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The annual sediment load of a river is generally determined either from direct measurements of the sedi-
ment load throughout the year or from any of the many sediment transport equations that are available
today. Due to lack of a long-term sediment concentration data, sediment rating curves and flux estimation
are the most widely applied. This paper has investigated the abilities of statistical models to improve the
accuracy of streamflow–suspended sediment relationships in daily and annual suspended sediment estima-
tion. In this study, a comparison was made between suspended sediment rating curves and artificial neural
networks (ANNs) for the El Kebir catchment. Daily water discharge and daily suspended sediment data
from the gauging station of Ain Assel, were used as inputs and targets in the models which were based
on the cascade-forward and feed-forward back-propagation using Levenberg–Marquardt and Bayesian
regularization algorithms. The model results have shown that the ANN models have the highest effi-
ciency to reproduce the daily sediment load and the global annual sediment yields. Our estimation based
on the available data indicated that the areas along the El Kebir River have experienced high sediment
fluxes that could have obvious impacts on the sediment trapping and siltation in the Mexa reservoir.

1. Introduction

Sediment yield is defined as the total sediment out-
flow from a watershed measurable at a point of ref-
erence during a specified period of time. Sediment
outflow from the watershed is induced by processes
of detachment, transportation, and deposition of
soil materials by rainfall and runoff (Cigizoglu
2002). Accurate estimations of the sediment vol-
ume carried by rivers are necessary to prevent
problems derived from suspended sediment load in
rivers, especially in relation to the loss of water
storage in reservoirs and water quality. Rivers’
flow and sediment load should be observed and

correlation between observation results and the
basin’s characteristics should be determined for
well planning studies on soil and water resources
development (Yenigun et al. 2008).

The estimation of this sediment load must be
based on available data. Whilst flow is gener-
ally measured frequently and can be considered as
a continuous record, measurements of suspended
sediment concentration are usually less frequent.
This lack of information about the suspended sedi-
ment concentration can result in substantial errors
in estimates of the total load because storms can
quickly change the rate of flow of a river. If the
sampling is too infrequent, these events may be
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missed, and, even with fair sampling, it is difficult
to sample a representative number of events.

The choice of a method that can be used to esti-
mate load will usually have a major bearing on
estimates derived from infrequently sampled rivers.
Assessments of methods for estimating loads have
been carried out using data from intensively sam-
pled rivers or using simulated data. One of these
methods, widely used when and where measured
are not available (Jansson 1997; Asselman 2000;
Horowitz 2003; Khanchoul and Jansson 2008), are
empirical models. These models are referred to rat-
ing curves and are usually based on the linear rela-
tionship between log(concentration) and log(flow).
Another picture can be obtained by taking tra-
ditional sediment rating curves that result from
fitting a linear relationship between log(sediment
discharge) and log(water discharge) to calculate
sediment load. The datasets are used to fit the
model and predict the concentrations or sediment
discharges, respectively, using flow data from other
times. This procedure assumes that the relation-
ship between the concentration or sediment dis-
charge and the other variables is representative of
their relationship throughout the period of interest.
Otherwise, problems can arise, such as bias, if the
model is extrapolated beyond the range of the data
used to fit the model, as may be required if there
is no measured concentrations at extreme events.

The sediment load process is a highly nonlinear
and complex system. However, the empirical
regressions, despite of their inability to represent
successfully, the nonlinear complex system have
been widely used (Wang et al. 2006). Another way
to represent the complex sediment behaviour is to
assume that the processes governing sediment yield
are to be stochastic and thus can be described by a
stochastic process and associated probability dis-
tributions. It seems necessary that nonlinear meth-
ods such as artificial neural networks (ANNs),
which are suited to complex nonlinear models, be
used for the analysis of real world temporal data
(Cigizoglu 2004). The ANN is capable to model any
arbitrarily complex nonlinear process that relates
sediment load to continuous hydro-meteorological
data (Wang and Traore 2009).

ANNs are based on the present understanding
of the biological nervous system, though much of
the biological detail is neglected. A neural network
can be trained to perform a particular function by
adjusting the values of the connections (weights)
between elements. The ANN learns from the input
data and the associated output data, which is com-
monly known as the generalisation ability of the
ANN (Hassan 2001). In fact, neural networks are
adjusted or trained, so that a defined input leads to
a specific target output. There are different types of
ANN, but in the present study, two types of ANNs

were used. These were the Levenberg–Marquardt
Function (Lm) and Bayesian regularization (Br)
networks.

