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Abstract

Reorganization of the microtubule network is important for the fast isodiametric expansion of giant-feeding cells induced by
root-knot nematodes. The efficiency of microtubule reorganization depends on the nucleation of new microtubules, their
elongation rate and activity of microtubule severing factors. New microtubules in plants are nucleated by cytoplasmic or
microtubule-bound c-tubulin ring complexes. Here we investigate the requirement of c-tubulin complexes for giant feeding
cells development using the interaction between Arabidopsis and Meloidogyne spp. as a model system. Immunocytochemical
analyses demonstrate that c-tubulin localizes to both cortical cytoplasm and mitotic microtubule arrays of the giant cells
where it can associate with microtubules. The transcripts of two Arabidopsis c-tubulin (TUBG1 and TUBG2) and two c-tubulin
complex proteins genes (GCP3 and GCP4) are upregulated in galls. Electron microscopy demonstrates association of GCP3 and
c-tubulin as part of a complex in the cytoplasm of giant cells. Knockout of either or both c-tubulin genes results in the gene
dose-dependent alteration of the morphology of feeding site and failure of nematode life cycle completion. We conclude that
the c-tubulin complex is essential for the control of microtubular network remodelling in the course of initiation and
development of giant-feeding cells, and for the successful reproduction of nematodes in their plant hosts.
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Introduction

Root-knot nematodes (RKN) Meloidogyne spp. are minuscule

worms which are widespread in the soil. They are obligate

sedentary phyto-endoparasites known to infect above 3000 plant

species. In the course of a compatible interaction, the nematodes

of the genera Meloidogyne are able to alter the host plant metabolic

pathways to their own benefit [1]. The parasitic cycle commences

when the motile second-stage juvenile (J2) penetrates a root in the

elongation zone [2]. This infective stage nematode migrates via

intercellular space of the root cortex towards the root tip and then

moves acropetally along a xylem pole to the differentiation zone of

the root vascular tissue where it establishes the feeding site by

altering the developmental and metabolic program of the vascular

parenchymal cells [3]. A typical nematode feeding site (NFS)

consists of 6 to 8 hypertrophic cells, named giant cells, with dense

cytoplasm containing numerous organelles and characterised by

high metabolic activity [4]. These cells serve as the exclusive

source of nutrients for the nematode until their reproduction.

In the course of differentiation giant cells undergo karyokinesis

followed by incomplete cytokinesis as well as endoreduplication

cycles, resulting in the accumulation of multiple enlarged nuclei

[5,6]. This is accompanied by the partial depolymerisation/

fragmentation of both main components of plant cytoskeleton:

microtubules (MTs) and actin filaments [7]. The reorganization of

the cytoskeleton is essential for establishment of the feeding site

and successful nematode reproduction [7–9].

Microtubules are dynamic filaments formed by polymerization

of heterodimeric protein a-/b-tubulin. They are essential for the

spatial organization of the cytoplasm, establishment of the cell

shape and polarity, cell division, intracellular transport and cell

wall deposition. In plants MTs form four functionally specialized

arrays: 1) interphase cortical network regulates the cell architec-

ture including the direction of cell expansion; 2) preprophase band

(PPB) during G2/M transition predicts site of the forthcoming

division [3,10) mitotic spindle separates daughter chromatides; 4)

phragmoplast mediates trafficking of components required for the

cell-plate synthesis during cytokinesis. The organization of these

arrays requires initiation of new MTs, their elongation, shrinking,

severing and bundling with other MTs. Initiation of new MTs

occurs on structures called MT-organizing centres (MTOCs) [11].

In animals, centrosomes serve as MTOC during both interphase
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and cell division. Higher plants lack a conspicuous MTOC and

new MTs are nucleated from multiple dispersed sites [12]. A key

component of MTOCs is c-tubulin, an evolutionary conserved

homologue protein of a- and b-tubulin [13–16]. c-Tubulin

localizes to the MT nucleation sites of interphase and dividing

plant cells. There are two c-tubulin genes in the genome of

Arabidopsis thaliana and their transcripts were observed in seedlings,

roots, flowers and tissue culture cells [17]. Using heterologous

expression in fission yeast Horio and Oakley [18] have shown that

Arabidopsis c-tubulin was targeted to MTOCs and was able to

nucleate MTs. Downregulation or knockout of both genes causes

disorganization of cortical microtubule network, spindle and

phragmoplast [19,20]. Thus, plant c-tubulin plays an essential

role in MT organization at all stages of the plant cell cycle.

In active MTOCs, c-tubulin associates with five proteins

forming the c-tubulin ring complex, or cTuRC [11]. Collectively,

six proteins are called c-tubulin complex proteins (GCPs), with c-

tubulin itself being GCP1. The cTuRC binds to MT minus ends

and prevents it from depolymerisation [21]. The Arabidopsis thaliana

genome contains orthologues of all components of mammalian

cTuRC: two c-tubulin genes (TUBG1 and TUBG2) and c-tubulin

complex protein genes GCP2 to GCP6 [22]. GCP2-GCP6 proteins

may function as a scaffold for the interaction between 13 c-tubulin

molecules and the MT minus end. Electron microscopy revealed

an open ring structure containing c-tubulin clusters and similar

clusters have been found on the minus ends of MTs [23]. In fungal

and animal cells, components of the cTuRC preferentially appear

at the spindle pole body and the centrosome [24]. In plant cells, c-

tubulin is spatially not restricted to MT ends but also colocalizes

along MTs [25,26] where it nucleates new MTs [27]. Plant GCP

proteins are also required for nucleation of MTs. For example two

core cTuRC components GCP2 and GCP3 decorate the nuclear

envelope of tobacco (Nicotiana tabacum) BY-2 suspension cells and

are required for MT nucleation and cell division [28,22,29].

Recently it has been shown that GCP4 is associated in vivo with c-

tubulin in Arabidopsis thaliana being an essential component for the

function of c-tubulin in MT nucleation and organization in plant

cells [30]. However, the role of other GCP proteins in functional

plant cTuRC remains unknown.

The precise coordination of the feeding site establishment and

microtubule reorganization suggests that RKN can control the

host’s cytoskeleton. An example of this control is synchronous

assembly of multiple disorganised and enlarged spindles and

misaligned phragmoplasts [7]. These phragmoplasts fail to assemble

a cell plate and consequently result in the formation of multinucleate

cells. Whether these abnormal arrays are simply the remnants of a

prematurely aborted cytokinesis or the result of specific rearrange-

ment of MTs and microfilaments in response to parasite factors

requires further investigation. However, all data demonstrate that

abnormal cytokinesis is principal event for the establishment of the

feeding site and successful completion of the nematode life cycle [8].

In order to investigate the role of c-tubulin in the rearrange-

ments of the cytoskeleton in nematode feeding cells [7] we have

carried out nematode infection tests on roots of c-tubulin mutant

lines and show here that knockouts of either gene delays feeding

site development. Immunocytochemical analysis show that c-

tubulin protein localizes to the cell cortex and cytoplasm of feeding

cells, the nuclear surface and along malformed phragmoplasts.

Moreover, c-tubulin co-localizes and makes a complex with a

component of cTuRC, GCP3 [22]. Our data demonstrate that

accelerated growth of giant cells and establishment of functional

nematode feeding site requires functional cTuRC.

Results

Expression of cTuRC Genes in Galls
To explore the role of cTuRC for gall development, we

determined transcription levels of four key members (TUBG1,

TUBG2, GCP3 and GCP4) by quantitative reverse transcriptase-

mediated real-time PCR (qRT-PCR). The total RNA for the

assays was extracted from Arabidopsis roots infected with M.

incognita at three stages of gall development: at young stage (7 days

after inoculation-DAI), intermediate stage (14 DAI), at a mature

stage of gall development (21 DAI) and uninfected roots.

