
HAL Id: hal-02646005
https://hal.inrae.fr/hal-02646005

Submitted on 29 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Structure of a Gene Co-Expression Network
Reveals Biological Functions Underlying eQTLs

Nathalie N. Villa-Vialaneix, Laurence Liaubet, Thibault Laurent, Pierre
Cherel, Adrien Gamot, Magali San Cristobal

To cite this version:
Nathalie N. Villa-Vialaneix, Laurence Liaubet, Thibault Laurent, Pierre Cherel, Adrien Gamot, et
al.. The Structure of a Gene Co-Expression Network Reveals Biological Functions Underlying eQTLs.
PLoS ONE, 2013, 8, online (4), Non paginé. �10.1371/journal.pone.0060045�. �hal-02646005�

https://hal.inrae.fr/hal-02646005
https://hal.archives-ouvertes.fr


The Structure of a Gene Co-Expression Network Reveals
Biological Functions Underlying eQTLs
Nathalie Villa-Vialaneix1*, Laurence Liaubet2, Thibault Laurent3, Pierre Cherel4, Adrien Gamot2,

Magali SanCristobal2
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Abstract

What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to
biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly
difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct
link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the
use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic
regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian
species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering
of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach
allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene
clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes
were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which
support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression
network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial
analysis of the network topology.
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Introduction

Integrative and systems biology is a very promising tool for

deciphering the biological and genetic mechanisms underlying

complex traits. In this context, gene networks are used to model

interactions between genes of interest: gene networks have been

increasingly applied to understand the basis of complex biological

phenomena [1,2].

A gene network can be variously defined. For instance, some are

based on bibliographic knowledge obtained by literature mining

with software like Ingenuity Pathway Analysis (IPA), Pathway

Studio or Cytoscape (compared in [3,4]). Others combine

experimental and computational approaches to define Protein-

Protein Interaction - PPI - networks [5] or known biochemical and

physiologic data to define metabolic networks [6]. Although

biological knowledge networks are useful tools, they have some

limitations due to a major lack of annotation of the genomes, and

the fact that most associated literature is devoted mainly to only a

few mammalian species (e.g., humans, mice and rats in IPA).

An alternative approach is to infer the network directly from

gene expression data, leading to the definition of a so-called ‘‘gene

co-expression network’’ [7]. Inferring a co-expression network

directly from gene expression data aims at focusing on direct co-

expressions between genes by calculating, for instance, partial

correlations [8]. Unlike in ontological enrichment analysis or

bibliographic networks, information available on both functionally

known and unknown genes is used for the network definition.

Once the network is given, a full analysis of its structure could

be performed, from either the point of view of the network [9–11],

or in correlation with a variable of interest [12]. Such analyses

search for key genes, or for functional modules, or also for an

understanding of the relations between the network structure and

additional information (e.g., a phenotype of interest). However,

regardless of the increasing number of papers focusing on

networks only a few present a full analysis, starting from raw

expression data, then inferring and mining the network to end up

with an understanding of its relation with an external variable. For

instance, [13] demonstrates the usefulness of network inference

and mining for the analysis of microarray data: in the present

article, the process is pushed further, allowing ones to integrate

information pertaining to a phenotype. Similarly, [14] integrates

expression data and PPI bibliographic network to identify

candidate genes associated with a given phenotype but they do

not rely on a network directly based on expression data.

In the present article, a thorough analysis is conducted. In a

previous study [15], gene expressions regulated by eQTLs had
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been identified. 272 genes have been outlined and their biological

relevance studied for those that were already annotated. Indeed

the limited annotation prevented the performance of functional

annotation for each cluster of eQTL. Moreover, the possible

interactive links between these 272 genes, whose expression are

partially regulated by eQTL, has not yet been investigated. These

links can be an insight on the biological processes and can lead to

the extraction of particularly important genes that are good

candidates for further biological experiments.

Moreover the eQTL analysis has been done without preselect-

ing genes to be related to a phenotype of interest. Therefore the

present analysis of the gene co-expression network was made in

relation to a complex phenotype, e.g., muscle pH. The muscle pH

has a major industrial interest, as it is well known to be related to

meat quality [16]. As the expression of the 272 genes regulated by

an eQTL is only weakly correlated to muscle pH (these genes were

not selected to be differentially expressed), individual analysis of

gene correlation with pH is not relevant in our case. Nevertheless,

our proposal is to focus on gene clusters rather than on individual

relations, because clusters are more robust (i.e., less prone to be

modified by noisy measurements) than each individual relation

[17]. We also used an approach based on spatial statistics in order

to highlight important genes that are related to the muscle pH and

also to the network structure.

Focusing on this dataset, the purpose of the present paper is to

gain biological knowledge from expression data for a set of genes

that are partially controlled by eQTL, by proposing an adequate

statistical pipeline. This pipeline is aimed at being a general tool

for dissecting biological functions and interactions. The context of

this work is a mammalian species with medium to low genome

annotation and a gene list that does not result from a differential

analysis. The proposed statistical pipeline will be briefly presented,

as well as the main results, in the first Section. The Section

‘‘Materials and Methods’’ will then describe it in details.

Results

The raw data, which consisted of the expression of 272 genes

partially controlled by eQTL, were measured post mortem in a

muscle on 56 half sibs [15]. The statistical pipeline that was used to

gain knowledge from our list of genes is summarized in Figure 1.

In the remaining of this section, all results obtained from the

statistical analysis are described. The following section discusses

these results and a final Section ‘‘Materials and Methods’’ provides

further details on the dataset, on the statisical methods and on

their validation.