The Lm backpropagation algorithm is the de-
fault training function (trainlm) because it is very
fast. Thus, it is highly recommended as a first-
choice supervised algorithm, although it does re-
quire more memory than other algorithms (Adeloye
and Munari 2006). Also, trainlm performs better
on function fitting (nonlinear regression) problems
than on pattern recognition problems. The used
algorithm is a two-layer feed-forward network with
sigmoid hidden neurons and linear output neurons
that can fit multi-dimensional mapping problems
arbitrarily well, given consistent data and enough
neurons in its hidden layer. Whereas, Bayesian
regularization (Br) neural network offers several
advantages for predictive modelling including: the
ability to model any function without the need
to predefine it; the ability to easily handle real
and categorical molecular descriptors; and insensi-
tivity to overfitting and overtraining. Trainbr is a
Bayesian regularization network training function
that updates the weight and bias values accord-
ing to Levenberg–Marquardt optimization. It min-
imizes a linear combination of squared errors and
weights, and also modifies this linear combination
so that at the end of training the resulting network
has good generalization qualities.

Neural network approaches have been applied
in a number of diverse fields, including water re-
sources. In recent years, ANN models have attracted
researchers in sediment load data (Nagy et al.
2002; Tayfur 2002; Merritt et al. 2003; Cigizoglu
2004; Kisi 2004; Agarwal et al. 2005). Jain (2001)
used a single ANN approach to establish sediment–
discharge relationship and found that the ANN
model could perform better than the rating curve.
Cigizoglu (2004) investigated the estimation and
forecasting of daily total suspended sediment load
with feed-forward backpropagation method using
the daily or monthly sediment load and river flow
data. In the river sediment loads modelling study
during storm events of short duration, Rai and
Mathur (2008) found the neural network as a
suitable estimation tool in two catchment areas of
United States of America.

The availability of few data as well as the com-
plex nonlinear process of sediments provided an im-
petus to investigate the potential of using the ANNs
techniques for suspended sediment concentration
modelling in El Kebir River. The study has com-
pared the performance of ANNs and classical re-
gression in modelling the sediment load estimation
using continuous daily water discharge and sus-
pended sediment concentration data collected for
the period 1975/76–1998/99. The use of conceptual
model might overcome the low performance often
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met in the regression method and improve the
accuracy of river’s suspended sediment concentra-
tion estimates. Besides the main objective of this
research, sediment estimation was essential in the
El Kebir catchment to provide basic information
on the problem related to the sediment silting in
the Mexa reservoir.

2. Study area

The El Kebir catchment is located in the extreme
northeast of Algeria. The El Kebir River comes
from the union of three main tributaries, Bougous
River, Ballauta River, and Teboul River (figure 1).
The maximum stream length within the delineated
El Kebir catchment, with an area of 681 km2, is
47 km and there are a total of 2543 km of water-
courses within the basin. Located three kilometers
upstream from the outlet of El Kebir basin, the
Mexa reservoir, with a capacity of 103 million cubic
meters and an area of 651 km2, was built in the end
of 1999 for civil and industrial use. The assessment
of the volume of sediment loads will give informa-
tion on the drainage basin erosion that will serve to
protect the reservoir from high suspended sediment
flux deposition.

The climate over the study basin is Mediterranean,
with dry summers and rainfalls concentrated in
winter periods. The average annual rainfall varied
between 693 (southern part of the basin) and

775 mm (northern part) with an abundance rain-
fall occurring in the wet season from October
to May, conversely to the dry season from June
to September. Although sporadic rainfall events
occurred almost throughout the year, the rainy sea-
son in the area normally lasted for about 3 months
(November–January). Basin land cover is largely
forested associated with sparse shrubs in the higher
elevations, while moderate development is primar-
ily located in the stream valleys. The frequent
use of cultivation techniques such as up and down
tillage triggers rill/gully erosion and mudflow pro-
cesses that, in turn, can generate severe erosion
forms such as large mass movements and badlands
on sandy-clay slopes.

