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Abstract

Networks of trophic links (food webs) are used to describe and understand mechanistic routes for translocation of energy
(biomass) between species. However, a relatively low proportion of ecosystems have been studied using food web
approaches due to difficulties in making observations on large numbers of species. In this paper we demonstrate that
Machine Learning of food webs, using a logic-based approach called A/ILP, can generate plausible and testable food webs
from field sample data. Our example data come from a national-scale Vortis suction sampling of invertebrates from arable
fields in Great Britain. We found that 45 invertebrate species or taxa, representing approximately 25% of the sample and
about 74% of the invertebrate individuals included in the learning, were hypothesized to be linked. As might be expected,
detritivore Collembola were consistently the most important prey. Generalist and omnivorous carabid beetles were
hypothesized to be the dominant predators of the system. We were, however, surprised by the importance of carabid larvae
suggested by the machine learning as predators of a wide variety of prey. High probability links were hypothesized for
widespread, potentially destabilizing, intra-guild predation; predictions that could be experimentally tested. Many of the
high probability links in the model have already been observed or suggested for this system, supporting our contention
that A/ILP learning can produce plausible food webs from sample data, independent of our preconceptions about ‘‘who
eats whom.’’ Well-characterised links in the literature correspond with links ascribed with high probability through A/ILP. We
believe that this very general Machine Learning approach has great power and could be used to extend and test our current
theories of agricultural ecosystem dynamics and function. In particular, we believe it could be used to support the
development of a wider theory of ecosystem responses to environmental change.
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Introduction

Ecosystems are structured by flows of energy (biomass) between

primary producer plants (autotrophs) and consumers (hetero-

trophs), such as invertebrates, mammals and birds [1,2]. Networks

of trophic links (food webs), which are the primary routes for

translocation of energy between species, are therefore very

important for explaining ecosystem structure and dynamics and

may lead to general theories about responses of ecosystems to

environmental change [3–5]. Few ecosystems have been described

and detailed using food webs because establishing predation

relationships between the many hundreds of species in an

ecosystem is resource intensive, requiring considerable investment

in field observation and laboratory experimentation. Increasing

the efficiency of searches for trophic links by filtering out unlikely

interactions is also often not possible because of uncertainty about

basic background knowledge of the network, such as whether any

two species are likely even to come into contact and interact. In

addition, it may require considerable analysis and interpretation to

translate from the ecological ‘language’ of sample data (count,

abundance, density, etc.) to the network language of links within a

trophic network. Consequently, of the few ecosystems that have

been studied using trophic network approaches, component

communities of ecosystems that provide known, valuable ecosys-

tem services or that are under threat have most often been

evaluated [6].

Machine Learning has the potential to address many challeng-

ing problems in the ecological sciences [7]. In this paper we

demonstrate that a variant of Machine Learning, Abductive ILP

(A/ILP), can be used to automate the discovery of trophic links

from already available sample data. The sample data we use for

training come from the arable farmland ecosystem where

disturbance and farm management has led to great increases in

crop productivity, but often at cost to biodiversity. Here, there is

concern that the extent of biodiversity loss that has occurred [8]

might prevent ecosystem services, such as pollination and
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biological control, from being delivered [9,10]. In this system,

management disturbs trophic links, leading to the observed

changes in diversity of the ecosystem [4,11]. The hope is that by

evaluating trophic links, and their sensitivity to management,

trophic networks might provide a mechanism for predicting

ecosystem change [12].

The data-set was sampled from 266 fields in the Farm Scale

Evaluations (FSE) of genetically modified, herbicide-tolerant

(GMHT) crops. This national-scale experiment evaluated the

change in weed plants and invertebrates between the current,

conventional herbicide management of spring-sown Maize, Beet

and Oilseed Rape and winter-sown Oilseed Rape, and the

herbicide management of GMHT varieties of the same crops using

a split-field design [13]. We use data from the Vortis suction

sampling protocol for epigeal invertebrates [14,15]. The Vortis

samples include a wide variety of generalist predators, such as

carabids and spiders that are considered to be important natural

enemies of pests [16], which have diverse trophic interactions that

are difficult to study [17], certainly in comparison to parasitoids

and pollinators. From changes in abundance of the epigeal

invertebrates we calculate a geometric treatment effect ratio (for

the GMHT treatment count divided by the conventional

treatment count for each species or taxon in the data-set), R,

which we treat as our primary observational data for A/ILP

learning.