Transcription levels augmented in galls for both c-tubulin genes

(TUBG1 and TUBG2) preferentially at early developmental stage

(7 DAI) and for two GCPs (GCP3 and GCP4) at intermediate

stages (14 DAI) of gall development (Figure 1).

Nematode Feeding Site Development
To address the functional significance of the upregulation of

cTuRC genes during feeding site development, we investigated the

morphology of galls at different developmental stages in 4 mutant

lines (tubg1-1, tubg2-1, tubg1-1 tubg2-2 and amiR-GCP4-9) (Figure 2).

Infection tests were performed to evaluate the competence of

nematode development and reproduction in mutant lines

(Figure 3). Cortical, epidermal and root hair cells of uninfected

roots, of tubg1-1 and tubg2-1 of mature seedlings (40 days after

sowing-DAS) were swollen, expanding isotropically (Figure 2A, 2E

and 2I) but no perceptible phenotype was seen in the vascular

tissue where galls develop. This phenotype was not detected in

young roots (14 DAS) used for nematode infection (Figure S1;

wild-type root 1A and mutant lines 1B to 1D) and nematode

penetration or infection occurred normally (Figure S1E). Lateral

root development also appeared similar in both wild-type and

mutant lines. A lack of root phenotype in roots of both c-tubulin

mutant lines was also observed by Pastuglia et al. [20]. Based on

these observations we predict that the mild phenotype present in

Author Summary

Among plant pathogens, sedentary endoparasitic nema-
todes are one of the most damaging pests in global
agriculture. Nematodes are greatly resistant due to a broad
physiological variability, consequently difficult to fight
against. The use of pesticides is highly pollutant to the
environment and therefore new strategies must be envis-
aged. As nematodes induce fragmentation and long-term
rearrangements of the plant cytoskeleton during infection,
manipulation of cytoskeleton components necessary for
parasitism could be used as targets for the development of
resistant plants provoking the awareness of biotechnology
companies and crop breeders in developing new strategies
for the control of pathogen infection. Here we report the
first stable c-tubulin-GFP expressing plant line and provide
compelling evidence for the physical interaction between
components of the cTuRC, c-tubulin and c-tubulin-complex
protein 3 (GCP3) as part of free cytoplasmic and microtu-
bules associated complexes. We show here that cTuRC is
an essential component of the microtubule nucleation
machinery during giant cell development. The reduction
of c-tubulin and GCP4 levels compromises cTuRC function-
ing and affects microtubule nucleation in giant-feeding
cells, delaying their development and affecting nematode
reproduction. We conclude that upregulation of micro-
tubule nucleation induced by cTuRC is essential for the
nematode parasitism and this process can be targeted in
order to protect plants against nematode infection.

c-Tubulin Ring Complex in Nematode Feeding Sites
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Figure 1. Analysis of Expression Levels of TUBG1, TUBG2, GCP3 and GCP4 in Galls. Relative amount of transcripts of TUBG1, TUBG2, GCP3 and
GCP4 genes in Arabidopsis galls 7, 14 and 21 DAI (white bars) with Meloidogyne incognita by quantitative RT-PCR in comparison to uninfected
condition (black bars). All values were normalized according to qBase with the two reference genes At5g62050 and At5g10790, and expressed as
normalized relative transcript quantities. The bars are means 6SD of three independent biological replicates.
doi:10.1371/journal.ppat.1002343.g001
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mature uninfected roots (40 DAS) should not influence on gall

development. The abnormalities of root morphology and cells

expansion were more pronounced in the double mutant

(Figure 2M). Although, knockdown of c-tubulin genes had no

discernable effect on the ability of nematodes to penetrate,

migrate, and induce giant cells, feeding sites development was

delayed at 7 DAI in both mutant lines (Figures 2B, 2F and 2J). At

14 DAI giant cells in c-tubulin mutants were smaller and

contained enlarged vacuoles (Figures 2C, 2G and 2K). At this

stage nematodes often remained vermiform at stage 2 juvenile (J2)

whereas in wild-type parasitic J2 were larger. At 21 DAI, wild-type

plants contained typical multinucleated cells with dense cytoplasm

(Figure 2D). In contrast, the infected roots of c-tubulin mutant

lines had smaller feeding cells (Figures 2H and 2L) with less nuclei

and large vacuoles. The development of a fraction of nematodes

was arrested at the parasitic juvenile stages. In the double mutant

line (tubg1-1 tubg2-2) infection process resulted in tiny giant cells

containing an average of two nuclei (Figures 2N). Uninfected roots

of the GCP4 mutant line did not show any evident phenotype

(Figure 2O) except for shorter root hairs. Young giant cells in the

amiR-GCP4-9 line were smaller than in wild-type, contained a

reduced number of nuclei and enlarged vacuoles (Figure 2P). At

later stages of development (14 DAI and 21DAI) nematode

development was delayed and giant cells remained small

(Figure 2Q at 14 DAI). Examination of giant cell morphology

correlates with nematode reproduction. Assessment of the

nematode life cycle in c-tubulin mutant lines (tubg1-1 and tubg2-1)

showed arrest of half of galls development and delayed nematode

maturation. Consequently, production of egg masses was signifi-

cantly reduced (Figure 3). A similar analysis could not be performed

with the double mutant since the plants are viable for only 3 weeks.

Localization of c-Tubulin in Nematode Feeding Cells
The localization of c-tubulin in galls of wild-type and mutant

lines was analysed by immunocytochemistry (Figure 4) using a

polyclonal antiserum [20]. In order to locate both c-tubulin

proteins separately in galls, we used the mutant tubg1-1 for

TUBG2 localization and , tubg2-1 for TUBG1 detection. In wild-

type and mutant roots (tubg1-1, tubg2-1 and tubg1-1 tubg2-2) c-

tubulin staining was observed in all root cells (Figure 4D). At 14

DAI galls of wild-type seedlings, c-tubulin protein was localized

throughout the giant-feeding cells and fewer label was detected in

the neighbouring cells (Figure 4A and Figure S2A and S2D). At

the same stage of infection, roots of tubg1-1 revealed c-tubulin

staining in the giant-cell cortex and less in the cytoplasm (Figure 4B

and Figure S2B and S2E) while in tubg2-1 mutant c-tubulin was

localized along the giant cell cortex and around the nuclei

(Figure 4C and Figure S2C and S2F). Weak c-tubulin expression

was seen in giant cells of tubg1-1 tubg2-2 (Figure 4E).

Immuno-gold analysis of the infected wild-type plants (14 DAI)

by electron microscopy demonstrate that c-tubulin co-localize with

MTs (a-tubulin) in the giant cell cortex (Figure 4F), cytoplasm

(Figure 4G), at the nuclear surface (Figure S3B and S3B’) and with

the phragmoplast during mitosis (Figure 4H to 4H’). Cell wall

fragments were visible at the MT ends as dark patches of severely

misaligned phragmoplasts (Figure 4H and 4H’). Free cytosolic c-

tubulin is apparent in Figure S3A.

Spindles in Root Cells of c-Tubulin Mutants of A. thaliana
Are Curved

Crosses between c-tubulin mutant lines (tubg1-1 and tubg2-1)

and marker lines expressing Pro35S-MBD:GFP and nuclear histone

H2B:YFP were used to study microtubule organization in the

mutant background (Figure S4). Mitotic spindles were bowed and

chromosomes were often misaligned in both c-tubulin mutant lines

(Figure S4A for tubg1-1 and 4B, 4C for tubg2-1) in comparison with

wild-type root cells (Figure 4D).