A co-expression network is first built from the 272 gene

expressions, and the structure of this network is highlighted, in

terms of nodes of particular importance (hubs for instance), and in

terms of decomposition into ‘‘communities’’ or ‘‘modules’’. The

biological meaning of each gene or of each set of genes is

systematically investigated in order to validate the statistical tools.

Finally, the way a quantitative trait is related to the structure of the

network, is analyzed.

Network Definition
A co-expression network between the 272 genes was built on

partial correlations using the Gaussian Graphical Model (GGM)

approach described in [8]. In this model, the network nodes are

the 272 genes and edges between two nodes, which model

significant correlations between the expressions of the correspond-

ing genes. To measure the strength of the link between gene

expressions, partial correlations were estimated: they are defined

as the correlations between the expression of two genes knowing the

expressions of all the other genes. As pointed out by [13], because

networks focus only on the most significant links between genes,

they are far less subject to noisy data; as such, they are a more

robust approach than conventional analyses based on raw

expression data to extract key genes and find groups of highly

co-expressed genes. Moreover, the use of a partial correlation

based network was compared to a more classical network based on

simple correlations (i.e., ‘‘relevance network’’ [18]). According to

the result of a node clustering combined with biological validation,

the structure of the network based on partial correlations was

found to be more consistent to prior biological knowledge than the

one based on simple correlations (see section ‘‘Materials and

Methods’’ for further details on this comparison). This can be

explained by the fact that partial correlations focus on direct

correlations only, discarding indirect links due to a common strong

correlation with a third gene.

A bootstrap approach was used to estimate partial correlations.

In a previous simulation study (not shown), the robustness of this

approach was assessed: simulated data were generated with a

given correlation design corresponding to a GGM. The estimation

of the partial correlations from the bootstrap approach was

compared to the real model, and about thirty observations were

needed to obtain stable and accurate estimations. Thereby fifty-six

observations were considered as a consistent dataset and the

resulting network was indeed reliable. Finally, once the partial

correlations were estimated, a Bayesian significance test was

performed to discard non-significant links, i.e., edges that

correspond to partial correlations, which are too small, as

described in [8].

The obtained network contained 272 nodes (the genes) and

4,690 edges between significantly co-expressed genes. The

network density that corresponds to the number of edges, divided

by the number of node pairs was equal to 6.4%. The network was

completely connected; any node in the network could be reached

from any other node by a path passing along the edges.

Important Nodes
The network properties are useful for highlighting some key

nodes/genes. ‘‘Hubs’’ are often viewed as important nodes in a

network: they are nodes with the largest degrees, i.e., nodes that

share the largest number of connections with the other nodes. The

network contained 21 hubs having a degree larger than 26; three

of them had a degree equal to 29, three to 28, five to 27 and ten to

26. Additionally, the node betweenness was also calculated: it is

the number of shortest paths between two nodes that pass through

the node under examination. Hence, twenty-five nodes with a high

betweenness (here greater than 350) were those, which connect the

network: if removed, the network is more likely to be disconnected.

Finally, nine genes were found to be both hubs and nodes with a

high betweenness. Among these nine genes, eight were annotated

and found to be connected together by the ubiquitin and the

huntingtin proteins: they might correspond to genes with a

connecting role between metabolic and/or signaling pathways (see

Section ‘‘Discussion’’ for further details). Hubs and high between-

ness genes are listed in Table S1 and are emphasized on the

network in Figures 2 and 3. Figure 2 shows that the densest part of

the network contained most of the hubs (14/21) and conversely,

half of its genes (14/28) are hubs. Figure 3 emphasizes the twenty-

five genes that had a high betweenness. Hubs and genes with high

betweenness did not provide enrichment for any given molecular

function. On the contrary, the hubs have various functions such as

growth factor, enzyme, transporter, component of the cytoskele-

ton…. Nevertheless, nine genes were hubs with a high between-

ness, out of which eight were annotated. Biological enrichment

eQTL Co-Expression Network Inference and Analysis

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e60045



was tested with IPA software for these genes, which are important

for connecting the other genes together. One bibliographic

network was obtained, including twenty-five out of the twenty-

seven genes (score 68 : this score is a quality score given by IPA;

see ‘‘Biological validation’’ in section ‘‘Materials and Methods’’ for

further details about this score ) involved in the regulation between

several signaling pathways, metabolism and cell cycle/apoptosis.

This network is given in Figure 4.

Network Clustering
Node clustering was performed using several approaches:

modularity optimization, kernel k-means and kernel SOM (see

Section ‘‘Materials and Methods’’ for further details and

references on these methods). The obtained gene clusters were

systematically tested for their enrichment of Gene Ontology

categories with WebGestalt. This first step lead to select the

network based on partial correlations instead of simple correlations

and the clustering based on modularity optimization. The

clustering obtained from the modularity optimization [19] was

the most consistent with biological knowledge, and was thus the

one retained for further analysis. It was also the one with the

highest modularity, equal to 0.4.

Seven clusters were identified that contained from 28 to 58

genes. Figure 5 provides a simplified representation of the network

divided into the seven clusters.