Firbank et al. [18] previously found no effect of the GMHT

crops themselves on weeds and invertebrates, and the data can be

treated as the comparison between two herbicide treatments [19].

Surface dwelling invertebrates are typically not directly affected by

herbicides, but are affected through the indirect effects of changes

in resources mediated by the loss of weed plant food and shelter

[14,20]. To construct a hypothetical trophic network for the Vortis

data using A/ILP, we develop a simple conceptual model for the

specific example of the change in epigeal invertebrates between

the conventional and GMHT half-fields; appropriate conceptual

models would need to be developed to allow the application of A/

ILP on other data-sets. We presume that the difference between

the halves of each split field is due to management-induced

mortality of weed plants perturbing the food supply or refugia of

epigeal invertebrate herbivores and detritivores. These animals

then either die, in situ, or relocate to other host weed plants,

possibly in the contrasted treatment. The predators of these

herbivores and detritivores may also relocate, possibly in response

to their prey items. Consequently, one could induce that species

redistribution across the two treatments, following the perturba-

tion of the system by management, would happen such that their

treatment R-ratios were directly correlated.

Alone, correlated R-values might lead to fairly poor discrimi-

nation of trophic links because there are many possible

interactions, such as competition or reproduction, which might

lead to correlation. A/ILP methods could be used to explore and

hypothesize the effects of these different interaction processes on

network structure. Here, however, we identify candidate species

pairs with correlated R-values that are trophically linked from

those that are not, using ‘background knowledge’. Trophically

linked species should share a number of properties that non-linked

species should not. These properties would include an expectation

that at least one of the species pair could be considered a predator;

herbivores or species with inappropriate mouthparts cannot be

predators. We also expect putative predators to be larger than

their prey [21]. Finally, it is expected that the prey and predator

co-occur within the sample, being found within the individual

Vortis samples that make up the half-field data-sets. This

background knowledge acts as conditions on the pairwise species

data selecting for combinations that we predict would be

trophically linked. Importantly, these trophic hypotheses arise

from the data and background knowledge, and independent of

preconceptions, such as ‘species A must eat species B’.

To derive the trophic hypotheses, we use Inductive Logic

Programming (ILP) [22], a form of Machine Learning that uses a

logical representation to describe hypotheses derived from

encoded observation and background knowledge. Problems of

network construction similar to learning food webs have been

tackled in other complex systems, such as gene and metabolic

networks, using an Abductive variant of ILP [23]. Here, we

demonstrate that A/ILP can generate plausible and testable

hypotheses for ‘who eats whom’ from ecological data. In this

approach the abductive predicate ‘eats’ is entirely undefined

before the learning begins. This contrasts with previous applica-

tions of A/ILP where partial, non-empty, definitions exist and the

gaps are filled by abduced hypotheses. We also demonstrate a new

approach for estimating probabilities for hypothetical ‘eats’

relations based on their frequency of occurrence when random

permutations of our ecological ‘training’ data (and hence different

seeds for defining the hypothesis space) are considered.

Our goal for this methodology is to develop and test generic

theory for the predictability of ecosystem change following

perturbation. Models of single species undergoing perturbation

have some value, but tend to be limited in their generality because

a single species model does not teach us much about what the

models for other species, or groups of species, should look like

[4,5]. We would like to make system-wide predictions, across

many species, for ecosystem structure and functioning based on

generic network theory. In this paper we develop the logic and

hypothesize a heterotrophic network from R-values taken from

Vortis suction sample data, and provide evidence in support of the

veracity of the hypothesized links from the literature, where this is

possible. We then discuss the value of the method for this example

and its application in Ecology.

