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Abstract—Context and objective: The Migr’Hycar research 

project was initiated to provide decisional tools for risks 

connected to oil spill drifts in continental waters. This paper 

focuses on the distribution of polycyclic aromatic hydrocarbons 

(PAHs) from oils in water, air and oil slicks.  

Material and methods: Six petroleum oils covering a 

representative range of commercially available products were 

tested. Dynamic tests at laboratory scale were performed to 

study 41 PAHs and derivates, among them 16 EPA priority 

pollutants. Water soluble fraction protocol, stir bar sorptive 

extraction (SBSE) and high performance gas chromatography 

mass spectrometry (HPGC-MS) was used. Limit of 

quantification were lower than 1 ng.L
-1

 for each compounds. 

Results: A large variation in composition of the water soluble 

fraction depending on oil type and mixing time has been 

highlighted. Results have shown that evaporation is the primary 

mechanism of PAHs loss from spilled oil. The subsequent fate of 

hydrocarbons deposited in surface water is further influenced 

by volatilisation behaviour because of possible slick loss to the 

atmosphere. The water soluble fraction remains very low and is 

dominated by low molecular weight PAHS (e.g. naphthalenes). 

 

Index Terms—Monitoring, water soluble fraction, PAHs, 

Sorptive Bar Solid Extraction. 

 

I. INTRODUCTION 

The application of the European Water Framework 

Directive [1] and the monitoring obligation on water quality 

for human consumption and industrial activities has created a 

need for water quality evaluation and monitoring systems. 

An evaluation of industrial reject oils (from all industries) led 

to around 600 tonnes discharged in 2002 in France [2]. 

Among the accidents identified, we found manipulation 

errors, accidental leakage of household or industrial tanks, 

petrol station leakage, wastewater treatment plant overflows, 

truck accident, fire and deliberate or accidental discharges of 
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river boats. 

The Migr’Hycar research project (www.migrhycar.com) 

was initiated to provide decisional tools, and satisfy 

operational needs, for risks connected to oil spill drifts in 

continental waters (rivers, lakes, estuaries). These tools aim 

to serve in the decision-making process once oil spill 

pollution occurs and/or as reference tools to study scenarios 

of potential impacts of pollutions on a given site. Within the 

framework of the Migr’Hycar project, experiments on 

situations under controlled conditions were conducted in 

order to evaluate the dissolved, floating and evaporated oil 

fractions. The water soluble fraction protocol is of special 

interest because such components dissolved (e.g. 

naphthalenes, phenanthrenes and dibenzothiophenes) from 

an oil slick are known to have a high bio-availability to 

marine organisms, and therefore have a potential to cause 

toxic effects [3]. Indeed, polycyclic aromatic hydrocarbons 

(PAHs) are classified as priority hazardous substances and as 

priority substances by the European Union (Decision 

2455/2001/EC). The objectives of the studies were (1) the 

monitoring of the PAHs in the three compartments (air, water 

and oil slicks) as a function of the time and (2) the measuring 

of the studied compounds on final equilibrium. The mass 

balance was established by quantifying compounds in at least 

two of the three compartments.  

 

II. MATERIAL AND METHODS 

A. Material and reagents 

Glassware was cleaned carefully with water, Milli-Q water 

and acetone HPLC grade. Methanol Ultra LC-MS grade was 

purchased by Carl Roth (France). 

The solutions were prepared from certified reference 

material purchased from LGC Standards (Molsheim, France) 

as regards semi-volatile compounds: CUS 9305, which 

contains 21 PAHs (naphthalene, benzothiophene, biphenyl, 

acenaphtylene, acenaphtene, fluorine, phenanthrene, 

anthracene, dibenzothiophene, fluoranthene, pyrene, 

benzo[a]anthracene, chrysene, benzo[b]fluoranthene, 

benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, 

perylene, indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene and 

benzo[g,h,i]perylene) at the concentration of 1 µg/mL in 

methanol, and CUS 9207, which contains the corresponding 

internal standards: Naphthalene d8, Biphenyl d10, 

Phenanthrene d10, Chrysene d12 and Benzo[a]pyrene d12 at 

the concentration of 1 µg/mL in acetone. All the calibrations 
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curves were obtained by extracting and analyzing water 

samples spiked with target molecules and corresponding 

internal standards. 