Bedrock is primarily Oligocene sandstone and
clay rocks in the hills and piedmont slopes with
Cretaceous marly limestone and triasic rocks to the
east and southeast in both Bougous and Ballauta
valleys. Unconsolidated cover varies widely through-
out the basin, with less material at the higher ele-
vations and more in the valleys. This study site
has daily streamflow data at Ain Assel gauging sta-
tion and climate data from three National Agency
of Hydraulic Resources (ANRH) weather stations
(figure 1). Daily records were available from 1975
to 1999. Corresponding to the previous period,
the mean annual water discharge was equal to
6.15 m3/s, and the highest monthly values of out-
flows were recorded from December to February
which varied between 13 and 31 m3/s.

Figure 1. Location map of the El Kebir catchment and drainage network presentation. (a) Bougous River, (b) Ballauta
River and (c) Teboul River.
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3. Materials and methods

3.1 Suspended sediment sampling

Fluvial data were obtained from the ANRH (Na-
tional Agency of Hydraulic Resources), which oper-
ates the network of monitoring stations in Algeria.
The Ain Assel hydrometric dataset included:

(1) discrete data of suspended sediment con-
centration (C) and corresponding water dis-
charge (Q),

(2) records of daily water discharge, and
(3) hourly water discharge (based on river stage)

during floods.

Daily mean water discharges were calculated as the
mean of hourly water discharges.

Suspended sediment concentration samples were
transported in one-litre plastic bottles for lab-
oratory analysis. The sediment concentration of
each sample was calculated by filtration method,
evaporating the sample, and then weighing the
remaining sediment. It was assumed that the addi-
tion of dissolved solids to the suspended sediment
through evaporation was negligible. On the other
hand, water samples were taken for measurement
of suspended sediment concentration several times
a year, which made 1086 daily datasets in 24-year
period (1975–1999). Contrary to discharge of flow,
the samples of sediment concentration were not
available after 1999, and the collected flow datasets
can be obtained from the volume of water released
by the Mexa reservoir.

3.2 Application of the sediment rating curve

Once sufficient data have been collected, attention
has been given to deriving the rating relationship.
In the absence of actual suspended sediment con-
centration (SSC) measurements, hydrologists have
used sediment rating curves to predict suspended
sediment concentrations for subsequent flux cal-
culations and to determine long-term suspended
sediment loads.

In a dataset comprising 362 observations of
water discharge and suspended sediment concen-
trations at day (t), regression analyses were made
between the daily suspended sediment concentra-
tion (C) and the daily water discharge (Q) and a
relationship of the daily suspended sediment dis-
charge (Qs) versus daily water discharge (Q). The
most commonly used sediment rating curves are
power functions (Walling 1978; Jansson 1997).

C = aQb (1)

Qs = aQb, (2)

where a and b are regression coefficients. The daily
suspended sediment discharge (in kg/s) in the river
was calculated by multiplying the daily mean sed-
iment concentration (g/l) with the corresponding
mean water discharge (m3/s).

For the regression methods presented above, we
have chosen to present a further interesting predic-
tion about the suspended sediment transport that
has been extracted from the multiple regression
analysis. The data considered in this regression
analysis were 1086 observations. The input combi-
nations that were tested to estimate suspended sed-
iment values for Ain Assel station covered the daily
flow at day t (Qt), two antecedent daily flows and
daily sediment concentrations at days t−1 and t−2
(Qt, Qt−1, Qt−2, Ct−1, Ct−2). The daily sediment
concentrations at day t (Ct) were taken as out-
puts. For the Q−Qs multiple regression, the input
data of Qt, Qt−1, Qt−2, Qst−1, Qst−2 at days t, t−1
and t−2 were taken as independent variables and
Qst at day t was chosen as a dependent variable.
In order to compare the performance of multiple
linear regression and ANN, we divided the 1086
datasets into 978 and 924 training datasets for mul-
tiple linear regression, 108 (10%) and 162 (15%)
sets were regression model testing for test datasets.

3.3 Artificial neural networks and
statistical performance

The basic neural network employed in this study
possessed a three-layer learning network consisting
of three distinctive layers, the input layer, where
the data were introduced to the ANN, the hidden
layer, where data were processed, and the output
layer, where the results of ANN were produced.
The proposed Levenberg–Marquardt algorithm
and Bayesian regularization to train the neural
networks of the current research study was based
on the feed-forward backpropagation method
(FFBP) and cascade-forward backpropagation net-
work (CF). Different combinations of several inter-
nal parameters, i.e., data partitioning approach,
number of hidden layers, number of neurons in
each hidden layer, transfer function, error goal,
etc., were tried.