Methods

Abductive reasoning and A/ILP
The main role of abductive reasoning in machine learning of

scientific theories is to provide hypothetical explanations of

empirical observations [24]. Then, based on these explanations,

we try to inject back into the scientific theory new information that

helps complete the theory. This process of generating abductive

explanations and updating theory can be repeated several times as

new observational data become available. In many implementa-

tions of abductive reasoning, such as that of Progol 5.0 used in this

paper [25], the approach taken is to choose the explanation that

‘best’ generalizes under some form of inductive reasoning. This

link to induction then strengthens the role of abduction to machine

learning and the development of scientific theories. We refer to

this approach as Abductive ILP (A/ILP). Technically we refer to

induction as a process of taking a set of examples encoded as

logical sentences that are free of variables and replacing them with

more general hypotheses expressed as logically encoded sentences

that contain universally quantified variables. By contrast, in

abduction the hypotheses are also free of variables, and thus

cannot be viewed as general rules since they do not contain

universally quantified variables. A/ILP technology supports both

abductive and inductive generalisation. In the present application

we use an A/ILP system, Progol5.0, in abductive mode to

construct food webs. Progol 5.0, is freely available for academic

purposes.

Synthesizing Food Webs
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Given a theory, T, that describes our incomplete knowledge of

the scientific domain and a set of observations, O, we can use

abduction to extend the current theory according to the new

information contained in O. The abduction generates hypotheses

that entail a set of experimental observations subject to the

extended theory being self-consistent. Here entailment and

consistency refer to the corresponding notions in formal logic.

Abduction is typically applied to problems that can be separated

into two disjoint sets of predicates: the observable predicates and the

abducible predicates. In practice, observable predicates describe the

empirical observations of the domain that we are trying to model.

The abducible predicates describe underlying relations in our

model that are not observable directly but can, through the theory

T, bring about observable information. Hence, the hypothesis

language (i.e. abducibles) can be disjoint from the observation

language. We may also have background predicates (prior

knowledge), which are auxiliary relations that help us link

observable and abducible information.

FSE data
The FSEs were conducted across Great Britain (GB) in 266

arable fields [15,26]. Site selection was designed to provide fields

that were representative of the spectrum of current arable

cropping in GB, in terms of environmental and agronomic

variables [15,26]. A total of 68, 67 and 66 fields of spring-sown

maize, oilseed rape and beet, respectively, and 65 fields of winter-

sown oilseed rape were selected. Each field was split in half, and

one half was sown with a conventional crop variety and the other

with the test GMHT variety [27]. Invertebrate and weed sampling

was conducted at fixed sampling points along some or all of 12

transects in each half-field, each 32 m long and running

perpendicularly from the field edge into the field [13–15,28].

Details of the Vortis protocol, freely available from the Royal

Society Publishing website [14,15], are only briefly described here.

For the invertebrates we use year total, species and taxon counts

of invertebrates sampled using a Vortis suction sampler from the

surface of the weeds and soil [14,15]. In each half-field, five

10 second suction samples, spaced 1 m apart, were taken at 2 and

32 m along three transects into the crop. For the spring-sown

crops, samples were taken in June and August, while samples from

winter oilseed rape were taken in September/October, and May/

June. Some invertebrates could not be identified to species, and

these were grouped into higher order taxa. Identification was done

to the taxonomic levels specified in Table 1 of Roy et al. [29].

Counts of the invertebrate species or taxa were summed across the

sampling points in each half-field and then across the sampling

dates to achieve a year total count for each species or taxon in each

half-field.

We note that population dynamic theory and empirical

evidence [30] suggest that time delays, or lag, in redistribution

could significantly disrupt our expected model of positively

correlated R-values presented in the Introduction. In the FSE,

the sampling of invertebrates was done, mindful of such potential

disruption, by taking samples one week or more after the

treatment-level conventional and GMHT herbicide managements

were done [13,15].