The calibration solutions were prepared by dilution of a 

PAHs mix solution in 100 mL Milli-Q water leading to 8 

solutions: blank, 0.5 ng.L-1, 1 ng.L-1, 5 ng.L-1, 10 ng.L-1, 100 

ng.L-1, 500 ng.L-1,1 000 ng.L-1. The extraction standard 

solution was prepared while diluting 1 mL of a The 

extraction standard solution was prepared while diluting 1 

mL of a deuterated PAHs mix solution in 1 L of methanol 

(ROTISOLV ≥99.98% Ultra LC-MS by Carl Roth). The 

standard solutions were stored in amber glass bottles at + 

4°C. 

B. Oils studied 

Six different oils, supplied by TOTAL, were studied: 

Heavy fuel, Domestic fuel, Jet A1, Gasoline (SP98), 

Gasoline (SP95-E10) and Diesel fuel. They were selected 

because of their common use and their possible involvement 

in freshwater oil spills. The oil storage was performed at 

+4°C. Before use, light oils were conserved at room 

temperature during 12 h. The use of heavy oils was made 

after a reheat at 70°C during 1h. Physical and chemical 

properties of oils are described in Table I. 

 
TABLE I: DESCRIPTION OF THE OILS USED AND THEIR MAIN PROPERTIES  

Oils 
Physical 

State 
Color 

Density 

(kg/m3 

at 

15°C) 

Octanol-water 

partition 

coefficient 

Viscosity 

Heavy 

fuel  

Viscous 

liquid at 

20°C 

Brown/Green. 

Dark 

brown/Black 

920 - 

1060  

2.7 ≤ Log 

Kow ≤ 6  

> 9.5 

mm²/s at 

20°C                     

< 40 

mm²/s at 

100°C 

Domestic 

fuel 

Clear 

liquid at 

20°C 

Characteristic 
820 - 

860  

3.9 ≤ Log 

Kow ≤ 6 

< 7 

mm²/s at 

40°C 

Jet A1 Liquid 
Colorless to 

pale yellow 

775 - 

840  

3.3 ≤ Log 

Kow ≤ 6  

< 7 

mm²/s at 

40°C 

Gasoline 

SP98 

Clear 

liquid at 

20°C 

Pale yellow 
720 - 

775  

2.1 ≤ Log 

Kow ≤ 6 

0.5 - 0.75 

mm²/s at 

20°C 

Gasoline 

SP95-E10 

Clear 

liquid at 

20°C 

Pale yellow 
720 - 

775  

2.1 ≤ Log 

Kow ≤ 6 

< 1 

mm²/s at 

40°C 

Diesel 

fuel 

Liquid 

at 20°C 
Yellow 

820 - 

845  

3.9 ≤ Log 

Kow ≤ 6 

< 7 

mm²/s at 

40°C 

 

C. Water Soluble Fraction 

Water-soluble fraction protocol was performed in 

darkness at 20°C. 2000g of Milli-Q water were introduced in 

a 3L glass beaker. 200mg of oil were deposed on water 

surface, conducing to about a 10% surface ratio. A gentle 

stirring without vortex was ensured to allow the diffusion of 

molecules. C20 standard (500µg/mL, LGC Standards) was 

added in order to evaluate evaporation part. Mixing times 

were fixed to 1h, 3h, 6h, 10h, 24h and 48h. First, totality of 

the slick was sampled was sampled with a 100mL volumetric 

pipette after a given time of exposure to the oil. The sample 

was separated in a separating funnel in order to recover the 

oil fraction. Separating funnel was rinsed with 10mL of 

dichloromethane. An aliquot of 2mL was then sampled and 

stored at +4°C for GC/MS analysis. Then, the soluble 

fraction was sampled with a 100mL volumetric pipette in 

order to take a water sample free from oil after a given time of 

exposure to the oil. This fraction was extracted by sorptive 

bar solvent extraction (SBSE). 

D. PAHs analysis 

This analytical method was used to analyze the 15 PAHs 

from the EPA priority pollutants list, plus 26 PAHs derivates 

which are more soluble compounds. 

1) PAHs in water (soluble fraction): SBSE-TD-GC-MS 

100 mL water samples were added with 10 mL of 

methanol containing the 5 deuterated internals standards at 

the concentration of 1 ng/mL (final concentration of 100ng/L 

relatively to water). Stir bars (Twister® 20 mm x 0.5 mm 

PDMS by Gerstel) were then added to the water samples and 

stirred at 700 rpm for two hours. Stir bars were then 

recovered by using tweezers, dried over plot paper and stored 

in a vial at +4°C for subsequent GC/MS analysis [4]. 

