco-
climatic variables was variable. As a consequence, even
Table 1 Summary of the risk studies on Culicoides imicola dis

References Extent Resolution Dependent
variable

Statistica
model

[21,22] Morocco,
Morocco/
Iberia

Not given Abundance Linear regr

[23] Iberia Size of sampled sites Pres./abs. Logistic
regression

[24] Iberia,
Morocco

8 km x 8 km Abundance Discrimina
analysis

[25] Italy,
Calabria

Size of sampled sites Pres./abs. Logistic
regression

[26] Portugal 1 km x 1 km Both Discrimina
analysis

[27] Italy 10 km x 10 km Pres./abs. Multiple lo
regression

[28] Sicily 1 km x 1 km Pres./abs. Stepwise
discrimina
analysis

[29] Italy Cell size = 0.0387° Pres./abs. Additive m

[30] Italy 250 m x 250 m Both Discrimina
analysis

[31] Spain 1 km x 1 km (sometimes
8 km x8km)

Pres./abs. Logistic
regression

[32] Spain UTM 10 km x 10 km Abundance GLM neg.
variation
partitionin

DEM, Digital Elevation Model; MIR, Middle Infrared Radiance; VPD, Vapour Pressure
2004 is also provided in Baylis et al. [20].
if the accuracy of the distribution models was found to
be very good, the lack of consistency across study pre-
dictions in some regions, and the difficulty in interpret-
ing the relationships that were found, preventing the use
of these models for predicting the species distribution
outside of the spatio-temporal range of the training data.
In this study, the set of eco-climatic predictors used to

predict C. imicola abundances was restricted to a few vari-
ables measured either by weather stations (temperature,
rainfall) or by remote sensing (Land Surface Temperature
(LST), Normalized Difference Vegetation Index (NDVI)).
In contrast to previous studies, these indices were tested
against C. imicola population using a spatially and tem-
porally explicit model, i.e. each catch was statistically
tested against the eco-climatic conditions that were mea-
sured in the matching trapping site, and previous month.
The aim of the study was therefore (i) to describe the in-
fluence of these eco-climatic indicators on the monthly
abundances of C. imicola measured in Sardinia from 2001
to 2006 and (ii) to predict the observed spatio-temporal
dynamics on that basis. The applied perspective of this re-
search consisted in introducing a simple, but yet robust
method to analyse data collected through longitudinal net-
works of entomological surveillance and to map their
abundances both in space and time.
tribution in the Mediterranean basin since 1998

l Cofactors selected through the analysis External
evaluation

ession NDVI (min), windspeed No.

Mean monthly T° (min & max), number of months in
the year with mean T° exceeding 12.5 °C

No.

nt 8-variables model with DEM and Fourier-transformed
NDVI, MIR, VPD and LST (cf. Table 2)

No.

T° (min & max) No.

nt DEM and Fourier-transformed LST, NDVI, MIR and
TAIR including seasonal cycles

No.

gistic Mean altitude and mean annual daily min T° and
relative humidity

No.

nt
10-variables model with Fourier-transformed LST,
NDVI, MIR and TAIR (cf. p93)

No.

odel Elevation, slope, aridity index, landuse, animal
density, soil type, T° and NDVI for the 4 seasons

No.

nt Min. T°, aridity index, altitude, slope, NDVI and forest
cover

No.

Mean NDVI, sun index, interpolated precipitations
and T° and their seasonality

Yes.

bin. &

g

21-variables model with spatial location, topo-
climatic variable, domestic and wild hosts, soil, NDVI
and seasonality

No.