Figure 1. Summary of the statistical pipeline. Data are represented in green (expression data and pH), statistical methods are represented in
purple, results are represented in red.
doi:10.1371/journal.pone.0060045.g001

Figure 2. The co-expression network where hubs are high-
lighted. The names are also given. The list of hubs is available in Table
S1.
doi:10.1371/journal.pone.0060045.g002

eQTL Co-Expression Network Inference and Analysis

PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e60045



Most hubs (14/21) belonged to cluster 6, contrary to the genes

with a high betweenness that were almost equally allocated

between the seven clusters. Only cluster 3 contained a larger

number of genes with a high betweenness (six while the other

clusters contained two to four genes with a high betweenness). The

biological relevance of each cluster, as a subset of genes, was first

explored in terms of Gene Ontology as explained before. Only

45% of the 272 genes had an ontological annotation, so the

biological relevance was verified using Ingenuity Pathways

Analysis (IPA) to construct bibliographic networks. Up to 67%

of the 272 genes were eligible for network analysis by IPA. The

correspondence between the clusters and the networks from IPA is

given in Table 1. The relevance of the list of genes for all clusters

was high, with about 83% of the eligible genes belonging to a

single IPA network (at least 71%, and up to 94%). This means that

the sets of genes obtained by an automatic clustering of the co-

expression network have a strong consistency with the literature:

they are most probably reliable for inferring the biological function

of yet unknown genes according to the cluster to which these genes

belong.

Relations between the Co-expression Network and a
Phenotype of Interest

In order to assess if a correlation existed between the network

topology (the clusters) and a phenotype of interest (muscle pH), the

partial correlations between pH and gene expressions were

calculated. The pH values of muscle tissue after slaughtering are

related to meat quality. Only the ultimate pH value (measured

24 h after slaughtering) is available but it is known to be not

accurate enough to discriminate the metabolic processes under-

lying the way pH declines [20]. The purpose of the present section

is thus to understand the relation between our set of genes (that are

under eQTL control), their functions and this phenotype.

First, a Moran’s permutation test was performed to assess the

correlation between the network structure and the partial

correlation values. This test aims at answering the following

question: ‘‘Do nodes that are linked in the co-expression network

have a tendency to be similarly correlated with pH? ’’ To that aim,

Moran’s I [21] was calculated: Moran’s I is a weighted correlation

coefficient used to detect departures from spatial randomness. A

Figure 3. The co-expression network where genes with high
betweenness are highlighted. The names are also given. The list of
genes with high betweenness is available in Table S1.
doi:10.1371/journal.pone.0060045.g003

Figure 4. Bibliographic network obtained with the 8 annotated genes out of the 9 having the highest degree and betweenness. This
network (score 68 : this score is a quality score given by IPA; see ‘‘Biological validation’’ in section ‘‘Materials and Methods’’ for further details about
this score ) is related to regulation between several signaling pathways, metabolism and cell cycle apoptosis.
doi:10.1371/journal.pone.0060045.g004

eQTL Co-Expression Network Inference and Analysis
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Figure 5. Simplified representation of the network. Special nodes are highlighted according to their level of degree or betweenness, and/or
their partial correlation to a phenotype related to meat quality (pH 24 h after slaughtering). The line width between clusters is proportional to the
number of links between the nodes of the corresponding clusters.
doi:10.1371/journal.pone.0060045.g005

Table 1. Correspondence between clusters found by node clustering and bibliographic network.

Cluster
Nb of genes in
the cluster

Nb of genes
called eligible

% of the eligible genes
involved in the same
biological network Score

Main biological functions
associated with the network

1 33 24 71 49 Development, cell death

2 44 28 93 70 Folding of protein, neuromuscular
disease

3 58 38 71 65 Stress response, muscle development
protein synthesis

4 28 17 94 44 Cell cycle and cell death

5 41 30 80 61 Gene expression cellular maintenance

6 28 19 84 40 Muscle and connective tissue
development regulation of RNA
expression

7 40 26 88 59 Cell death

Total 272 182 (67%) mean is equal to 83%

The list of genes for each cluster was submitted to IPA software and only one biological network was obtained. The eligible genes are those with a gene name accepted
by IPA for having biological functions. An average of 83% of the eligible genes were included in the same network. IPA gives also the top biological functions associated
with each cluster.
doi:10.1371/journal.pone.0060045.t001

eQTL Co-Expression Network Inference and Analysis
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statistical test, based on random permutations, as described in

[22], was performed to assess the significance of its value: it was

proven that Moran’s I was significantly larger in our network than

if the partial correlations were distributed among the nodes

independently from the network structure. This means that nodes

linked in the network have similar correlations with pH.

Moving down to the cluster level, it was then possible to show

that genes in cluster 4 had a significantly higher partial correlation

with the pH than the genes in the other clusters (Figure 6),

according to a t-test. Note that the values of the partial correlation

should not be compared to the values of the correlations: a strong

correlation between two genes results in a correlation coefficient

close to one or to minus one but a similar behavior is not to be

expected from the partial correlations: these quantities are

conditional correlations and are thus much smaller than the

direct correlations. To check that the other clusters had no

correlation with the pH, the absolute values of the partial

correlation with the genes expressions in cluster 4 were also

calculated. This confirmed that cluster 4 is significantly more

connected to the variation of muscle pH than the genes in the

other clusters, according to a t-test. With a bibliographic network

IPA analysis, cluster 4 was found to be related to cell death and cell

cycle, with three genes (GPI, B2M and XIAP) essentially regulating

cell death. Further discussion is provided in Section ‘‘Discussion’’.

Finally, the gene level was also studied by using Moran’s plot to

detect influential genes [23]. Moran’s plot displays the average

values for partial correlation with pH in the neighborhood of a

node as a function of the partial correlation with pH for this node

(Figure 7). In this plot, the way a gene is linked to pH is analyzed

together with its neighboring genes in the network. For instance,

GPI is an influential gene in the quadrant ‘‘H–H’’: this means that,

not only is its expression highly correlated to the pH value but its

neighboring genes also have an expression that is highly correlated

to the pH value. Indeed GPI has an expected function (glycolysis)

involved in the regulation of pH. A more complete discussion

about GPI is provided in Section ‘‘Discussion’’. Thereby,

influential nodes for pH [24] were extracted from Moran’s plot;

most of them belonged to cluster 4 (Figure 8). Twenty genes were

detected as influential in Moran’s plot and eleven of them were in

cluster 4 (out of twenty-eight genes classified in cluster 4). From

these twenty genes, ten genes were eligible by IPA and were all

included in the same biological network (Figure 9).