The counts from each conventional and GMHT half-field pair

were converted to a geometric treatment ratio, as used in

Haughton et al. [14]. Counts were log-transformed, using formula

Lij = log10(Cij+1), where Cij is count for a species or taxon in

treatment i at site j. Sites where (C1j+C2j)#1 were removed from

the learning data-set (as in [14]). The treatment ratio, R, was then

calculated as R = 10d where d = (L2j2L1j). Following the rationale

in Squire et al. [31], important differences in count between the

two treatments were considered to be greater than 50%. Thus,

treatment ratio values of R,0.67 and R.1.5 were regarded as

important differences in count with direction of down (decreased) and

up (increased) in the GMHT treatment, respectively. This informa-

tion on up and down abundances is regarded as our primary

observational data (O) for the learning.

Background or Prior knowledge
Trophic behaviour. Some 181 species or taxa, totalling

193,558 individuals, from the Vortis sampling were included for

A/ILP learning. These species and taxa were allocated either to

consumer or non-consumer groupings, based upon the work of

Hawes et al. [32], prior knowledge and expert opinion of

Agricultural Entomologists and Ecologists.

Body size. Each species or taxon in the data-set was allocated

to a body size category on a scale from small (size class 1) to large

individuals (size class 4) [4]. This categorization was based either

upon the length of the species found in the literature or expert

opinion of length relative to those already categorized. It should be

noted that this estimate of body size, based upon length, does not

take account of body plan and so may be a poor surrogate for body

mass.

Co-occurrence. Co-occurrence scores were computed for

each species or taxon combination from the Vortis data-set. The

co-occurrence scores were achieved at each of the sampling points,

at 2 m and 32 m, on the three transects in each half-field. Any two

species were scored as co-occurring at a sample point where the

count for both species was 1 or greater.

Machine learning of trophic relations from FSE data
We believe that ecological data in this study fulfil the conditions

for the use of A/ILP: firstly, the given background knowledge is

incomplete; and secondly, the problem requires learning in the

circumstance in which the hypothesis language is disjoint from the

observation language. In our problem, the set of FSE observable

data can be compiled and represented by predicate abundance(X, S,

up) or abundance(X, S, down), expressing the fact that the relative

abundance of species X at site S is up or down, in the GMHT

treatment. The knowledge gap that we initially aim to fill is a

trophic relationship between species. Thus, we declare abducible

predicate eats(X, Y) capturing the hypothesis that species X eats

species Y. In order to use abduction, we also need to provide the

rules that describe the observable predicate in terms of the

abducible predicate. An example of such a rule is shown below.

abundance(X, S, up) if

predator(X) and

co_occurs(S, X, Y) and

bigger_than(X, Y) and

abundance(Y, S, up) and

eats(X, Y).

Similarly, a rule for abundance(X, S, down) can be defined. This rule

expresses the inference that following a management-driven

perturbation in the ecosystem, the changed abundance of species

X at site S can be explained by the fact that X eats species Y which

is further down in the food chain and the change in the abundance

of species Y. It also includes additional conditions to constrain the

search for abducible predicate eats(X, Y). These constraints are that

X should be a predator, X and Y should co-occur and that X

should be bigger than Y. Predicates predator(X) and bigger_than(X, Y)

are provided as part of the background knowledge and co_occurs(S,

X, Y) is compiled directly from FSE data. This model describes at

Synthesizing Food Webs
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an appropriately high level the possible transitive effect of

management leading to increased or decreased abundance of

species.

Given the A/ILP model described in this section and the

observed FSE data, Progol 5.0 generates a set of abductive

hypotheses in the form of eats relations between species. To

achieve probability estimates for these hypothetical eats relations,

we use a technique that is based on direct sampling from the

hypothesis space. In some ILP systems, including Progol 5.0,

training data also act as seeds to define the hypothesis space.

Hence, different permutations of the training examples define

different parts of the hypothesis space. We use this property to

sample from the hypothesis space by random permutations of the

training data. The probability of any given hypothetical eats

relation can be estimated from its frequency of occurrence across

random permutations of the training data (and hence different

seeds for defining the hypothesis space).