Deficit; TAIR, Air temperature. NB: A review for some studies that occurred until
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Methods
Data
Between 2001 and 2007, more than 200 permanent
Onderstepoort-type black-light traps were operated
weekly in Italy in accordance with standardized surveil-
lance procedures of the National Reference Centre for
Exotic Diseases [16]. Culicoides imicola is not present
everywhere in Italy, and can be considered to be en-
demic in Sardinia region [13,33]. Since the present study
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Figure 1 Study area. C. imicola population dynamics were studied on the
at the level of 9 permanent light-traps from 2001 to 2006 (black dots). Dur
31 weather stations (grey crosses). Data gathered outside the study area (m
the model built outside its range of training (open circles).
aimed to better understand factors affecting C. imicola
seasonality, 9 sites from Sardinia were selected (Figure 1,
black dots). In order to filter the high variability in C.
imicola trap catches, data were aggregated for each site
by month and maximum abundances were retained, as
in previous studies [34]. In order to fill existing gaps,
linear regulations implemented in the R library PAS-
TECS [35] were applied, and 49 observations were filled
that way. In complement, eleven sites distributed in
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basis of weekly samplings carried out in Sardinia (bottom left region)
ing the same period, meteorological data were collected at the level of
ainly Tuscany, upper right region on the top) were used to evaluate
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Lazio (1 site) and Tuscany (10 sites) (Figure 1, open
dots) were used to evaluate the extrapolation capacity of
a selected set of models.
The model aimed to compare two sets of predictors in

their potential to predict C. imicola seasonality. The first
set was made of data collected in weather stations (WS).
These data give a good measure of the conditions actually
observed on the ground over time, but their relatively lim-
ited number does not allow the quantification of spatial
variations and heterogeneity. The second set was made of
satellite remotely sensed variables. These measures can be
affected by various processes taking place between the
ground and the sensor, but they have the advantage of bet-
ter capture of the spatial distribution of the variable of
interest, and in doing so, have a good chance to provide an
accurate estimate at the locations of the traps.
Meteorological data were obtained from the Italian

Air Force Meteorological Service. They were collected
between 2000 and 2007 in 105 weather stations distrib-
uted across Italy. Eleven of them are found in Sardinia
and 21 cover Tuscany and Lazio (Figure 1). Daily obser-
vations include temperature (min, max,), rainfall (cumu-
lated value in the first half (12 hours) of the day,
cumulated value in the second half (12 hours) of the
day), relative humidity (RH), wind direction and inten-
sity. After an aggregation by month, mean temperatures,
mean and cumulated rainfalls were used in our analyses.
These data were interpolated using ordinary kriging
[36]. The empirical semivariogram was modelled using
a circular model for temperature and a spherical model
for rainfall with initial sill, range and nugget fixed to 8.5,
100 000 and 0.1 respectively. Goodness-of-fit of the
semivariogram model was evaluated after leave-one-out
cross validation [36]. Output resolution was set as 0.01
decimal degree in accordance with the resolution pro-
vided by RS products.
Remotely-sensed eco-climatic variables included the

Land Surface Temperature and Normalized Difference
Vegetation Index. Day-time and night-time LST pro-
ducts (MODIS Terra MOD11A2) composited at an 8-
day interval and the NDVI (MODIS Terra MOD13A2)
composited at an 16-day interval were downloaded
from the Land Processes Distributed Active Archive
Centre. Additionally, the surface reflectance data
(MODIS Terra MOD9A1) composited at a 16-day
interval were also downloaded. These data were mo-
saicked and resampled from the original metric sinus-
oidal projection system to decimal degrees (WGS84)
using a nearest-neighbour resampling and with an out-
put resolution of 0.01 decimal degrees. The images
were then subjected to a spline interpolation to remove
the missing gap [37].
These data were aggregated by month, keeping the

minimum, maximum and mean values.
Model
The discrete-time population model was built in three
steps.
The first step consisted in building an autoregressive

model where the abundance of populations was predicted
using a linear combination of (i) the population in the pre-
vious time step (autoregressive term) and (ii) eco-climatic
variables measured the month before (equation 1).

Ns;t ¼ N μobs; σobs
� �

μe aNs;t�1þbVar1þcVar2þ . . .þ zVarn þ Intercept

ð1Þ
where Ns,t and Ns,t-1 are respectively the population
sampled in site s at time t and t-1; Var1, Var2, . . ., Varn are
the eco-climatic predictors; a, b, . . ., z and Intercept are the
model parameters.
In the second step, we assumed that the measured

population abundances can be quantified from equa-
tion 2.