The analyses were performed using a Thermal Desorption 

Unit combined with a Cooled Injection System from Gerstel 

(Mülheim an der Ruhr, Germany) mounted on a 7890 Agilent 

GC system coupled to an Agilent 5975 mass spectrometrer 

(Agilent Technologies, Little Falls, DE, USA). The 

analytical system was equipped with an automated sampler 

MPS2 (Gerstel). Desorption was achieved at 300 ºC for 10 

minutes under an helium flow of 50 mL/min in the splitless 

mode and with a transfer line maintained at 300 ºC. The 

desorbed compounds were cryofocused in a cooled injection 

system (CIS-4, Gerstel) at 10 ºC and then transferred to the 

HP-5MS column (30 m x 0.25 mm i.d. x 0.25 μm film 

thickness, constant helium flow of 1 mL/min) by a rapid 

increase of the CIS temperature (from 10°C to 300°C at 

12°C/s). For the analysis of PAHs, the oven program of 

temperature was: from 50 ºC (1 min) to 150°C at 10°C/min, 

and then to 320°C (5 min) at 5°C/min. The mass spectrometer 

was operated in Selected Ion Monitoring (SIM) with a 

minimum of  2 cycles/s. The quantification was performed by 

using the molecular ion of each PAH. The target molecules 

were quantified relatively to the deuterated PAHs (internal 

standards) using a calibration curve (from 0.1ng/L to 

100ng/L) with regression coefficient > 0.99. Limit of 

quantification were lower than 1 ng.L-1 for each compounds.  

2) PAHs in oils (initial and slick fraction): GC-MS  

The analysis was performed as described previously 

except the injection technique. The split/splitless injector was 

used in the pulse splitless mode (pulse pressure: 15 psi, 

splitless time: 1 min, flow 50 mL/min). The injector 

temperature was maintained at 300°C. PAHs were quantified 

in the oil in their initial state (no weathering) relatively to the 

deuterated PAHs (internal standards) using a calibration 

curve (from 0.1ng/L to 100ng/L). 

A semi-quantitative method was applied to the slick. In 

this view, the fraction of molecules disappearing from the 

slick was assessed relatively to a compound or group of 

compounds present in the slick, sufficiently abundant, poorly 

volatiles and of low solubility. In the case of products 

characterized by a residue at 250°C higher than 30%, 

compounds with a molecular weight equal or higher than 
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C3-phenanthrenes were chosen. For lighter products 

(gasoline and kerosene), as no compound meets these 

requirements, oils were spiked with a linear alkane (nC20) at 

the concentration of 500 µg/mL. This method was adopted as 

the amount of oil sampled at the water surface could not be 

determined precisely (presence of water). In the case of oils 

sampled during the experiment at Ti, the calculation of the 

target compounds concentrations was performed according 

equation 1. 

0/

/

0/

/
0//

TH

TiH

TCi

TiCi
TCiTiCi

A

A

A

A
CC   

Eq. 1: Calculation of the target PAHs in the floating fraction. 

(CCi/Ti : target compound concentration at Ti ; CCi/T0 : target compound 

concentration in initial oil ; ACi/Ti : target compound area at Ti ; ACi/T0 : target 

compound area in initial oil ; AHi/Ti : reference compound area at Ti ; AHi/T0 : 

reference compound area in initial oil) 

 

III. RESULTS AND INTERPRETATION 

A. Fresh Oil Characterization 

PAHs levels in the initial oils were presented Fig. 1. The 

characterization has shown that domestic fuel had the highest 

PAHs content, gasoline (SP95, SP98) the lowest. 
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Fig. 1. Initial concentration of the 41 PAHs in oils. 

B. Mass Balance of PAHs 

The results are presented based on the sum of the 41 PAHs 

as a global indicator and the naphthalene level (naphthalene + 

C1 C2 C3 C4 derivates). The distribution of PAHs from the 6 

oils in the 3 compartments (water, air and oil slicks) is shown 

in Fig. 2. In all cases, at 48 hours contact time, equilibrium 

was observed corresponding to three phenomenons: 

dissolution, evaporation and volatilisation (Fig. 3).  
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Sum of PAHs in Gasoline (SP98)
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Fig. 2. Distribution of PAHs (% in air, % in water and % in slick) as function 

of time for the 6 oils studied. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Distribution of PAHs [8] 

 

1) Water dissolution and solubility 

The oil quantity affected by the dissolution process is 

lower than 11% of the initial mass [10]. Due to their physical, 

chemical properties, only PAHs are assumed to be dissolved 

in water [9]. 