To formally evaluate the predictive power of the hypothetical

trophic links, we use a ‘leave-one-out’ cross-validation test on the

observed data for species in the network. The abundance of each

predator at each site is left out of the training in turn and we try to

predict whether the abundance of the excluded species is up or

down, given the trophic network generated from the remainder of

the data. We report the average predictive accuracy, defined as the

proportion of correctly predicted left-out test examples. We also

report standard errors associated with predictive accuracies. To

ascertain whether the inclusion of probability estimates for each

‘eats’ relation would have value, we use relative frequencies in the

same way probabilities are used in probabilistic ILP [33]. We

calculate the relative frequencies for hypotheses that imply the

abundance of a test example is up and if this is higher than the

relative frequencies which imply that the test example is down then

we predict that the abundance of the test example is up, otherwise

it is down.

Corroboration of the hypothesized food web
The veracity of the hypothesized network was examined using a

literature search, the result of which is presented as a figure in the

text and a reference list in the supplementary materials (File S1).

The quality of the information cited varies, however. In some cases

a reference describes direct tests of the hypothesized species

interaction using either gut dissections or molecular diagnostics on

gut contents. This provides the hardest evidence. Other papers

relate to observational studies where two species have been

observed interacting and feeding has either been observed or

presumed. For the main body of the papers, the evidence is

anecdotal. Authors have assumed the link exists and analysed field

data based on this assumption. This category of expert opinion

provides the weakest evidence and is provided to show that these

links are accepted as possibilities. Coccinelids (ladybirds or

ladybugs) are extremely polyphagous consumers [34]. Expert

opinion from a specialist was sought to determine whether a

potential prey item might therefore fit the bill of fare. For the

larger carabids, such as the Trechus and Bembidion species, we have

presumed that reference to a prey item of any one species within

either of these genera may also be taken as evidence of predation

for all species within the genera. This paper therefore presents

corroborative evidence for our hypothetical links being realistic

rather than being strict tests of those hypotheses.

Results

Given the observed data and the model described in the

previous sections, Progol 5.0 generates a set of hypotheses in the

form of ‘eats’ relations between species. This set of hypotheses can

be visualised as a network of trophic links (food web) shown in

Figure 1. In this network a relation eats(X, Y) is represented by a

trophic link from species Y to X. The thickness of trophic links

represent the probabilities associated with each hypothetical ‘eats’

relation estimated from the frequency of their occurrence in 10

random permutations of the training data (Figure 1; Figure 2).

The predictive accuracy of probabilistic networks, generated

from 10 random permutations, was found to be 73.67%62.55.

This was significantly greater than for non-probabilistic networks

(65.33%62.75) or those constructed from 10 random permuta-

tions but without the inclusion of probabilities (64.67%62.76). In

all cases the predictive accuracies were significantly higher than

the default accuracy of the majority class (i.e. 51.7%).

Species counts
45 species or taxa were hypothesized to be important within the

Vortis sampled trophic network, representing some 144,061

individuals across the conventional and GMHT half-fields

(Figure 1). This number represented approximately 25% of the

species or taxa and about 74% of the invertebrate individuals

included in the learning.

The full details of the abundance and diversity of the Vortis

sampled invertebrates were presented in Haughton et al. [14] and

Bohan et al. [15].

Network structure
Large carabids, including Bembidion sp., Trechus sp. and Nebria

brevicollis, were found to be important components of the network,

being strongly associated with entomobryid, isotomid, podurid and

sminthurid Collembola prey items (Figure 1, Figure 2). Coccinelid

larvae were also hypothesized to prey upon these collembolans,

and with the Bembidion sp. and Trechus quadristriatus on nymphal

stages of the Cimicidae. The network structure also suggests that

certain predatory invertebrates, such as Bembidion lampros, hetero-

pteran Cimicidae larvae and the spider Lepthyphantes tenuis, may

also serve as intra-guild predation (IGP) prey items for other

Bembidion sp., coccinelid larvae and T. quadristriatus. Possibly the

most important consumers within the hypothesized network were

the carabid larvae which are expected to have strong relationships

with a number of prey item species and taxa. The detritivore

Collembola, represented as the broad taxonomic groupings of the

Entomobryidae, Isotomidae, Poduridae and Smithuridae, were

consistently hypothesized to be important prey resources for a

wide variety of predatory species and taxa, and particularly the

generalist and omnivorous carabids. Relationships between aphid

prey, which represent major prey resources, and potential aphid

predators were present but unexpectedly weak.