GCP3 Co-localizes with c-Tubulins in Nematode Feeding
Cells

GCP3 localization was observed in giant cells of wild-type

(Figure 5A) as well as tubg1-1 (Figure 5B) and tubg2-1 (Figure 5C)

plants concentrating around the nuclei and cell cortex. Co-

localization of GCP3 and c-tubulin was analysed using electron

microscopy. Both proteins were found in the cytoplasm

(Figure 5D), at the nuclear surface (Figure 5E and 5E’), and at

the cell cortex (Figure S5A and S5A’). Commonly, multiple

colloidal gold particles corresponding to c-tubulin and GCP3

grouped together forming compact clusters in the cytoplasm

(Figure 5D). We have measured the distance between closest gold

particles and found that majority of them were in the proximity of

less than 10 nm (Figure 5F). These data provide compelling

evidence for the interaction between GCP3 and c-tubulin in giant

cells as part of a single multi-protein complex.

Analysis of TUBG1-GFP Localization in Uninfected and
Nematode Infected Roots

35Spro:TUBG1-GFP and 35Spro:GFP-TUBG1 were transiently

expressed in tobacco leaf cells using Agrobacterium infiltration. GFP

fluorescence was observed in the Arabidopsis cytoplasm and in the

nucleus for both constructs (Figure S6) and discrete fluorescent

dots were apparent in the cytoplasm and cell cortex. Arabidopsis

seedlings were transformed with 35Spro:TUBG1-GFP and 35Spro:

GFP-TUBG1 constructs and the F1 generation was analyzed

for GFP expression. Seedlings containing the C-terminal fusion

(TUBG1-GFP) showed the best germination efficiency. The roots of

seedlings germinated on the vertical plates exhibit skewing to the

left if observed from the top side of the plate (Figure S6A) and the

leaves were curling (Figure S7C) compared to wild-type (Figure

S7B and S7D respectively). Confocal microscopy imaging of roots

revealed a left-handed twisting phenotype (Figure 6A and 6B). The

twisting is likely to result from the miss-shaping of the root cells

and disorganization of the root tissues as shown in a cross section

(Figure 6F compared to 6G). Sections of a shoot apex (Figure 6H

compared to 6I) showed right-handed displacement of the cells.

To verify if twisting was caused by the altered properties of

MTs we treated c-tubulin overexpressing seedlings with MT

polymerisation inhibitors propyzamide and oryzalin. Both treat-

ments inhibited root skewing and left-handed twist of the

epidermal cell layers implying that ectopic expression of c-tubulin

increase stability of the microtubules leading to the organ twisting

phenotype (Figure 6C, 6D compared to a twisted root in 6E).

Plants expressing c-tubulin-GFP lacking a twisted phenotype but

still showing GFP-fluorescence were used for localization studies.

Transgenic root apical meristem and lateral root meristem

displayed a patchy expression pattern (Figure 6J and 6K) that

varied between different roots suggesting a post-transcriptional

control of c-tubulin expression. In mitotic cells c-tubulin was

localized to the spindle (Figure 6L) and the phragmoplast

(Figure 6M). During the interphase, multiple discrete foci and

homogeneous fluorescence were observed in the cytoplasm (Figure

6L inset and 6M).

We investigated the mobility of c-tubulin in the cytoplasm using

fluorescence loss in photobleaching (FLIP) analysis. Most of the c-

tubulin-GFP fusion protein was found to be highly mobile (Figure

S8) suggesting that only a minor fraction of total c-tubulin is

utilised in the nucleation of microtubules.

c-Tubulin Ring Complex in Nematode Feeding Sites
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Figure 2. Histological Analysis of Galls and Roots in c-Tubulin Mutant and Wild-Type Arabidopsis seedlings. Bright-field images of
sections stained with toluidine blue. (A) Uninfected root of wild-type seedlings 40 DAS. (B) Gall in wild type roots 7 DAI. (C) Gall in wild-type roots
14 DAI. (D) Gall in wild-type roots 21 DAI. (E) Uninfected root of the c-tubulin mutant tubg1-1 seedlings 40 DAS. (F) Gall in tubg1-1 mutant 7 DAI.
(G) Gall in tubg1-1 mutant 14 DAI. (H) Gall in tubg1-1 mutant 21 DAI. (I) Uninfected root of the c-tubulin mutant tubg2-1 seedlings 40 DAS. (J) Gall in
tubg2-1 mutant 7 DAI. (K) Gall in tubg2-1 mutant 14 DAI (L) Gall in tubg2-1 mutant 21 DAI. (M) Uninfected root of c-tubulin double mutant tubg1-1
tubg2-2. (N) Gall in tubg1-1 tubg2-2 3 DAI. (O) Gall in tubg1-1 tubg2-2 7 DAI. (P) Gall in amiR-GCP4-9 7 DAI. (Q) Gall in amiR-GCP4-9 14 DAI. UR,
uninfected root; Asterisks, giant cell; G, gall; n, nematode. Bars = 100 mm (A) to (D); 50 mm (E) to (L); 20 mm (M) to (Q).
doi:10.1371/journal.ppat.1002343.g002

c-Tubulin Ring Complex in Nematode Feeding Sites
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c-Tubulin-GFP fluorescence was also observed in the cells of

uninfected root vasculature (Figure 7A) as well as throughout all

gall tissues (Figure 7B). Young giant cells (3 DAI and 5 DAI)

showed concentration of c-tubulin around the nuclei and diffuse

fluorescence in the cytoplasm (Figure 7C and 7D). At the later

stages (7 DAI and 10 DAI) c-tubulin expression was observed in all

gall and giant cells (Figure 7E, 7E’ and 7F) and a speckled

fluorescence was notable around the perinuclear cytoplasm

(Figure 7G).

Young (7 DAI; Figure 7H) as well as transitional and mature

giant cells (14 DAI and 21 DAI; Figure 7I and 7J) remained small

and contained more nuclei than wild-type control (Figure 7K).

Mitotic chromosomes were detectable in giant cells of c-tubulin

overexpressing lines (Figure 7I), but not in the wild-type

(Figure 7K). Area measurements on giant cells confirmed a

decreased size compared to wild-type (Figure 8A). Nuclei counts

per section at the core of giant cells (7 DAI) validated the

observation of a larger number of nuclei per giant cell when under

ectopic c-tubulin expression (Figure 8B). Infection tests have

shown a decrease in gall number and egg mass production in c-

tubulin overexpressing lines (Figure 8C).

Discussion

Role of c-Tubulin and GCP3 in Nematode Infection
Transcription analyses demonstrate augmentation of the c-

tubulin (TUBG1 and TUBG2) and two c-tubulin-complex protein

genes (GCP3 and GCP4) in the course of infection with root-knot

nematodes in galls. This corroborates with in situ hybridization

analysis which has shown the transcriptional activation of the c-

tubulin genes in giant feeding cells as well as in neighbouring

tissues that derived from M. incognita targeted vascular root cells

[7]. The transcription levels of TUBG1 and TUBG2 were higher at

an early stage of gall development (7 DAI) while GCP3 and GCP4

transcription increased at an intermediate stage (14 DAI). The

transcription of three genes (TUBG1, TUBG2 and GCP3) declined

in mature giant cells (21 DAI) coinciding with the end of the

mitotic activity in giant-feeding cells. In addition to c-tubulin

proteins, both GCP3 and GCP4 are indispensable components for

the MT nucleating activity of cTuRC in plant cells [22,30]. This

suggests that an optimum level of c-tubulin and GCP in galls is

necessary to provide a sufficient number of new microtubule

nucleation sites for the remodelling of the MT network in giant-

feeding cells and to support recurrent ongoing mitotic activity in

both giant- and neighbouring cells [7].