Nt¼ Nt�1 � exp r � Δtð Þ ð2Þ
After the log-transformation of both sides of equa-

tion 2, assuming a constant time interval (in our case a
month) between 2 samples and making the relationship
spatially explicit (time t, site s), equation 2 become:

LnNs;t ¼ LnNs;t�1 þ rs;Δt ð3Þ
One can note that this relationship is very similar to

equation 1. Combining the two approaches, we can as-
sume that the linear relationship found between eco-
climatic variables and the log-transformed abundances
found at time t in site s, corresponds to growth rate
r found in equation 3. The right-hand part of equation 1,
i.e. the intercept and additional cofactors differing from
the autoregressive cofactor, will therefore be considered
as proxies for predicting the monthly increase in popula-
tion. This approach allows more straightforward bio-
logical interpretation of the inclusion of cofactors in the
right-side hand of the linear model. The parameters
were estimated using a Generalized Linear Model
(GLM) and accounting for a normally distributed error
term. This model was initially built to estimate model
coefficients, i.e. the relationship that exists between
population abundances and co-factors, their range of
confidence and the dispersal in residuals.
Finally, we aimed at evaluating how process and obser-

vation error could influence the precision and accuracy
of the model parameters and predictions [38,39]. Be-
cause no prior information on the magnitude of the dif-
ferent sources of observations error in our datasets was
available, we evaluated the influence of several levels of
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observation error ( = 1/2, 1 or 2 times the total variance
found in the whole dataset) on the estimates of model
parameters, the dependence between population abun-
dances at time t and in the previous month (coefficient
of the autoregressive cofactor) and the dispersal in resi-
duals ( = process error).
Based on the parameters identified by the GLM statis-

tical model, the space-time dynamics of C. imicola
populations was simulated by seeding 13 individuals at
t0 (here, March 2001). Population in month t1 was pre-
dicted by applying the GLM model coefficients to the
initial number of individuals seeded and eco-climatic
variables measured in the previous month t0. Population
at time 1 was then used to predict population at time 2,
and the predictions were iterated through the time series
until December 2006. At each time step, both process
and observation error values were added to the pre-
dicted abundance of population. These value were both
sampled from a normal distribution with a zero-mean
and a standard deviation equal to that found in the
model residuals for the process error, and equal to that
of the overall log-transformed catches for the observa-
tion error. The seed value of 13 individuals was chosen
because it was the mean abundance encountered in the
months of March from 2001 to 2006 in Sardinia.The
predictions were repeated over 100 simulations, and
averaged.
Finally, using a similar approach with a seed of 2

individuals in March 2005, simulations were carried
out over the entire spatial domain of Sardinia (extent:
8 to 10°E; 38.8 to 41.4°N) until December 2006. The
approach allowed production of monthly maps of
C. imicola relative abundance at a spatial resolution of
0.01 decimal degree. The maps presented in the
Table 2 Coefficient estimates (with 95% CI) from GLM carried

Coefficients Estimates Pr(>|t|)

RS

Intercept −1.73 *** −

Autoreg 0.70 ***

LST 2.25 ***

LST2 −0.0038 *** −0.0

NDVI −0.13 ns −

Altitude −0.0011 ** −0.0

WS

Intercept −1.66 *** −

Autoreg 0.64 ***

T 0.22 ***

T2 −0.0016 ns −0.0

Rainfall 0.046 p = 0.06 −0.0

Altitude −0.0015 *** −0.00
results section were produced on the basis of 250
bootstraps. For each of the bootstraps, the coefficients
of all terms (constant, autoregressive co-factor and
covariates) were sampled from a normal distribution
of coefficients with mean and standard deviation esti-
mated by the GLM model. The GLM model was finally
applied to Tuscany to test its predictions against the
observed catches.
All analyses were implemented under R [35], using the

packages MASS [40], raster [41], rgdal, PASTECS and
gstat [36].