We found evidence in the literature to support many of the

hypothesized trophic relationships present within the Vortis

network (Figure 2).

Discussion

We find that machine learning, using A/ILP, produced a

convincing food web from available Vortis sample ecological data.

Many of the learnt trophic links are supported either by

information gathered from the literature or the expert knowledge

of Agricultural Ecologists. This A/ILP food web was built using

logical statements for interactions between species that are

expected to be trophic, encoded in Progol 5.0, which can readily

be interpreted by Ecologists. This means that the logic framework

for learning trophic links, or ‘eats’ relations, can be openly

discussed, a priori, and the hypothesized links are not an abstract,

Synthesizing Food Webs
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statistical product of the data. Two aspects of the use of A/ILP in

this paper are particularly novel. Firstly, the abductive predicate

‘eats’ is entirely undefined before the start of the learning. This

contrasts with previous applications of A/ILP [23] in which

knowledge gaps exist in a partial, non-empty definition and are

filled by abduced hypotheses. This setting is close to the classic

hard problem of predicate invention within Inductive Logic

Programming. The second novel aspect of the approach relates to

the assignment of probabilities to hypothetical ‘eats’ relations

based on their frequency of occurrence when randomly sampling

the hypothesis space. The resulting probabilistic network is a

compact summary of the hypothesis space with a posterior

distribution that could be viewed as a Bayes predictor, and is

expected to have lower error [35]. The results of cross-validation

tests suggest that the trophic networks with probabilities have

significantly higher predictive accuracies compared to the

networks without probabilities. Using probabilities helps to

separate those trophic links with low probabilities, which represent

unstable artefacts, possibly of ordering in the data-set, from those

with high probabilities that can be viewed as stable and reliable

hypotheses.

The results we present are individual, hypothetical ‘eats’

relations assembled into a candidate heterotrophic, arable food

web that is relevant to the GB national scale. This web is for the

epigeal [14] component of the invertebrates present within the

arable system and it allows us to reject, or not, each hypothesized

trophic link. The detritivore Collembola are hypothesized to be

the major prey items within the putative network, as expected

from direct observation [36–38]. The learnt food web suggests that

large generalist or omnivorous carabid beetles were the predom-

inant predators within the epigeal component [39,40]; an

expectation also supported by their relatively high abundance in

the Vortis sample [14,15]. Members of the Bembidion and Trechus

genera and N. brevicollis were hypothesized to prey upon a variety

of species and taxa, including one another.

Discovered trophic links might be tested formally using

molecular diagnostics and more traditional gut dissections and

observational studies. Beyond an acceptable period of formal

testing to show that the automated discovery methods produce

valuable information for different situations and species combina-

tions, repeated testing of whole networks would miss the value of

this approach. Automated discovery will have most value when it

is used to generate networks without the burden of observation

that is currently required for food web construction. After the

method has ‘proved its mettle’, however, such network learning

and generation will still require some level of testing and

verification. This should probably be limited to testing links that

were not expected rather than extensive retesting of well-

established trophic interactions.

The physical structure of the food web is in part a consequence

of the partial background information. For the ‘eats’ relations, we

stated an expectation that invertebrate predators should be larger

than their prey [21]. In effect, ‘big things eat small things’ [4].

Given that we assigned each species or taxon to a 4-level body size

class, this means that the web is limited to four trophic levels.