Analysis of the T-DNA knockout lines demonstrates the

importance of c-tubulin for the establishment of the feeding site

and completion of the parasite life cycle. No visible phenotype was

observed in the vasculature of single knockout plants before

infection by the root-knot nematodes in agreement with the partial

functional redundancy of TUBG1 and TUBG2 proposed by

Pastuglia et al. [20] and Binarova et al. [19]. Both double mutant

tubg1-1-tubg2-2 and RNAi knockdown plants exhibit disruption of

anisotropic cell expansion [19,20] in a similar manner to the drug-

induced reduction of the number of nucleation sites and

randomization of cortical MTs [31]. Although nematodes were

able to penetrate, migrate, and induce gall formation in roots of

tubg1-1 and tubg2-2 lines, there was a significant delay in feeding

site formation, indicating that both c-tubulin genes are required

for proper nematode feeding site development. Consequently, the

number of nematodes that could complete their life cycle and

reproduce was significantly lower in both T-DNA lines as

compared to wild-type. It has been demonstrated in c-tubulin

knockout lines that reduced MT nucleation can delay chromo-

some separation and nuclear proliferation, thereby inhibiting cell

division and impairing growth polarity [32]. We have observed

that residual levels of c-tubulin in the double knockout line is

sufficient for gall induction in agreement with the dose-dependent

effect of c-tubulin on the early feeding site development and

underlines the functional significance of a rise of c-tubulin gene

transcription.

Localization of c-tubulin throughout giant cell differentiation

illustrates its role during nematode infection. At the early stages of

gall development (3 DAI) c-tubulin is mainly localized at the

nuclear surface in giant-feeding cells as well as neighbouring cells.

As giant cells matured, a scattered GFP fluorescence was also

detected in the cytoplasm and cell cortex. Accumulation of c-

tubulin close to the nematode head suggests reorganization of the

Figure 3. Nematode Infection Test of c-Tubulin Mutants tubg1-1 and tubg2-1 Compared to Wild-Type WS or Col-0. The number of galls
(white bars) and egg-masses (lined bars) are significantly decreased in nematode infected roots of both mutant lines compared to wild-type. Data
shown represent means6SD from at least two experiments in which a minimum of 60 seedlings of each line were evaluated for nematode infection.
Statistically significant differences were determined by the one-way-ANOVA using the SPSS for Windows statistical data analysis package (P#0.05).
doi:10.1371/journal.ppat.1002343.g003

c-Tubulin Ring Complex in Nematode Feeding Sites
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microtubule network in the region proximal to the secretion and/

or feeding processes, consistent with the accumulation of ER and

other organelles at this site (de Almeida Engler, unpublished data).

At this stage, nematodes are alternately injecting secretions and

feeding on the cell cytoplasm. It is known that the cytoskeleton acts

differently depending on the plant host and the invading pathogen,

and that the MT response to infection is variable between different

plant-microbe interactions [33,34]. So far, the molecular mech-

anisms regulating MT dynamics during host/parasite interactions

is not well understood and our data suggest that increased c-

tubulin expression might be part of this apparatus.

c-Tubulins Co-localize with MT and GCP3
Immunolocalization experiments demonstrate that c-tubulin

and GCP3 co-localize each other and MTs around the nuclei, in

the cell cortex and in mitotic MT arrays. Therefore dispersed free

or MT associated cTuRCs in giant cells might provide nucleation

of new MTs required for fast array reorganization in giant cells. c-

Tubulin was shown to associate with preprophase bands (PPBs),

spindle, phragmoplast and cortical cytoplasm of soybean, onion,

Arabidopsis and cells of other species [17,25,35,36,37]. Each MT

array appears to have multiple sites for the nucleation of new MTs

which can be located along the lattice of extant MTs, resulting in

Figure 4. Immunofluorescence Detection of c-Tubulin on Galls and Roots in Mutants and Wild-Type Arabidopsis seedlings. Galls 14
DAI of wild-type (A), of tubg1-1 (B), of tubg2-1 (C). Uninfected root of wild-type seedling (D). Gall 7 DAI of tubg1-1 tubg2-2 (E). Dissected galls (14 DAI)
were sectioned and processed for double immunoelectron microscopy with anti-c- and a-tubulin primary antibodies, followed by secondary 10 and 5
nm gold-conjugated antibody respectively. (F) c-tubulin (white arrows) is localized with cortical MT (black arrow) and associated with a-tubulin (blue
arrows). (G) c-tubulin binds to cytoplasmic MT. (H), (H’) and (H’’) c-tubulin is dispersed throughout the misaligned phragmoplast MTs and co-localizes
with a-tubulins. Fragments of cell wall are visible at MT ends as dark patches (red arrows) possibly inducing failure in giant cell cytokinesis. Asterisks,
giant cell; n, nematode, UR, uninfected root; NC, neighboring cells; CMT, cortical microtubule; Cp* giant cell cytoplasm; CW, cell wall; MT, microtubule;
Nu, nucleus. Bars = 50 mm in (A) to (E), 500 nm in (F) and (G) and 5 mm in (H).
doi:10.1371/journal.ppat.1002343.g004
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branching of cortical MTs. This activity may result in the

array composed of randomly oriented bundles observed in the

giant cell cortex. In addition, c-tubulin cooperates with other

known regulators of MT organization including MOR1/GEM1

and MAP65 to regulate MT organization in giant cells [8,38,

39,40,41].

Figure 5. c-Tubulin Complex Protein 3 (GCP3) is Present in Giant Cells and Co-localizes with c-Tubulin. (A) to (C) Immunostaining of
GCP3 (green) in galls 14DAI of wild-type and mutant lines. Gall in wild-type roots (A). Galls in tubg1-1 roots (B). Galls in tubg2-1 roots (C). Dissected
wild type galls (14 DAI) were sectioned and processed for double immunoelectron microscopy with anti-GCP3 and c-tubulin primary antibodies,
followed by secondary 10 and 5 nm gold-conjugated antibody respectively. GCP3 (black arrows) and c-tubulin (white arrows) co-localize in the
cytoplasm (D) and at the nuclear surface (E, E’). Both proteins are also present as monomers in the cytoplasm. (F) Histogram illustrating distances
between gold particles showing that GCP3 and c-tubulin are often in proximity less than 10 nm suggesting their interaction. White bars are for
distances less then 10 nm, grey for distances between 10 and 50 nm, and black bars for distances above 50 nm. Asterisks, giant cell; n, nematode; Nu,
nucleus; Cp*, giant cell cytoplasm. Bars = 50 mm (A) to (C); 100 nm (D); 300 nm (E).
doi:10.1371/journal.ppat.1002343.g005
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Although c-TuRC components are conserved in plant genomes,

their association in a functional complex has not yet been proven.

The pioneering study of Seltzer et al. has provided biochemical

evidence for the association of Arabidopsis GCP2, GCP3 and c-

tubulin in the cytoplasmic soluble complex [22]. Recently

Nakamura et al. [42] have shown that all six members of the

Arabidopsis c-TuRC immunoprecipitate jointly. Immunogold elec-

tron microscopy shows that c-tubulin and GCP3 are located less

then 10 nm apart from each other proving further evidence for the

existence of c-TuRC in vivo and its close association with the MT

lattice.