Table S1 contains the gene description (accession number, gene

name, gene description, heritability, number of eQTL, putative

cis-eQTL, genomic localization), along with the results of our

analysis (degree, hub, betweenness, cluster, differentially expressed

for pH, influent for partial correlation with pH, influent for

absolute value of partial correlation with pH).

Discussion

The overall methodology described in this paper is a pipeline of

statistical methods to gain knowledge from raw data on a selected

(here genetically regulated by eQTL ) set of genes. This pipeline

includes three steps.

N The definition of a co-expression network to give a simplified

and significant view of the interaction structure between those

genes. This network can be used to identify key genes.

N A clustering of the nodes based on this network, built only

from significant relations between genes. It helps to identify

relevant groups of genes with a common function.

N External information, related to a trait, has been integrated

into this network. In our case, the network structure was

proven to be correlated with the value of the correlation

between the gene expression and the pH. Moreover, the

correlation between gene expression and pH, used together

with the network structure, helped to identify important genes

related to pH. Most of the genes that were identified as related

to the pH, were also involved in a same cluster with other

genes sharing biological functions (cluster 4, see Figure 8).

Moreover, all the annotated genes influential for their partial

correlation with the pH were also involved in one biological

network (Figure 9).

A Relevant Strategy to Model a Gene Network
Inferring a co-expression network directly from gene expression

data can be achieved with a large number of statistical approaches:

among them, the most studied are probably Gaussian Graphical

Model (GGM) [25], Bayesian networks [26,27] or mutual

information networks [28]. As network inference is a topic of

much interest, several packages have also been developed for the

free statistical software R : for example, GeneNet [8] is a

Graphical Gaussian method including a Bayesian significance test;

GGMselect is a sparse Graphical Gaussian approach (see Baraud

et al. 2009: http://fr.arxiv.org/abs/0907.0619); minet [28] is an

R/bioconductor package using mutual information; bnlearn [29]

is based on Bayesian network learning.

In the present article, a GGM was used, as implemented in the

R package GeneNet to infer the network from a bootstrap

approach and a Bayesian test. GGM is based on the estimation of

partial correlations. As mentioned in the review of [30], the use of

partial correlations instead of simple correlations is more

appropriate to measure the dependence between variables. The

correlation has to be preferred when the independence between

variables is the targeted problem. Hence, the method combines

the availability of a dedicated R package, with good performances,

compared to several other alternatives [31].

Figure 6. Boxplots of the partial correlations between the gene
expressions and the pH for each cluster. Cluster 4 is significantly
correlated with the pH phenotype (p-value is equal to 0.001).
doi:10.1371/journal.pone.0060045.g006

eQTL Co-Expression Network Inference and Analysis
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Extracting Putative Key Genes from the Network
The analysis of the network had two main purposes: first was to

highlight key genes for co-expression, and second was to gain

knowledge on unknown genes. Key genes were found by a direct

analysis of the structure of the network, or by superimposing

information (related to a phenotype of interest) to the network.

Several characteristics related to the network structure can be

calculated to provide insights about key genes [9]. For instance,

hubs are genes with the highest degree and have been proven to

organize the proteome by connecting biological processes [10] or

to be implicated in cancer [32]. The betweenness centrality

measure [33] is well known in social network analysis but less

standard in biological network analysis. Betweenness is an

interesting criterion as nodes with a high betweenness form a

strong network connection and hence have a strong impact on the

network structure. Therefore the modification of these genes might

have a large impact on underlying biological functions. This fact

has already been described in medicine [11], in a study on network

evolution [34], and in protein-protein interaction networks [35].

A few examples of extracted genes are provided thereafter.

Their possible relevance in the way a muscle functions, or their

possible involvement in pH values, is emphasized when existing

studies have previously described that point. These examples aim

at illustrating that some genes, which were automatically extracted

thanks to the co-expression network model, showed a strong

relevance for the understanding of the considered biological

process. In our study, nine genes were both hubs and nodes with a

high betweenness (TRIAP1, SUZ12, PRDX4, GPI, SSR4, FTH1,

MGP, SLC39A14 and BX921641). The eight that were annotated,

were connected together by the ubiquitin and the huntingtin

proteins (see Figure 4). A hypothesis is that these nodes could

correspond to genes with a connecting role between metabolic

and/or signaling pathways. These two proteins (ubiquitin and

huntingtin) are ubiquitous and involved in several pathways. As

explained by [36] in a review dedicated to the function of the

huntingtin protein, huntingtin may interfere with transcriptional

mechanisms common to many genes including markers of

terminal muscle differentiation, metabolic enzymes (as GPI in

Figure 7. Moran’s plot of the partial correlation between pH and expression levels in the co-expression network. Influential nodes are
displayed in color and their names are given. Influential genes labeled ‘‘H–H’’ have a strong positive correlation with pH (above the mean) and are
linked to genes having a strong positive correlation with pH (above the mean); influential genes labeled ‘‘H–L’’ have a strong positive correlation with
pH (above the mean) and are linked to genes having a strong negative correlation with pH (below the mean); influential genes labeled ‘‘L–H’’ have a
strong negative correlation with pH (below the mean) and are linked to genes having a strong positive correlation with pH (above the mean);
influential genes labeled ‘‘L–L’’ have a strong negative correlation with pH (below the mean) and are linked to genes having a strong negative
correlation with pH (below the mean). Genes in red are in cluster 4, the cluster that is the most correlated to pH.
doi:10.1371/journal.pone.0060045.g007

eQTL Co-Expression Network Inference and Analysis
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Figure 8. Detailed display of cluster 4. Nodes that are influential for the partial correlation with pH, as well as nodes that are important for the
structure of the graph (hubs, high betweenness), are highlighted. The other clusters are displayed similarly in Supplemental Material, Figures S1, S2,
S3, S4, S5, and S6.
doi:10.1371/journal.pone.0060045.g008