Consequently, relatively big organisms, such as carabid larvae,

Figure 1. Trophic network hypothesized by A/ILP from Vortis
sampled invertebrates in the FSE data-set. Each link between a
species or taxon represents a learnt ‘eats’ relation that could be tested
either against the literature or by experimentation. The thickness of the
link indicates the estimated probability of occurrence, based on the
relative frequency from 10 random permutations of the FSE training
data.
doi: 10.1371/journal.pone.0029028.g001
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have a large pool of potential prey to draw upon. Despite this, we

were surprised at the number, range and strength of the links

predicted between carabid larvae predators and smaller prey

items. Indeed this food web would suggest that carabid larvae are

an extremely important predator group amongst epigeal inverte-

brates. While carabid larvae are known as voracious, generalist

predators [41,42], difficulties in sampling and an often subterra-

nean habit has limited our knowledge of their predatory role

within arable farmland. In a recent paper, however, Eitzinger and

Traugott [42] have demonstrated that larvae of N. brevicollis have a

wide prey range, including Collembola and linyphiid spiders. This

A/ILP learning suggests that carabid larvae trophic behaviour is

evident in Vortis sample data, even though this method does not

sample below ground, and generates a series of future hypotheses

for trophic interactions between carabid larvae and possible prey

items that could test the importance of carabid larvae as predators

within the arable system.

A noticeable feature of the hypothesized food web is the

widespread presence of trophic links within the guild of predators.

For example, the A/ILP suggests that there are links between

carabid larvae and adults (Bembidion sp.), the bembidions and

spiders (e.g. L. tenuis), Cimicidae nymphs and Orius vicinus, Trechus

sp. and bembidions, cimicid nymphs, Miridae nymphs and

spiders. Intra-guild predation can modify the structuring and

dynamics of a trophic network [43], in addition to reducing the

efficacy of prey control [44]. IGP may be widespread within

arthropod predator communities [44–47]. However, except for a

few cases, and particularly for IGP involving the heteropteran

bugs, there is little evidence from the literature to support these

particular links. It would be an extremely valuable exercise to

determining observationally whether the hypothesized IGP links

have any value, and might adversely affect pest control functions

provided by invertebrate predators in farmland.

The trophic network does highlight a problem with our

expectation that big things eat small things. Spiders appear in

the network only as prey items, except for a low probability entry

as predators of aphids, Cimicidae nymphs and the collembolans.

Spiders sampled by the Vortis, such as L. tenuis, have low body size.

However, spiders are obligate predators. The positioning of

spiders in the network might reflect the treatment of the Vortis

data-set in isolation. Spiders might be linked, as predators, to other

species not sampled by the Vortis suction sampling protocol. By

using silken webs, some spiders may also capture prey much larger

than themselves. While there is evidence that spiders do form the

prey of larger carabids (see supplementary materials File S1),

which would support the food web as presented, further thought is

necessary for how to incorporate groups that might not obey our

simple background information expectations. It would be

necessary to test whether the dimensions of a spider web might

be a more valid measure of spider trophic size than body length.

The size condition used in the model leads to uni-directional

trophic links. One species assumes the trophic role of the

consumer and one the prey item. The possibility that the

interaction is more symmetrical, with either species being able to

consume the other depending on a particular set of circumstances,

is excluded. Potentially, this constraint might lead to the

generation of unrealistic food webs, particularly for groups like

the spiders. Body size determines the likely trophic role in any

interaction and for smaller organisms this might lead to an

increased rate of false negatives for trophic links.

The methodology for learning ‘eats’ relations relies heavily on

correlation between R-values. Correlated R-values alone would,

however, lead to fairly poor discrimination of trophism between

any pair of species in the data-set. Such correlations could come

about in species that share common food resources. They might

also arise simply through chance. It is the background information,

such as expectations of body size relationships and whether a

species might be a predator or not, that allows us to propose a

trophic model and learn who eats whom from this potentially

confounded data. However, this does not explain why we have not

learnt trophic links between species that we expect to eat one

another from field observations. The Aphidoidea are prey items in

a number of hypothesized trophic links, but all are ascribed with

low probability. Field experience would suggest that aphids are

important food resources for a number of predator groups

[39,48,49], including Agonum dorsale. This lack of strong eats

relations may be due to a number of reasons that change the

variation and correlation-values of R across sites. One or both of

the species or taxa being considered may not depend on the

herbicide management being used to perturb the ecosystem.