Both GCP2 and GCP3 localize at the nuclear envelope and play

a role in MT nucleation [22,28] and GCP2 can control

organization of cortical MTs by positioning the c-tubulin-

containing complex on pre-existing MTs [29,43]. The presence

of abnormal spindles in uninfected Arabidopsis roots of tubg1-1 and

tubg2-2 lines agrees with the previous observations of collapsed or

defective spindles and chromosome segregation defects in c-

tubulin mutants of several species such as S. pombe, S. cerevisiae and

Drosophila melanogaster [14,44,45,46,47]. In addition, c-tubulin

depletion in A. nidulans abolishes nucleation of spindle MTs

[48]. This suggests that c-tubulins have conserved functions in

organizing the spindle in phylogenetically distant organisms.

Furthermore, a reduction of the c-tubulin signal seen on spindle

and phragmoplast in amiR-GCP4 cells suggests their interaction

with these arrays during mitosis in plant cells [30].

Figure 6. Ectopic Expression of c-Tubulin in Arabidopsis thaliana Seedlings Causes Root Twisting and Leaf Curling. c-Tubulin
overexpressing roots show twisted phenotype (A) and (B). Roots treated with either oryzalin (C) or propyzamide (D) did not show root twisting as
observed (arrows) in the c-tubulin overexpressing untreated roots (E). Cross section of a c-tubulin overexpressing root stained with toluidine blue
showed miss-shaping of the root cells and disorganization of the root tissues (F) compared to the wild-type (G). Longitudinal section of a shoot
apical meristem stained with toluidine blue showing a leaf curling phenotype (black arrow) of c-tubulin overexpressing seedlings (H) compared to
the wild-type (I). c-tubulin localization (green) in the root elongation zone (J) and lateral root meristem showing a patchy expression pattern (K). c-
tubulin localization along a spindle (L) and a phragmoplast (M). Bars = 100 mm in (A) to (E); 50 mm (F) to (I), (J) and (K); 20 mm (L) and (M).
doi:10.1371/journal.ppat.1002343.g006
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Overexpression of c-Tubulin Induces Stability of
Microtubule Network

The localization of c-tubulin-GFP in living root cells corrob-

orates with results obtained by immunostaining. Indeed, a strong

GFP signal was observed on mitotic spindles and phragmoplasts

during mitosis as well as during interphase around nuclei, a known

site of MT nucleation. The apparent speckled fluorescence in the

cytoplasm indicates the presence of discrete cTuRCs. A similar

distribution pattern has been observed in BY-2 cells transiently

expressing a GFP-c-tubulin fusion protein. There, at the end of

cell division c-tubulin was firstly accumulated at the daughter

nuclear surfaces and evenly spread along the cell cortex [49,50]. In

animals, c-tubulin is also important for the coordination of late

mitotic events [51] and has a MT-independent function in mitotic

checkpoint control [52]. Whether plant c-tubulin performs similar

functions remains unknown, but it can not be ruled out that

reduction of nuclei number in the giant cells of the double mutant

results from the deficiency in these activities.

Our FRAP analysis indicate that the absolute majority of c-

tubulin-GFP freely distributes in the cytoplasm supporting the idea

that microtubule nucleation events in plants are driven by c-

tubulin-containing complexes released from the nucleation sites

and redistributed around the cell. Electron microscopy observa-

tions confirm the cytoplasmic distribution of c-tubulin and the

presence of a large number of closely associated c-tubulin and

GCP3 proteins pointing towards their interaction.

Analysis of the ectopic c-tubulin expression in plants shows a

curling phenotype in leaves and skewing of roots, suggesting an

alteration in dynamics and/or organization of MT arrays.

Treatment of seedlings with oryzalin and propyzamide restored

the normal pattern indicating that overexpression of c-tubulin

leads to MT stabilization or excessive nucleation. It is also

Figure 7. c-Tubulin Localization and Overexpression in Giant Cells of Nematode Infected Roots of the TUBG1-GFP line. (A) c-Tubulin
localization in an uninfected root. (B) c-Tubulin localization in a whole gall. (C) c-Tubulin localization in young giant cells 3 DAI (D) and 5 DAI. (E) c-
Tubulin localization in a whole gall 7 DAI and (E’) detail of a giant cell showing accumulation of c-tubulin protein close to the nematode head
(arrow). (F) c-Tubulin localization in a giant cell 10 DAI. (G) c-Tubulin localization around the nuclei of a giant cell 7 DAI. (H) Giant cell overexpressing
c-tubulin 7 DAI. (I) Mitotic events in a giant cell (white arrows) overexpressing c-tubulin 14 DAI. (J) Giant cell overexpressing c-tubulin 21 DAI. (K)
Giant cell in a wild-type gall 14 DAI. UR, uninfected root; Asterisks, giant cell; G, gall; NC, neighbouring cells; n, nematode, Nu, nucleus. Bars = 50 mm in
(A) and (B), 20 mm in (C), (E), (H) and (K), 10 mm in (D), (G), (I) and (J), 5 mm (F).
doi:10.1371/journal.ppat.1002343.g007
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plausible that ectopic expression of c-tubulin in giant cells

provokes higher mitotic activity by accelerating nuclear division.

In addition, excessive nucleation of MTs might impede giant cell

expansion, nematode feeding and interfere with gall development

and eggmass production. Our previous reports suggested that

cytoskeleton stabilization by drug treatment (taxol) or ADF2

downregulation can disturb gall development and consequently

nematode maturation [7,9].

Microtubule Dynamics in Giant Cells and Concluding
Remarks

Taking into account present and previous data [7] we propose a

model for MT dynamics in giant cells (Figure 9). The transcription

analysis shows that two components of plant MTOCs (c-tubulin

and GCPs) are highly expressed in galls. Knockout of either

TUBG1 or TUBG2 genes results in inhibition of gall and nematode

development, demonstrating that both proteins are important for

feeding site formation, while in non-infected plants gene

redundancy has been observed [20]. Predominant localization of

TUBG2 at the giant cell cortex compared to a more cytoplasmic

distribution of TUBG1 suggests that they might exert different

functions within these large feeding cells. Double knockout

completely abolishes gall development. The reduction of c-tubulin

protein level compromises the MT network integrity. Our

previous findings demonstrate the significance of MT and actin

filaments during interphase as well as mitosis [7-9] for successful

nematode infection and reproduction. c-tubulin is crucial for the

organization and function of mitotic spindle and phragmoplast.

The overall effect of one or both c-tubulin and the GCP4 genes

knockout on the MT network of giant cells agrees with the

hypothesis that cTuRC proteins including c-tubulins and GCP4 are

required for proper functioning of mitotic arrays and MT

nucleation. Bowed spindles observed in root tip cells can be caused

by abnormal nucleation of MTs. Since unusually shaped and

enlarged spindles are normally observed in giant cells, these

anomalies might be caused by the unbalance between c-tubulin

and GCP3 concentration in giant cells, ultimately resulting in

aneuploid nuclei that failed to divide [5,53]. High c-tubulin and

GCP3 concentration may play a role in the formation of disarrayed

phragmoplasts observed in giant-feeding cells and might contribute

to the misalignment of the cell plate and arrest in giant cell division.

The apparent fragmentation and reduction in density of

interphase MTs in giant cells could result from defective nucleation.

Nucleation, dynamics, and spatial organization of MTs are tightly

coordinated processes in plant cells. Proteins secreted by nematodes

may induce MT reorganization by altering MT dynamics. Up-

regulation of cTuRC proteins in galls provides an excess of MT

nucleation sites, which in combination with other factors might

control MT dynamics leading to the reorganization of the entire

array by site-specific destabilization/stabilization activity.