Results
The GLM coefficients used in the spatio-temporal dynamic
model are presented in Table 2. Most of the explained vari-
ability predicted by the GLM resulted from the inclusion
of an autoregressive term (Table 2; multiple r-squared
r2 = 0.65, p < 0.001), then from temperature (LST,
r2 = 0.25, p < 0.001; or T from WS, r2 = 0.36, p < 0.001).
When combined, the autoregressive cofactor and LST
or WS temperature predicted respectively 75.6% or
75.9% of the total variability. Other co-variables such as
altitude (r2 = 0.16, p < 0.001), rainfall (r2 = 0.01, p < 0.01)
or NDVI (r2 = 0.25, p < 0.001; r2 = 0.70, when tested with
the autoregressive cofactor) had a much lower predictive
power. The correlation coefficients between observations
and GLM predictions based on remote-sensing or wea-
ther stations data were very similar (r corr = 0.87 and
0.88, respectively). Predictions made in Tuscany resulted
in overestimating the populations in most sites where it
was applied (Additional file 1: Figure S1).
The main results of the simulation models are pre-

sented in Figure 2. Simulations had lower predictive
power than the GLM’s (Table 3) and were not able to
out with RS or WS data respectively

95%CI AIC Multiple R2

2.62 −0.85 2165.7 0.766

0.65 0.74

0.18 0.32

058 −0.0018

1.22 0.95

018 −0.00044

2.42 −0.90 2160.2 0.768

0.59 0.68

0.12 0.31

047 0.0012

023 0.095

219 −0.00084



Figure 2 Evaluation of the dynamic models' accuracy and precision. Comparisons among observed C. imicola log-abundances and the
predictions carried out with the population dynamic model (99 simulations in grey and the average is given by black dots), using RS data (A) or
WS data (B).
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reproduce the level of all peaks of measured populations
(Figures 2 and 3). Nevertheless, they succeeded in repro-
ducing the seasonality of the populations (Figure 3). The
predictions of the model also allowed reproducing the
marked difference between C. imicola catches made at
different sites and the extinction that could be observed
in high elevation sites more specifically in Austis, for ex-
ample (Additional file 2: Figure S2 and Additional file 3:
Figure S3).
Increasing the observational error increased the lack

of precision on the estimate of model coefficients
(Additionial file 4: Figure S4) and on process error
(Figure 4). In particular, the average estimate of the
autoregressive cofactor coefficient was most influenced
by observation error, and tended towards zero when ob-
servation error increases (Additionial file 4: Figure S4).
As expected, increasing observational error also affected
process error estimates and the link that exists between
process error and the autoregressive term (Figure 4).
We present two distribution maps of C. imicola pre-

dicted abundances for the month of June 2006 (Figure 5).
There are no apparent important differences in terms of
relative abundances between the predictions made with
RS data in comparison to those built with the WS data.
Both highlighted that abundances are low at high
Table 3 Goodness of fit found for the GLM and the dynamic m

Training model Dynamic model (9

Whole extent (site

Data RS WS RS

Rcorr 0.88 0.88 0.71

RMSE 1.361 1.355 1.97

Indicators of goodness of fits for the dynamic model are also presented on Figure 2
altitudes, and also allowed differentiation of the different
abundance classes within areas of constant elevation. Fi-
nally, a comparison of predicted distribution over time
highlights the months when the highest activity occurred
and the specific areas where this highest activity could
happen.

Discussion
As expected (e.g. see [6], but also Table 1), temperature -
and its quadratic value (for LST)- influenced C. imicola
population abundance. Veronesi et al. showed experi-
mentally that temperature could influence the duration
and survival of sub-adult stages in C. imicola [42]. In
our models, temperature from WS, when tested as a sin-
gle predictor, explained 36% of the variability measured
in the dataset investigated, which is ~10% higher than
MODIS LST variance explanation. This range (from
27 to 36%) is lower than the variability in C. imicola
catches explained on the basis of WS temperature and
LST in previous studies, where values ranging between
34 to 40% were found [9]. Combining temperature with a
first-order autoregressive cofactor increased significantly
the explanatory power of the model.
Whilst the strong effects of temperature and autore-

gressive cofactors were somewhat anticipated, we were
odel run with RS or WS data

9 stochastic realizations)

level) Mean model (regional level)

WS RS WS

0.75 0.9 0.9

1.86 0.84 0.83

.