Those that largely reside or feed on the herbicide-unaffected crop

plants might be insensitive to perturbations caused by herbicide

management, such as some species of aphid pests of the crop.

Certain species may also be affected by insecticide sprays applied

to control pest numbers; disturbances that are not taken into

account here. In addition, the Vortis protocol itself is selective and

does not appropriately sample some species within the network

[14]. By example, we found extremely low numbers of A. dorsale in

the Vortis suggesting that this might not be an appropriate

sampling method for this species.

The hypothesized Vortis network contains a high proportion of

generalist species with a relatively high density of links, and IGP,

compared to specialist links involving isolated pairs of species. This

is largely an artefact of the probabilistic nature of the network,

which is built by superimposing many individual food webs

estimated from permutations of the data. Within the non-

probabilistic networks, from which the final probabilistic model

was constructed, we find isolated interactions between species,

much like those found in traditional host-parasitoid food webs

[12,50]. High link-density and IGP might also result from the way

that we have treated the Vortis data in developing this learning

methodology. To keep the method development manageable, we

examined the Vortis data in isolation, excluding other predators,

including mammals and birds, which might impact on the food

web structure by, potentially, reducing link density and IGP. The

statistics for predictive accuracy, however, would not indicate that

such effects are large. Specialist interactions are also highly

sensitive to the exclusion of either predator or prey species, as

might happen to those species not sampled, or not sampled well,

using Vortis. We have also treated crop and other factors, such as

location and management, as random sources of variation that we

assumed would not affect the hypothesized links and structure of

the network. While our experience of the FSE data would tend to

support this assumption for many such random sources of

variation (see for example [20,51,52], we would not expect this

to hold for crop type as Vortis species composition is known to

vary systematically between crops [53]. It may be that the

structure we have learnt here therefore reflects those links that

appear in all cropping situations; those that tend to be generalist.

Figure 2. Representation of the links hypothesized for each prey item and consumer species or taxon combination in Figure 1. Each
pairwise expectation has a permuted probability (relative frequency), presented as link thickness in Figure 1, and reference numbers, in square
brackets, for references listed in the supplementary materials [File S1].
doi: 10.1371/journal.pone.0029028.g002
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In the future we will examine the sensitivity and generality of

logic-based machine learning of food webs, across cropping and

management situations. One goal is to examine whether these

methods are general and can be directly applied to other

ecological protocols, initially using data from the FSE. Tests of

generality might be to examine whether, for species-pairs sampled

in both the Vortis and a comparison protocol, such as pitfall trap

data, Vortis eats predicates also apply with high predictive power

to the other protocol. We will also examine the sensitivity of the

‘eats’ relations and the hypothesized network to changes in the

values of R that are defined as being important. Are there critical

values of ecological change beyond which the network becomes

saturated or no links are apparent at all? Is the network sensitive to

the sample size or population dynamic time lags? For the FSE data

we can juggle with within-field and between-field data and so

attempt to answer questions about appropriate sampling designs:

for example, how many within-field sample points and field sites

are necessary for constructing food webs? In the introduction we

introduce a model that links the observed value of R to trophism.

For other data-sets, it might not be possible to calculate values

comparable to R. We need to know what happens if we change

our descriptive model and use another metric of ecological change

than R. We believe that this process of testing and analysis of the

method will allow us to learn food webs across different protocols

and potentially build a robust, ecosystem-wide food network for

the UK arable agricultural ecosystem.

The value of ecological function and the theories of functional

ecology for predicting system change, is currently a topic of great

debate amongst Ecologists [54]. Machine learning approaches

might be used to provide a test at the largest scale, greatly

extending fundamental ecological theory. Using the ecosystem-

wide description of the arable food web, it might be possible to ask

which of species- or functionally-based descriptions yield food

webs that have greater parsimony and might, therefore, be more

robust predictors of the effects of environmental change on

agroecosystem diversity and productivity.
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