Microtubule response to pathogen invasion depends on the type

of plant–microbe interactions [33] and nematodes are the only

known pathogens capable of inducing the long-term cytoskeleton

rearrangements on their host plants. The local reduction of density

of the cytoplasmic MTs may facilitate susceptibility of host plants

to nematodes in a similar manner to other systems. For example,

microtubule depolymerisation at the infection site has been

observed in the soybean and parsley cells attacked by the

oomycete Phytophthora sojae [54,55]. Stabilization of MTs by taxol

blocks gall development, while breakdown permits nematode

reproduction [7]. Although what stimulates cytoskeletal responses

in nematode feeding cells is still not known, MT and actin

rearrangements might be directly or indirectly induced by effectors

secreted by the nematodes still to be identified.

Here we show that a tight balance between MT nucleation and

dynamics is required for the successful nematode infection and

cTuRC is essential to exercise this balance. The knockout of the

individual components of cTuRCs reduces the efficiency of MT

nucleation and consequently affects gall development and inhibits

nematode reproduction, while the overexpression of c-tubulin

causes overall stabilisation of the MT network and produces a

similar effect on the nematode life cycle. Since upregulation of MT

nucleation in developing giant-feeding cells is essential for nematode

parasitism, the components of cTuRC can be envisaged as potential

targets to design alternative strategies to control pathogen invasion

and spread.

Materials and Methods

Plant Material, Growth Conditions, Nematode Inoculation
and Infection Tests

T-DNA mutagenized lines of the two c-tubulin genes of

Arabidopsis thaliana were obtained from the Versailles and SALK

Figure 8. Giant Cell Area, Number of Nuclei and Infection Tests of c-Tubulin Mutants Compared to Wild-Type. Giant cell area (A) and
number of nuclei (B) in roots under ectopic expression of c-tubulin compared to wild-type and nematode infection test (C) of roots under ectopic
expression of c-tubulin. Area was measured on 60 giant cells. Number of nuclei was counted on 60 giant cells. The number of galls (white bars) and
egg-masses (lined bars) are significantly decreased under ectopic expression of c-tubulin compared to wild-type. Data shown represent means6SD
from at least two experiments in which a minimum of 60 seedlings of each line were evaluated for nematode infection. Statistically significant
differences were determined by the one-way-ANOVA using the SPSS for Windows statistical data analysis package (P#0.05).
doi:10.1371/journal.ppat.1002343.g008
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Figure 9. Microtubule Organization in Giant Cells. The model of giant cell cytoskeleton reorganisation is based on observations of a large
number of gall sections. The illustrations do not precisely reflect the total number of chromosomes or nuclei effectively present per giant-cell. Root-
knot nematodes invade root cells and induce vascular cells (A) to become giant-feeding cells (B) to (F). The first visible symptom of nematode
infection on the microtubule cytoskeleton of a young giant cell is the increase in density of tubulins in the cytoplasm. At this stage, the first nuclear
division results into two enlarged nuclei with outsized nucleoli (B). Giant cells contain a dense cytoplasm and scarce cytoplasmic microtubules which
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collections as described by Pastuglia et al. [20]. The CVP11 (tubg1-

1) and T628 (tubg2-2) lines have been acquired from a T-DNA–

mutagenised population of the ecotype Wassilevskija (WS) from

Pastuglia et al. [56]. The SALK_004612 (tubg2-1) line was acquired

from the ABRC and originates from a T-DNA–mutagenised

population of the Columbia-0 (Col-0) ecotype [57]. Surface-

sterilized seeds of WS, Col-0 and c-tubulin knockdown lines were

germinated on Murashige and Skoog medium (Duchefa, Haarlem,

the Netherlands) containing 1% sucrose and 0.8% plant cell

culture–tested agar (Sigma-Aldrich) and 50 mg/mL kanamycin

for T-DNA mutagenised lines. After 10 days under growth

chamber conditions of 16-h/8-h light/dark cycles at 25uC
kanamycin resistant seedlings were transferred to Knop medium

which favors root development [58]. Plates were inclined at an

angle of 60u to allow the roots to grow along the surface to

facilitate harvesting of roots and galls. For nematodes inoculation,

around 100 surface-sterilized, freshly hatched second stage

juveniles (J2s) of Meloidogyne incognita were adjusted on each 14

day old seedling as previously described [9]. For nematode

infection tests seedlings were kept in Knop medium during 60 days

to allow nematodes to complete their life cycle. At 14 days after

inoculation galls were counted and after 60 days egg mass

numbers were scored.

Quantitative RT-PCR
Total RNA of non-meristematic roots and galls of A. thaliana cv.

WS dissected at various time points after nematode inoculation (7,

14, 21 DAI) was extracted according to the procedure described

by Laroche-Raynal et al. [59]. One microgram of high-quality

RNA was reverse-transcribed using the iScript cDNA Synthesis

Kit (Bio-Rad, Marnes-la-Coquette, France). Amplification and

detection were performed in the Opticon 2 system (MJ research,

Bio-Rad). Reaction mixtures were of a final volume of 15 mL,

containing 7.5 mL qPCR MasterMix Plus For SYBR Green I No

Rox (Eurogentec, Angers, France), 0.13 mM of each primer and

5 mL of 50-fold diluted cDNA templates. PCR conditions were as

follows: 95uC for 15 min, followed by 40 cycles of 95uC for 15 s,

58uC for 30 s and 72uC for 30s. At the end of the programme, a

melting curve (from 65 to 95uC, read every 0.5uC) was determined

to ensure that only single products were generated. At5g10790 and

At5g62050 were used for normalization of qRT-PCR data. These

two genes were previously identified as showing constant

expression in response to different biotic stimuli [60,61,62]. Raw

data were treated using the MJ Opticon Monitor Analysis software

(version 3.1; Bio-Rad). Quantifications were performed with the

modified ÄCt method employed by the qBase1.3.5 software, and

expressed as normalized relative quantity. The primer list is given

in Table S1. Three independent quantitative RT-PCR reactions

were carried out per sample and three biological replicates were

performed. The bars represent mean values from three indepen-

dent experiments.

Morphological Analysis
For morphology observation of uninfected roots and galls of c-

tubulin knockout lines compared to control WS and Col-0 (tubg1-1

line was made in WS and tubg2-1 in Col-0; 20), samples grown in

vitro were fixed in 2% glutaraldehyde in 50 mM PIPES buffer,

pH 6.9, and then dehydrated and embedded in Technovit 7100

(Heraeus Kulzer) as described by the manufacturer. Embedded

roots and gall tissues were sectioned (3 mm) and stained in 0.05%

toluidine blue and mounted in Depex (Sigma-Aldrich). Micro-

scopic observations were performed using bright-field optics and

images were performed with a digital camera (Axiocam, Zeiss).

Immunofluorescence Analyses of c-Tubulin, a-Tubulin
and GCP3

Uninfected roots and feeding sites of roots, inoculated with J2s

of M. incognita, of A. thaliana cv. WS, Col-0, tubg1-1, tubg2-1, and

tubg1-1 tubg2-2 mutant lines were fixed in 4% formaldehyde in

50mM Pipes buffer (pH 6.9). Dissected galls (7, 14, and 21 DAI)

were dehydrated and embedded in butyl-methylmethacrylate as

described by Kronenberger et al. [63] with some modifications.