Figure 3 Seasonal activity of C. imicola during 6 years (9 sites). Grey lines present the result of 99 stochastic simulations with RS data and
accounting for process and observational errors. 95% confidence intervals are presented in black (RS data model) and in blue (WS data model).
Red lines and dots represent respectively mean monthly abundances found in all sites grouped and monthly maximal abundances for each sites.

Rigot et al. Parasites & Vectors 2012, 5:270 Page 7 of 11
http://www.parasitesandvectors.com/content/5/1/270
surprised to find that including NDVI did not substan-
tially improve the predictive power of the model. NDVI
could indeed be believed to improve spatial
predictions by highlighting areas where moisture con-
ditions are more favourable to C. imicola larval stages
[43-46]. In addition, it was previously a variable im-
proving C. imicola distribution models [20]. One pos-
sible explanation is the role played by artificial
breeding sites in the direct vicinity of the traps. In-
deed, all traps are placed in farms where a variety of
artificial breeding sites can be found: mud surrounding
local provision of livestock drinking water, local small
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Figure 4 The effect of unknown observational error on process error
streams of cleaning water, or even small-scale irrigated
pastures. All these could provide C. imicola populations
suitable habitats surrounding the trap, even in the absence
of surrounding vegetation that could be detected at larger-
scale by the remotely sensed NDVI signal. In addition,
compared to other studies, NDVI may not be such a limit-
ing factor in Sardinia where catches appear to be very
abundant over the entire region. A similar approach devel-
oped at the fringe of the C. imicola distribution range may
hence highlight a relatively stronger contribution of fac-
tors other than temperature in modelling C. imicola popu-
lation dynamics. The fact that the model overestimated
0.4 0.6 0.8

ive coefficients

+

No observation error
Low observations error
Medium observations error
High observations error

estimates, variance and the autoregressive cofactor.
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Figure 5 Distribution maps of the relative mean abundances of C. imicola found for June 2006. The mean abundances presented on
these maps were realized after 250 bootstraps of the dynamic model that account respectively for RS data (A) and WS data (B). These simulations
were realized after seeding 2 individuals in each pixel in March in 2005. A mask for altitudes lower than 0 meter was applied.
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the populations in Tuscany suggests that the model would
need further adjustments to account for a different range
or value in the environmental conditions than those
encountered in Sardinia alone.
It is obvious that the model simulations had lower pre-

dictive power than the initial statistical approach built to
find estimates of cofactors (lower correlation coefficient
and higher RMSE, Table 3). Indeed the reduction in pre-
dictive power can be explained by the fact that the simu-
lations only use a constant initial population at t0 (here
13 individuals in March 2001) to feed the predictions
over the entire time series whereas the predictions of the
statistical model are estimated with the observed abun-
dances measured at each previous time step. In other
words, predictions from the model simulations are not
made based on the observed population at the previous
time step, but are based on the modelled population at
the previous time step, hence the reduction in predict-
ability. However, the comparative advantage is that the
simulation demonstrated moderate to good predictability
over space and time simply based on the spatio-
temporal distribution of the predictors, and do not re-
quire field samplings of C. imicola to make the
predictions.
Those simulations succeeded fairly well in reproducing