Figure 9. Bibliographic network obtained with 10 pH-related genes. Pink nodes are the genes included in cluster 4; the other nodes are
green. Finally, white nodes are the genes included by IPA to define the network but not shown to be regulated by an eQTL in our previous study.
doi:10.1371/journal.pone.0060045.g009

eQTL Co-Expression Network Inference and Analysis
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cluster 4), signal transduction molecules, and fast myofibrillar

fibers (as troponin 1 present in the cluster 2). Some mRNAs (e.g.,

ubiquitin-conjugating enzymes) concurrently increased in muscle,

implying a cellular stress response.

Globally, extracted genes were either:

N annotated genes known to be involved in muscle physiology or

even in meat quality. For example, GPI (glucose-6-phosphate

isomerase) was a hub, a gene with a high betweenness, and an

influential node for the correlation with pH. GPI protein is

known to be involved in energy pathways, glycolysis and

gluconeogenesis and these pathways are well known to be

related to meat quality. Moreover GPI is localized on

chromosome 6 at the position of several QTLs (Quantitative

Trait Locus) affecting ultimate pH in loin muscle. Hence

proposing GPI as a positional and functional candidate gene

makes sense [37].

N annotated genes never cited for being involved in muscle

physiology and even less in meat quality. For example, MGP

(Matrix gla protein) was the hub with the highest degree and

also had a high betweenness. [38] proved that it is involved in

the inhibition of the switch from vascular smooth muscle cell in

osteoblast-like cells and also calcification of arteries. To our

knowledge, nothing has been described for MGP in skeletal

muscle except in our first study [15] in which we identified a

putative cis-eQTL for this gene.

From the relevance of the previous conclusions, it seems

therefore interesting to focus on:

N genes which are un-annotated and whose function is therefore

unknown. For instance, BX921641 is a hub and also the gene

with the highest betweenness. In further studies, it would be

interesting to investigate the function of this gene in muscle

tissue.

The main biological finding of this study, compared to a

bibliographic gene network study (like IPA), lies in the fact that the

combination of statistical methods is able to be used in the same

analysis for all the genes of interest, either functionally known or

not. Among the 56 genes highlighted as being ‘‘important’’ (hubs,

high betweenness, or high influence for their correlation with a

trait), only 67% are functionally known, and the others would have

been discarded with solely a standard analysis, based on

bibliographic knowledge.

Gaining Knowledge from the Gene Clustering
The second step of the proposed pipeline was to elucidate the

biological meaning of the gene network. The complete network

with 272 genes was difficult to read except for the densest part of

the network, as it is usual for networks with more than a hundred

nodes. Indeed, as explained in [39] the standard way to display

networks, i.e., by the use of force directed placement algorithms

such as the algorithm described in [40] is not enough to identify a

structure inside the network. Indeed, groups of genes (also often

called ‘‘modules’’) that are the most densely connected (and

comparatively less connected to the other nodes) can often not be

identified visually. The general structure of the network, decom-

posed into sub-graphs, can be revealed using node clustering. [41]

provided a very complete review of methods used to cluster the

nodes of a network and [42] compared several popular methods to

cluster protein-protein interaction networks. This promising

approach aims at revealing the biological structure behind the

statistical one: it is a well-known fact that biological functions are

carried out by modules in interaction networks [43]. Moreover, as

pointed out by [17], network inference is more robust when

dealing with modules than with individual interactions. Here, this

approach was proven to be highly powerful to cluster together

genes with common biological functions. Several methods to

cluster genes were tested and biologically compared to each other

with systematic measurements of ontological enrichment with the

WebGestalt software [44] (see Section ‘‘Materials and Methods’’

for further details). The best clustering was also submitted to IPA.

Nearly all the genes eligible to be submitted to IPA (about 80%)

were included in a same bibliographic network: one cluster

corresponded to one IPA bibliographic network (Table 1). It thus

gave clues to the biological role of a group of genes, including the

unknown genes.

Each cluster extracted from this analysis is fully described in

Figures S1 (cluster 1), S2 (cluster 2), S3 (cluster 3), S4 (cluster 5), S5

(cluster 6) and S6 (cluster 7). The legend of all these figures is the

same than the legend of Figure 8.

Integrating Additional Information Related to a
Phenotype of Interest

It is of major interest to add phenotypic information to a co-

expression network in an integrative strategy to combine different

levels of information. Moreover in our context, the 272 genes have

been identified, so as to have their expression genetically regulated

by eQTL, and moreover, without being selected to be differen-

tially expressed according to a phenotype [15]. An important

biological result of this work was to be able to merge co-expression

information with the correlation to a trait of interest (muscle pH).

In addition to the structure of the gene network, [1] showed that

the relation with a phenotype or a trait of interest can be helpful to

decipher the molecular interactions underlying a complex trait.