The immunolocalization procedure was performed essentially as

described by de Almeida-Engler et al. [7]. Slides containing

sectioned nematode feeding sites were incubated with acetone

absolute for 30 min to remove the plastic. Primary and secondary

antibodies were diluted 1:300 and 1:500 (v/v) respectively, in

blocking solution (1% bovine serum albumin in 50 mM Pipes,

pH 6.9). Sections were incubated with blocking solution for

30 min, and overnight at 4uC with the primary antibodies. As

controls, sections were incubated with pre-immune serum or

without primary antibodies. Anti-c-tubulin and anti-GCP3 were

generated respectively as described by Pastuglia et al. [20] and

Seltzer et al. [22]. First, incubation with a polyclonal anti-c-tubulin

or anti-GCP3 has been performed and slides were then washed in

Pipes buffer for 15 min. Slides were subsequently incubated for

2 h at 37uC with the secondary antibody anti-rabbit Alexa 488

(green fluorescence) or Alexa 594 (red fluorescence) and washed in

Pipes buffer for 15 min. For DNA visualization sections were

stained with 49, 6-diamidino-2-phenylindole (DAPI) (Sigma-

Aldrich) at 1 mg/ml in Pipes buffer. Slides were mounted in

90% glycerol in ddH2O and were observed with a microscope

(Axioplan 2; Zeiss) equipped for epifluorescence microscopy and

differential interference contrast optics, and images were collected

with a digital Axiocam (Zeiss).

Immunoelectron Microscopy of Galls and Juvenile
Nematodes

Root galls of A. thaliana cv. WS and Col-0 were dissected at 14

DAI after inoculation and fixed in a mixture of 1.5%

glutaraldehyde, 3% paraformaldehyde in 10 mM PBS containing

150 mM NaCl (pH 7.2) for 3 h at room temperature. After several

washes in PBS buffer fixed galls were incubated in 0.5 M NH4Cl

co-localize with GCP3 protein. Young giant cells contain a dense network of randomly distributed cortical microtubules bound to c-tubulins, and
GCP3 (A) to (F). During giant cell expansion the cytoplasm contain scarce microtubules, and c-tubulins and GCP3 proteins. The cytoplasmic
microtubules remain disarrayed throughout giant cell development. Mitotic giant cells harbour nuclei containing a large number of condensed
chromosomes often dividing in synchrony (C) to (E). During prophase nuclei are often clearly separated containing their packed chromosomes (C).
In the course of metaphase to telophase spindles are large and malformed (D). Accumulation of c-tubulin and GCP3 occurs mainly around the
chromosomes and on the spindles. c-tubulin and GCP3 localize to giant cell phragmoplasts which are misaligned and fail to expand centrifugally
resulting in aborted cytokinesis (E). Some nuclei appear to show incomplete division or to have fused (F). The density of cortical microtubules is
reduced and and cytoplasmic microtubules are sparse. Mature giant cells finally present multiple lobed nuclei which recurrently appear connected to
each other, are surrounded by c-tubulin and GCP3 proteins which are often co-localized suggesting the presence of MTOCS at these sites of giant
cells. Our data suggests that c-tubulin and GCP3 recruitment contributes to microtubule nucleation in mitotic and cortical arrays in root-knot
nematode feeding cells.
doi:10.1371/journal.ppat.1002343.g009
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for 1 h, dehydrated in graded ethanol series, embedded in acrylic

resin LR White (Sigma), and polymerized overnight at 60uC.

Ultrathin sections were collected on parlodion-coated nickel grids,

treated with 0.1 M HCl for 10 min, and washed at least twice with

bidistilled water. The grids were pre-incubated in 1% bovin serum

albumin (BSA) in PBS for 15 min, prior to incubation with pre-

immune goat serum (Sigma) diluted 1:10 in BSA-PBS for 1 h.

Immuno-labelling was performed with primary antibodies diluted

with BSA-PBS. Double labelling was done by treatment of grids

either with rabbit polyclonal anti-c-tubulin (1:500) and the

monoclonal anti-a-tubulin (1:500), for 90 min at room tempera-

ture. The grids were washed 3 times for 5 min in BSA-PBS and

incubated for 1 h with secondary antibodies (10 nm gold-goat

anti-rabbit and 5 nm gold-goat anti-mouse antisera; British

BioCell International) diluted 1:20 with BSA-PBS. Other grids

containing gall sections were incubated in the following immunor-

eagents: first, grids were incubated with rabbit polyclonal

antiserum anti-GCP3 diluted in BSA-PBS. Samples were washed

3 times for 5 min in BSA-PBS and incubated for 1 h with the

secondary antibody (10 nm gold-goat anti-rabbit). Secondly, grids

were incubated with the rabbit polyclonal antibody against c-

tubulin (1:300), washed 3 times for 5 min in BSA-PBS and

incubated for 1 h with the secondary antibody goat anti-rabbit

gold (5 nm). All grids were rinsed 3 times for 5 min in PBS, rinsed

in bidistilled water and stained 5 min in 2% aqueous uranyl

acetate and 2 min in 1% lead citrate. Samples were observed

under a Philips 400 T electron microscope.

In vivo Observations on Whole Roots and Fresh
Nematode Infected Root Slices and Confocal Microscopy

Observation of MTs and nuclei in the nematode feeding sites in

wild-type and mutant lines was performed in nematode infected A.

thaliana seedlings harbouring the MT binding domain of MAP4

fused to -GFP and H2B Histone-YFP (MBD::GFP- His::YFP). More

than 50 root meristems and young galls (2 to 7 DAI) were directly

observed under the microscope. At least 50 galls at various time

points after infection (7 to 15 DAI) were dissected from roots and

embedded in 5% agar. Fresh thick sections of 50–100 mm (7 to 10

DAI) or 150–200 mm (10 to 14 DAI) were performed with a

HM650V vibrotome Microm (Walldorf, Germany). Whole roots

and fresh slices were observed using an inverted confocal

microscope (model LSM510 META; Zeiss). YFP and GFP

fluorescence were monitored in Lambda mode with a 499 to

550 nm beam path (488 nm excitation line). The fluorescent dye

Syto-82 (Molecular Probes) was used at 1 mM final concentration.

GFP or YFP and Syto-82 fluorescence were monitored in Lambda

mode using the 488 nm argon laser line excitation and spectral

detection using 10 nm steps for emission between 499 to 620 nm.

All observations were obtained from at least three independent

experiments.

Constructing TUBG1::GFP and Plant Transformation
The complete coding sequences of TUBG1 gene was amplified

by PCR, using ecotype cDNAs as the template, the primers pairs

attB1F [59-AA AAA GCA GGC TTC-(ACC ATG)-(18/25 nt

template-specific seq)-39] and attB2R [59-A GAA AGC TGG

GTG (TTA)-(template-specific seq)-39] with adapter primers

attB1F (59-GGGACAAGTTTGTACAAA AAAGCAGGCT-39)

and attB2 R (59-GGGGACCACTTTGTACAAGAAAGCTGG-

GT-39). These sequences were then inserted into plant expression

vectors, using GatewayTM Technology (Invitrogen) and the

pDONR207 donor vector (Invitrogen). Cloning was carried out

in Escherichia coli DH10b cells. Transient expression of c-tubulin in

tobacco leaves was performed in leaves of Nicotiana benthamiana by

infiltrating Agrobacterium tumefasciens strain C58C1 harbouring the

35Spro:TUBG1-GFP and 35Spro:GFP-TUBG1 with a syringe and

observations were performed 48 hours after infiltration on the

confocal microscope (Zeiss, LSM 510). To generate transgenic

plants expressing the c-tubulin protein the 35Spro:TUBG1-GFP

(TUBG1-GFP) plasmid was transformed into Agrobacterium tumefas-

ciens strain C58C1 and Arabidospsis thaliana Col-0 were transformed

by floral dipping [64]. Plants with c-tubulin-GFP fluorescence

which did not present a visible phenotype and showing less

expression were used for localization studies. On the other hand,

seedlings with root twisting harbouring c-tubulin-GFP fluores-

cence and showing additional c-tubulin-GFP expression were used

for overexpression studies.