the seasonality of the populations, the maintenance of
C. imicola activity during winter, even at very low popu-
lation levels, and the likely outcome of extinction at high
elevation ( > 500 m). Even if the simulations were not
able to fully quantify the level of the peaks of maximum
abundances, they described very well the increase in
population activity that occurs at the beginning of each
season (Figure 3). The applied perspective of such a
characteristic could be found in the development of a
surveillance system that could predict seasonal vector
abundances on the basis of the current temperature and
could help to alert on periods of high risk of bluetongue
disease transmission. The model predicted extinctions
at high elevation (Additional file 2: Figure S2 and
Additional file 3: Figure S3), and the maintenance of the
activity of vectors in these areas would require renewed
introductions. A further development of the model
could account for external introduction of novel speci-
mens. For example, it could be coupled to broad-scale
wind density models such as presented in [47,48], trans-
port and trade networks [49], or to local-scale leptokur-
tic models, which describe the decrease in Culicoides
spp. abundances as a function of the distance to the
farm [50]. Other factors, not accounted for in this study,
are likely to influence C. imicola populations. One such
factor may be the local density of livestock (horses, cat-
tle, sheep and goats), which provides both hosts for
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blood feeding females, and breeding sites through the
manure. Sardinia hosts approximately 3.9 million sheep
and goats, the highest density in all of Italy. Although
this number does not show strong seasonal fluctuation,
grazing patterns are strongly seasonal in the most ele-
vated part of the island, with sheep flocks free-grazing in
the pastures. In contrast, most sheep are grazing in pas-
tures in the direct vicinity of farms in the low-elevation
parts of Sardinia. These factors may also influence the
spatio-temporal pattern of C. imicola populations, but
quantification of these effects is difficult due to a lack of
high-resolution data on hosts and grazing patterns. In
addition, Onderstepoort-type black-light traps catches
do not accurately reflect host-seeking behaviour by bit-
ing midges in comparison to host-baited traps catches
[51], hence limiting the use of our dataset to test for
the local effect of hosts distribution on C. imicola
populations abundance.
Average correlation coefficients between observations

and predictions were very similar between the RS model
and the WS model (Figure 2). The model with RS predic-
tors has nevertheless the advantage that predictions can be
made over all pixels without interpolation of observations
such as is needed in the case of weather station data. Fur-
thermore, interpolation tends to produce very continuous
surface that do not fully reflect the local heterogeneities in
temperatures (Figure 5A and B). This comparative advan-
tage could not be quantified in our study, probably because
the observation error in catches could be higher than the
difference in predictions due to the differences in the type
of temperature data. Another possible explanation is that
local temperature at the level of the trap, influenced by
local conditions (shelter and shading, local topography)
could be as different from the RS data as it is from the WS
data. This could only be evaluated thoroughly using local
temperature measurements with data loggers. Overall, the
distribution that we predicted at the seasonal peak is fairly
similar to that observed by previous studies, (e.g. [13,33]),
with low-level population areas located at high altitudes.
Our modelling approach included at least three

sources of uncertainties. The first one appears when an
autoregressive cofactor is included and results from the
interplay between process and observation error [38].
We tried to take it into account by (1) quantifying the
effect of observation error on coefficient estimates, (2)
trying to quantify the influence of observation error on
process error, and (3) including using a stochastic com-
ponent in the modelling framework.
As expected, introducing different levels of observa-

tion error influenced both GLM coefficient estimates
[39], and the extent of process error (Figure 4). Since we
have little prior information on the magnitude of obser-
vational error, we decided to run our simulations with a
fairly high level of observational error, introduced in the
form of an error term sampled from a normal distribu-
tion with 0-mean and standard deviation equal to half
the variance found in the whole dataset. This introduces
a lot of variability in the predictions, and one way to re-
duce uncertainties could only be gained by experimental
quantification of observation error. Other methods to
include explicitly observation and process error are
available (e.g. state-space models such as in [52] or else,
[38] and [39] for implementations using the Bayesian
techniques; mixed models, such as highlighted in [53];
hybrid models developed in [54]). Our approach was
somewhat simpler, but allows quantification of the im-
pact of observation error to be made under various
modelling frameworks, such as for examples BRT [55],
GLMM [56] or autologistic models [57].
Conclusion
Spatially and temporally explicit models have consider-
able prospects for modelling data arising from longitu-
dinal entomological surveillance because they allow the
incorporation of seasonality explicitly in the model and
facilitate interpretation of the results by identifying eco-
climatic factors that influence population growth rate in
space and time (see also [58]). Once validated, these
models could be used to predict population levels on the
basis of observed environmental conditions, hence po-
tentially reduce the amount of entomological surveil-
lance. Together with the recent advances in methods for
the identification of biting midges [59,60] and blood
meal sources [61,62], these models should help to
strengthen ecological studies on biting midges, a field by
far underexplored. A further improvement of these mod-
els would be gained by a better quantification and inte-
gration of observation error.
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