When the phenotype is discrete, such as healthy/cancer, methods

have been proposed such as COSINE [12]: differentially expressed

genes (DEG) and differential correlation between groups are

combined in this method. When the genes under study are not

DEG, the relation between the selected genes and the phenotype

may be weak, and such an approach is not usable anymore. In our

study, this issue was addressed by using a labeled network, i.e., a

network whose nodes are labeled by additional information,

because this approach combines interactions between genes and

correlations to a phenotype of interest, in the same model. It does

not rely on individual tests for each gene and it is thus better suited

for understanding the process in its totality and to extract groups of

genes related to the phenotype.

Finally, the pH reflects the acid-base homeostasis of a living

system (muscle tissue). From the 20 genes found to be important

for the partial correlation with the pH, only GPI has an expected

function (glycolysis) involved in the regulation of pH: accelerated

postmortem glycolysis affects a rapid pH fall. Moreover, GPI gene

is included in cluster 4, which has the highest correlation with the

variation in pH. This gene seemed to be the most important gene

in this cluster. GPI is altogether a hub with a high betweenness,

and a gene highly correlated to pH variation. In the postmortem

muscle of pigs, the energy metabolism shifts from an aerobic

metabolism of lipids to anaerobic metabolism of muscle glycogen.

Unfortunately, the way the ultimate pH decreases is rather difficult

to control. Nevertheless, ultimate pH is often measured as a

consequential factor [45]. With the identification of GPI, which

was central in a network related to pH, geneticists are offered

interesting proposals for further experiments. GPI gene is a

functional and positional gene candidate to explain effects

observed at a QTL position on chromosome 6 on muscle pH

values [37]. The expression of GPI is genetically regulated by two

trans-eQTL on chromosomes 5 and 8 in our context, and no cis-

eQTL Co-Expression Network Inference and Analysis
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eQTL was identified on chromosome 6 [15]. With a bibliographic

network from IPA analysis, cluster 4 was found to be related to cell

death and cell cycle: this IPA network included 78% of the

annotated genes classified in cluster 4. Intracellular pH has an

important role in the maintenance of normal cell function, and

cellular modifications leading to pH changes have been implicated

in both cell proliferation and cell death [46]. In our study, three

genes essentially regulate cell death, (GPI, B2M and XIAP)

suggesting a relation between pH regulation, which is a metabolic

process, and cell death, which is the cell biological consequence of

the failure of metabolism.

Conclusion
An adequate combination of statistical methods, namely

network inference using partial correlation under a Graphical

Gaussian model, followed by node clustering, can lead to a

significant improvement of our biological knowledge in the

underlying biological functions of a set of genes. This approach

is particularly useful in the context partial bibliographic knowledge

where only half of the genes a given genome are still unknown.

Moreover, this approach allows one to link the structure of the

network to a phenotype, and then to identify key genes.

Materials and Methods

Data Description: eQTL Data
56 half sib pigs were produced from an F2 cross between two

production sire lines (France Hybrides SA, St. Jean de Braye,

France). Procedures and facilities were approved by the French

Veterinary Services. Longissimus dorsi muscle RNA was extracted

as described by [47]. The normalized data were submitted to

NCBI (GEO accession number GSE26924). The eQTL analysis

identified 335 eQTLs affecting the expression of 272 transcripts

with an average heritability of 0.45 +0:25 [15].

Network Definition
In the Gaussian graphical model framework, gene expressions

are modeled by a Gaussian variable (Xj)j~1,...,p, where p is the

number of genes under study, with a covariance matrix S. It can

be proved that the partial correlations

Cor Xj ,Xj’D(Xi)i=j,j’

� �

are obtained directly from S{1 [25]. Many articles focus on the

estimation of this inverse in the context of ill-posed problems:

typically, the number of genes is much larger than the number of

available observations, and directly inverting the empirical

correlation matrix leads to numerical instability and bad

estimations. One solution is the bootstrap estimation described

in [8].

This approach was used, combined with the estimation

functions implemented in the R package GeneNet. In this

package, a shrinkage of the empirical covariance matrix S is

performed prior to its inversion in order to limit numerical

instability. This method simply consists in adding a small positive

number to the diagonal of S. A bootstrap approach was then

performed to obtain more robust estimates and made it possible to

construct a co-expression network with the 272 genes. 4,000

bootstrap samples (size 20) were enough to obtain a stabilization of

the estimation procedure. Then, the Bayesian test of significance,

described in [8], and implemented in the R package GeneNet,
was used to discard the smallest partial correlations. Finally, the

network was displayed using the Fruchterman and Reingold

algorithm [40] as implemented in the R package igraph [48].

Network Clustering
Node clustering aims at finding densely connected groups of

genes, called clusters or modules, in the network. As many methods to

cluster the nodes in a network exist [41], three were chosen and

compared. The first one consisted in optimizing the modularity:

the modularity is a quality criterion for node clustering introduced

by [19]. For a network with nodes f1, . . . ,ng and edges weighted

by Wij (where Wij~Wji are either positive or null when there is

no edge between xi and xj ) and for a partition C1, . . . ,CK of the

nodes, the modularity is equal to:

XK

k~1

X
i,j[Ck

Wij{Pij

� �
,

with Pij~
didj
2m

, where di is the degree of xi and m is the number of

edges in the network. Its aim is to compare the actual weights of

the edges to a null model where the edges depend only on the

nodes degrees and not on their cluster. Hence, the higher the

modularity, the more the edges are concentrated inside the

clusters. In the case of unweighted networks (as in our study), Wij

are either 1 (when there is an edge between xi and xj ) or 0. The

modularity measure has already been used by [49] to recover

functional modules in protein interaction networks with an

optimization based on the original approach of [19]. Following

the ideas of [50], the modularity was optimized by a simulated

annealing algorithm, which is a more efficient approach for

optimizing the criterion than the one proposed in the original

article [19]. The annealing parameter of simulated annealing was

chosen in an exponential search grid (varying from 10 to 105).