Analysing the water soluble fraction, we observed that 

water solubility of PAHs tends to decrease with increasing 

molecular weight. Moreover, linear fused PAHs (e.g. 

naphthtalene and anthracene) also tend to be more soluble 

than pericondensed structures (e.g. phenanthrene and pyrene). 

Furthermore, alkyl substitution decreases water solubility of 

parental PAHs. Naphthalenes are dominating sum of PAHs 

profile because of their high solubility in water. 

2) Volatilisation 

When petroleum products enter surface-water systems, the 

lighter aliphatic and aromatic hydrocarbons spread out along 

the surface of water and evaporate. In general, evaporation is 

the primary mechanism of loss of volatile and semi-volatile 

compounds of spilled oil. As it is shown in figure 1, 

evaporation is almost total in the case of gasoline, diesel fuel 

and kerosene, which are rich in naphthalenes which easily 

sublimates in the air and presents the highest water solubility 

in water. For the heavy and domestic fuels, the oil slick 

remains around 20%. Indeed, these oils contain phenanthrene 

and chrysene, less volatile and less soluble than naphthalene.  

If we measure what is remaining in the silk for SP95-E10, 

SP98 and kerosene, we observe that no PAHs persist in the 

silk. Although, for domestic fuel, heavy fuel and diesel fuel, 

we observe a persistence of phenanthrene compounds (Table 

II).  

 
TABLE II: PERSENTATION OF PHENANTHRENES AT 48 HOURS 

PAHs Domestic fuel Heavy fuel  Diesel fuel 

Phenanthrene 3.7 2.1 0.2 

C1-Phenanthrene 6.8 4.1 0.3 

C2-Phenanthrene 2.6 1.9 0.2 

C3-Phenanthrene 1.0 1.0 1.0 

Σ Phenanthrene 14.1 9.2 1.7 

 

The partitioning between air and water is characterized by 

Henry’s law constant (KH). The KH implies higher volatility 

and results from combination of high vapour pressure and 

high aqueous solubility (Table III). Volatilisation losses from 

aqueous phase to the atmosphere are also influenced by the 

aqueous solubility of the compounds. 

 
TABLE III: CALCULATION OF THE TARGET PAHS IN THE FLOATING 

FRACTION [5] 

PAHs 
Water Solubility 

[mg/L] 

Vapor Pressure 

[mmHg at 

25°C] 

Henry 

constant 

[bar at 298K] 

Naphthalene 32 8.2 10-2 23.796 

Phenanthrene 1.0 6.8 10-4 1.771 

Chrysene 0.006 6.3 10-7 0.036 

 

3)  Ethanol influence 

We can observe that gasoline SP95-E10 presents a reduced 

oil slick compared to gasoline SP98. Indeed, the addition of 

ethanol in gasoline increases PAHs solubilisation [6]. But, 

the decrease of oil slick is also due to the increase of 

hydrocarbons volatility of which form azeotrops with ethanol 

[7]. The both phenomena explain the difference between the 

oil slicks of gasoline, while the soluble fractions remain low. 

 

IV. CONCLUSION 

Within the Migr’Hycar research project, experimentations 

at laboratory scale were performed to study the behaviour of 

hydrocarbons when petroleum products enter surface-water 

systems. This work required the development of an 

experimental protocol to evaluate the behaviour of PAHs in 

the 3 compartments. Data were the results of the equilibrium 

obtained during the distribution of hydrocarbons in the 

different phases. Six petroleum oils were studied and 41 

polycyclic aromatic hydrocarbons and derivates (PAHs) 

were monitored. The mass balance in the 3 compartments (air, 

water and slick) was established by quantifying compounds 

in water and slick. 

Results have shown that evaporation is the primary 

mechanism of PAHs loss from spilled oil. The subsequent 

fate of hydrocarbons deposited in surface water is further 

influenced by volatilisation behaviour because of possible 

slick loss to the atmosphere. The addition of water miscible 

oxygenated compounds, such as ethanol, to fuels increases 

the global solubility of PAHs. The water soluble fraction 

remains very low and is dominated by low molecular weight 

PAHS (e.g. naphthalenes). In spite of their low solubility, 

dissolution is an important media exchange process leading 

to the primary destruction pathway of hydrocarbons in 

aquatic systems via biodegradation. 
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