Oryzalin and Propyzamide Treatments
To test the effect of MT cytoskeleton inhibitors on the c-tubulin

overexpressing line presenting twisted roots, TUBG1-GFP seeds

were germinated on MS medium, transferred to the same medium

supplemented with oryzalin (0.5 mM) or propyzamide (5 mM) and

incubated overnight at room temperature. Control experiments

were performed using the same medium in the absence of

inhibitors. Treated and untreated roots were imaged with a

confocal laser scanning microscope (LSM510 META; Zeiss) using

the tile-scan mode with the 10x/0.3NA objective. GFP fluores-

cence was recorded using 488-nm laser excitation and the 505–

530 nm BP emission filter.

Accession Numbers
Arabidopsis Genome Initiative locus identifiers for the genes

mentioned in this article are as follows: At3g61650 (TUBG1),

At5g05620 (TUBG2), At5g06680 (GCP3) and At3g53760 (GCP4).

Supporting Information

Figure S1 Histological Analysis of Roots in c-Tubulin Mutants

and Wild-Type Arabidopsis Seedlings. Bright-field images of

sections stained with toluidine blue. Bars = 50 mm. (A) Uninfected

root of wild-type. (B) Uninfected root tip and (C) vascular tissue

of the c-tubulin mutant tubg1-1. (D) Uninfected root of c-tubulin

mutant tubg2-2. (E) Infected root of c-tubulin mutant tubg2-2

showing massive nematode (arrows) penetration and migration in

a mutant root.

(TIF)

Figure S2 Immunofluorescence Detection of c-Tubulin in Galls

in Mutants and Wild-Type Arabidopsis Seedlings. Galls 14 DAI of

wild-type (A, D), of tubg1-1 (B, E), of tubg2-1 (C, F). c-Tubulin

fluorescence is in green in (A), (B) and (C) and in red in (D), (E)
and (F). Asterisks, giant cell; n, nematode. Bars = 50 mm.

(TIF)

Figure S3 Electron Micrographs Show c-Tubulin and a-

Tubulins Localization in Giant Cells. Dissected galls (14 DAI)

were sectioned and processed for double immunoelectron

microscopy with anti-c- and a-tubulin primary antibodies,

followed by secondary 10 and 5 nm gold-conjugated antibody

respectively. (A) Monomeric c- (white arrows) and a-tubulins (blue

arrows) are distributed in the cytoplasm. (B) and (B’) c- and a-

tubulins are apparent at the nuclear surface. n, nematode; NC,

neighboring cell; Asterisks, giant cell; CW, cell wall; Cp* giant cell

cytoplasm; Nu, nucleus. Bars = 1 mm (A) and 10 mm (B).
(TIF)

Figure S4 Mitotic Cell in Roots Cells of c-Tubulin Mutants of

A. thaliana Exhibit Curved Spindles and Misaligned Chromosomes.

Projections of serial confocal optical sections of mutant lines co-
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expressing the microtubule binding domain MBD::GFP (green)

and nuclear histone H2B::YFP (red) proteins. (A) Spindle in root

cells of tubg1-1; (B, C) of tubg2-1 and (D) in wild-type.

Bars = 5 mm.

(TIF)

Figure S5 Double Immunoelectron Microscopy Localization of

GCP3 and c-Tubulin in Giant Cells. Dissected wild type galls (14

DAI) were sectioned and processed for double immunoelectron

microscopy with anti-GCP3 and c-tubulin primary antibodies,

followed by secondary 10 and 5 nm gold-conjugated antibody

respectively. (A and A’) GCP3 co-localizes with c-tubulin to the

cell cortex. n, nematode; Cp*, giant cell cytoplasm; Cu, nematode

cuticle; CW, cell wall. Bars = 300 nm (A).
(TIF)

Figure S6 Localization of Transiently Expressed TUBG1-GFP in

Leaf Pavement Cells Nicotiana tobaccum. (A) C-terminal fusion,

TUBG1-GFP; and (B) N-terminal fusion GFP-TUBG1. Bar =

20 mm.

(TIF)

Figure S7 Ectopic Expression of c-Tubulin in Arabidopsis thaliana

Seedlings Causes Skewed Roots and Curled Leaves. Roots of c-

tubulin overexpressing seedlings skew to the left side (A) compared

to wild type (B); c-tubulin overexpressing seedlings exhibit leaf

curling (C) compared with the wild-type (D).
(TIF)

Figure S8 FLIP Analysis of c-Tubulin-GFP on a Root Apical

Meristem Cell of Arabidopsis thaliana. (A) Beginning of the

photobleach: region of interest 1 (ROI 1; red) shows c-tubulin-

GFP in the mitotic spindle; ROI 2 (green) is a cytoplasmic region

proximal to the bleach region ROI 4 (yellow). ROI 3 (violet) is a

cytoplasmic region distant from the bleach region. ROI 5 (blue) is

a neighbouring cell used as control. (B) Late stages of the

photobleach show bleaching of the majority of GFP-c-tubulin

molecules (see graph to the left). ROI 1 (red) corresponds to the

spindle position with remaining fluorescence above the back-

ground of ROI 3 (violet) and ROI 2 (green), suggesting a fraction

of Sc-tubulin bound to the spindle has a slow turnover. (C) Image

representing 6 time points of the fluorescence intensity distribution

in meristematic root cells following a FLIP regime of 16 bleach

repeats of each 10secs. Arrowhead points to a spindle.

(TIF)

Table S1 Primer Sequences Used in qRT-PCR Amplification of

the AtTUBG1, AtTUBG2, AtGCP3, AtGCP4, AtOXA1 and AtUBP22

Gene Transcripts.

(DOCX)

Acknowledgments

We would like to especially acknowledge Martine Pastuglia for fruitful

discussions during the project and for providing seeds of the c-tubulin

mutants. We thank Nathalie Marteu for maintenance of nematode

cultures, Gregory Michel for help on initial immunolocalizations and

Lucete Pjarovisky for technical help. We also thank Julie Hopkins for

language corrections.

Author Contributions

Conceived and designed the experiments: JAE GE AS. Performed the

experiments: MYB GE JAE NR FBC TBZ MTM BF MK AS. Analyzed

the data: JAE MYB AS NR GE PA. Contributed reagents/materials/

analysis tools: PH JLE . Wrote the paper: JAE. Amended the paper (helped

writing legends, M&M, added suggestions): AS NR GE.

References

1. Jansky SH, Simon R, Spooner DM (2008) A test of taxonomic predictivity:
Resistance to early blight in wild relatives of cultivated potato. Phytopathology

98: 680–687.

2. Wyss U, Grundler FMW, Munch A (1992) The parasitic behavior of second-

stage juveniles of Meloidogyne incognita in roots of Arabidopsis thaliana. Nematologica

38: 98–111.

3. Von Mende N (1997) Invasion and migration behaviour of sedentary
nematodes. In: Fenoll C, Grundler FMW, Ohl SA, eds. Cellular and molecular

aspects of plant-nematodes interactions. DordrechtThe Netherlands: Kluwer

Academics Publishers 21: 1129–1140.

4. Jones MGK (1981) The development and function of plant cells modified by

endoparasitic nematodes. In: Zuckerman BM, Rhode RA, eds. Plant Parasitic
Nematodes. New York: Academic Press. pp 225–279.

5. Wiggers RJ, Starr JL, Price HJ (1990) DNA content and variation in
chromosome number in plant cells affected by Meloidogyne incognita and M.

arenaria. Phytopathology 80: 1391–1395.

6. de Almeida Engler J, De Vleesschauwer V, Burssens S, Celenza JLJ, Inzé D,
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