Modularity optimization was compared to alternative ap-

proaches that were based on kernels (see, among others, [51]) and

all relate to spectral clustering [52]. More precisely, kernel k-

means and batch kernel SOM [53] were processed as implement-

ed in the R package yasomi (development version available at

https://r-forge.r-project.org/projects/yasomi).

To compare the three different methods (modularity optimiza-

tion by simulated annealing, kernel k-means and batch kernel

SOM), the following methodology was used:

N for each of the three methods, several parameters were used to

provide different results: the number of (initial) clusters of the

algorithm varied from 4 to 12 (or, for kernel SOM, the data

were projected on a 2-dimensional grid whose dimension

varied from 2 to 4) and the heat kernel [54] and the Commute

Time kernel [55] were tested;

N for each of the three methods, only one of these results was

selected: the selection was made according to the modularity

value (hence the modularity was also used as a quality measure

for selecting the ‘‘best’’ clustering among the cluterings

obtained with different tuning parameters);

N the resulting three clustering were subjected to a biological

validation (as described in the next section).

Also, the same methods were also used to cluster a network

based on simple correlations (‘‘relevance network’’, see [56]) in

order to assess the relevance of the use of partial correlations

compared to simple correlations.

eQTL Co-Expression Network Inference and Analysis
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Finally, as explained in the next section, biological validation

leads to select the clustering based on the partial correlation

network and on modularity optimization by simulated annealing.

Biological Validation
In a first step, the WebGestalt software [44] provided a

statistical enrichment analysis of the Gene Ontology Terms. The

results were illustrated with an acyclic network of the ontology

terms. Biological information given by GO enrichment is only

based on a low number of genes (47%). However WebGestalt

produced results faster than IPA and was more useful for the

comparisons between different networks (defined from partial

correlation or direct correlation) and different clustering algo-

rithms with various parameters. A systematic comparison was

performed to assess the biological relevance of the clusters

obtained from these different methods: only the most relevant

clustering was then analyzed, i.e., that which was obtained from

the modularity optimization of the network built with partial

correlations. A unique network (the one based on partial

correlations) and a unique clustering (the one based on modularity

optimization) was then kept, because they had the best agreement

with biological knowledge, as computed by using the WebGestalt

software.

In a second step, Ingenuity Pathways Analysis (IPA, https://

analysis.ingenuity.com/pa) was used to explore and confirm the

biological relevance of the identified clusters. IPA software

contains a large bibliographic database with various types of links

already identified between two genes (protein-protein interaction,

ligand-receptor regulation, enzymatic modification, transcriptional

expression regulation, etc.). IPA software was used to build

biological networks, which correspond to the best possible

arrangement of the eligible genes. 67% of the 272 genes

(Table 1) are genes that have already been studied elsewhere

and are annotated and referenced in IPA. For each IPA network a

score is used to rank networks according to their degree of

relevance to the ‘‘Network Eligible Molecules’’ (the input gene list)

in the submitted dataset. The score is derived from a p-value

(based on the hypergeometric distribution and calculated with the

right-tailed Fisher’s exact test) and indicates the likelihood of the

submitted genes to be found together in the same network due to

random chance; for instance, a score of 2 indicates that there is 1

in 100 chance that the submitted genes are together in a network

due to random chance.

Using Spatial Statisics to Analyze the Link with a
Phenotype of Interest

A final analysis focused on the relation between the network

structure and a phenotype of interest (muscle pH). This analysis

was performed by first calculating partial correlations between

gene expressions and pH, using the same method that was

described in the section ‘‘Network definition’’. Then, tools coming

from spatial statistics were used to extract influential genes. This

approach is the one described in [22]. Briefly, it consisted first in

calculating the Moran’s I statistics to measure the correlation

between the network structure and the phenotype of interest and

to perform a permutation test to assess its significance and, then in

finding the genes that had the strongest effects in the correlation

between the value of the variable for a given node and the average

value of this variable for its neighbors.

Additionally, the significance of a higher correlation with pH in

one particular cluster compared to the others, was assessed by

means of a t-test with level 1%, testing the difference in average

between the absolute value of the partial correlation with pH in

the considered cluster and the absolute value of the partial

correlation with pH in the other 6 clusters.

Supporting Information

Figure S1 Cluster 1. 71% of the genes eligible by IPA in

cluster 1 belong to a single bibliographic network involved in

cellular development and cell death (Table 1). The FADD, CLTA

and SFXN1 genes have a high betweenness in the structure of the

graph. They are involved in apoptosis and cellular development

respectively (FADD), in the process of receptor-mediated endocy-

tosis (CLTA), and in cation transport (SFXN1). None of these genes

are influential for the partial correlation with pH, but one of them,

DYSFIP1 is one of the three genes of the 272 to be a DEG

according to pH value, while the two other DEG are in cluster 2.

No functional information is available for DYSFIP1. It has been

identified as a DEG in a skeletal muscle transcriptome study in

mice to be down-regulated when mice are fed with a high-iron diet

[57]. The color and font meanings are given in Figure 8.

(TIFF)

Figure S2 Cluster 2. 93% of the genes eligible by IPA in

cluster 2 belong to a single bibliographic network (IPA) involved in

folding of protein and neuromuscular disease with ten genes (B2M,

IL8, LDHA, OCLN, PDLIM7, PLOD1, SLC6A3, SPARCL1,

VANGL1, and ZRANB1). The muscle pH trait seems to be also

related to some of the genes of this cluster without overall

correlation of the cluster with pH values. TRIAP1 and SUZ12 are

two genes of great importance for this cluster. They are both

involved in the apoptosis process which was identified as one of the

main functions regulated by the eQTL in the original study [15].

Apoptosis is a cellular response to stress which is tightly regulated

by the protein p53. This protein may play a role as a ‘‘guardian of

metabolic balance’’ between glycolysis and mitochondrial respira-

tion for energy production [58], both pathways affecting muscle

pH values. p53 adapts the cellular proliferation rate to the

metabolic state. In the present study, p53 (TP53) gene expression

was not identified to be genetically regulated but TRIAP1 (TP53

regulated inhibitor of apoptosis 1 or p53-inducible cell-survival

factor) plays an important role in response to p53 and determine

cellular survival or death [59]. The other important gene in this

cluster is SUZ12. In mice, the SUZ12 gene was identified as being

required for cellular proliferation and for EZH2 histone

methyltransferase activity [60]. SUZ12 is essential for the

transmission of epigenetic marks [61], important to regulate

embryonic development as the muscle developmental regulator

MYOD [62]. It is very interesting to observe here that the two

most important genes in cluster 2 are involved in very different but

very important processes to regulate cell survival (TRIAP1) and

regulation of muscle development (SUZ12). This supports the idea

that the important genes may regulate complementary biological

processes, even if biologists may be surprised to observe in he same

cluster a direct link between the two genes. The color and font

meanings are given in Figure 8.

(TIFF)

Figure S3 Cluster 3. This cluster is the biggest one with 58

genes but possesses the lowest density. It contains six genes with a

high betweenness and two of them are hubs, but only two are

known (PRDX4 and SON). Sulfiredoxin (as PRDX4) is a new

oxidative stress-induced antioxidant protein. Mechanistic studies

further demonstrated that the integrity of the Srx Prx IV axis is

required for sufficient activation and/or amplification of signaling

cascades as MAPK pathways [63]. 71% of the genes eligible by

IPA in cluster 3 belong to a single bibliographic network (IPA)
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involved stress response, muscle development and protein

synthesis, in particular with seven annotated genes. Six genes,

with five annotated (HNRNPA1, UBAP1, CENPE, GNAI2, and

THYN1), have expression correlated with pH values. The color

and font meanings are given in Figure 8.

(TIFF)

Figure S4 Cluster 5. 80% of the genes in the cluster are

involved in cellular movement around S100A4 and CXCL12. Four

genes have a high betweenness, three are annotated: MDH2,

FAM151B and RNASEK. MDH2 (malate dehydrogenase 2, NAD,

mitochondrial) gene plays a pivotal role in the malate-aspartate

shuttle that operates in the metabolic coordination between cytosol

and mitochondria. Moreover, MDH2 is a putative cis-eQTL on

chromosome 3. The same chromosomal location regulates another

gene in this cluster, ANXA7 (annexin A7). Both genes, MDH2 and

ANXA7 are regulated by a miRNA, miR-135a. In skeletal muscle,

miR-135a expression is modulated following ischemia [64]. The

color and font meanings are given in Figure 8.

(TIFF)

Figure S5 Cluster 6. Cluster 6 is the cluster that can be visually

identified as the densest part of the full network in the upper right

part of Figure 1. Most hubs (14 genes) belong to this cluster. Four

genes have a high betweenness and three of them are hubs and

have a high betweenness: SSR4, FTH1 and MGP. The specificity of

this cluster is to be related to genes tightly transcriptionally

regulated by the same complex of transcription factors. For

example, MGP, MYH2, BMPR2, STC1, FTH1 and TPM3

expressions are regulated by NFAT (nuclear factor of activated

T-cells). The gene transcription leads to protein synthesis, which is

the biological function identified by IPA for this cluster (84% of the

eligible genes are involved in protein synthesis and muscle

development). The color and font meanings are given in Figure 8.

(TIFF)

Figure S6 Cluster 7. This cluster seems to be organized

around ROCK2 (Rho-associated coiled-coil forming kinase 2) and

PCPB2 (poly(rC) binding protein 2). ROCK2 has high betweenness

and was identified as being involved in cell death process (Shi and

Wei, 2007). Cell death corresponds to the main biological function

of this cluster identified by IPA, with 88% of the eligible genes.

PCPB2 is a hub in this cluster while PCPB2 is also a cis-eQTL.

This suggests a possible central role genetically controlled at the

PCPB2 locus itself. PCPB2 with AARS, PABPC1 and SNW1 are

involved in the gene expression regulation, especially via RNA

spicing (Genecodis analysis, [65]). SLC39A14 (solute carrier family

39 (zinc transporter), member 14) is both a hub and a high

betweenness node. Zinc is an essential cofactor for hundreds of

enzymes. It is involved in protein, nucleic acid, carbohydrate and

lipid metabolism, as well as in the control of gene transcription,

growth, development and differentiation. The Zn transporter

SLC39A14 controls the G-protein coupled receptor (GPCR)-

mediated signaling [66]. Cell signaling through GPCR (G protein-

coupled receptors) plays a central role in mediating multiple

signaling pathways. The color and font meanings are given in

Figure 8.

(TIFF)

Table S1 Description of the 272 genes. Full gene

description with accession number, gene name, gene description,

heritability, number of eQTL, putative cis-eQTL, genomic

localization, degree, hub, betweenness, cluster, differentially

expressed for pH, influent for partial correlation with pH, influent

for absolute value of partial correlation with pH.

(XLS)
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