The application of a function newff in relation to
inputs, target, and number of neurons has created
a feed-forward network. The principle of this func-
tion was to use the units where each performed a
biased weighted sum of their inputs. Then, these
units passed this activation level through a trans-
fer function to produce their output, and the units
were arranged in a layered feed-forward topol-
ogy (figure 2a). Once the number of layers and
number of units in each layer, has been selected,
the network’s weights and thresholds have been
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Figure 2. An exemplary three-layer feed-forward ANN
structure.

set so as to minimize the prediction error made
by the network. This was the role of the train-
ing algorithms. The used function ‘newcf’ has cre-
ated cascade-forward networks. The CF included
a three-layer network that has connections from
layer 1 to layer 2, layer 2 to layer 3, and layer 1
to layer 3 (figure 2b). The three-layer network also
has connections from the input to all three layers.
In this study, Tan-sigmoid (tansig) and pure lin-
ear (pureline) transfer functions were selected for
both forward backpropagation networks to reach
the optimized status.

The number of neurons in input layer varied from
1 to 3, which represents the amount of water dis-
charge (Qt) at the current day, one day (Qt−1) and
two days (Qt−2) before the date of observed sedi-
ment discharge (Qst) or suspended sediment con-
centration data (Ct). The Qs and C data were
taken as targets at the present time t and past
(antecedent) times (t–1, t–2). Thereafter, the 1086
input and target data (raw data) needed to be nor-
malized before use in the ANN training and test-
ing to commensurate with the upper and lower
bound limits of the activation functions were used
in the hidden neurons. This has ensured fast pro-
cessing and convergence during training and has
minimized prediction error (Rojas 1996). In this
study, the input and target data were preprocessed
to scale the data between the range −1 and 1 using
the following equation:

zp = 2 × (xp − xmin)
(xmax − xmin)

− 1, (3)

where zp is the normalized or transformed data
series, xp is the original data series, xmin, xmax

are the minimum and the maximum values of the
original data series, respectively.

The network was trained using a number of hid-
den neurons in the hidden layer with respect to for
network with more epochs (iterations) of the neu-
ral network, which would result in different simu-
lated results. Prior to training, the divide function
was accessed automatically whenever the network
was trained.

The literature offers little guidance in selecting
the datasets for training and the test sample. The
choice of data portions for training, testing and val-
idation has never been subjected to general rules,
where the generation of neural network models
using data division has always given the users the
opportunity to adjust or reduce the portions of
the data used for testing and validation and of
course training. In fact, most authors select the
test and validation sets with the same number of
data that would have an equal probability to avoid
underestimation of the test or overestimation of
validation and vice versa.

In this study, we have used the default method
for improving generalization. This technique was
automatically provided for all of the supervised net-
work creation functions, including the backprop-
agation network creation functions such as newff
and newcf. In this technique, the net.divideFcn
(division function) was set to ‘dividerand’ (the
default), and the available data was randomly
divided into three subsets with equal proportions
in the testing and validation sets. With these set-
tings, the input vectors and target vectors were
divided into three sets as follows:

• 70% and 80% were used for training.
• 15% and 10% were used to validate that the net-

work was generalizing and to stop training before
overfitting.

• The last 15% and 10% were used as a completely
independent test of network generalization.

The training dataset was used to train the neural
network by minimizing the error of this dataset
during the training. The cross validation data were
used to find the network performance by monitor-
ing the training and guarding against overtraining.
Then, the test set was used for checking the overall
performance of the trained network. If the network
performance was quite correct on both the test
sample and the validation sample, we would be
reasonably assuming that the network has a good
generalization power on unknown data and less
overfitting problem and therefore we would con-
serve the above data division; otherwise, a change
in the division function could be done by taking for
example 70 or 80% for training, 20% and 10% or 15%
and 5% for testing and validation, respectively.



1308 Z A Boukhrissa et al.

The issue of determining the optimal number
of hidden nodes is a crucial yet complicated one
because there is no precise formula for selecting
the optimum number of hidden neurons. In this
study, the number of hidden neurons in FFBP and
CF was decided after a series of trial runs in net-
works having minimum error. A rough approxi-
mation has been obtained from the Kolmogorov’s
Theorem. For a three-layer network, this theorem
stated that twice the number of input neurons plus
one is a sufficient number of hidden neurons to
model any continuous function (Subramanian et al.
2004). For selecting the number of hidden neurons,
we started with 2 hidden neurons and gradually
increased the number until a network of 7 hidden
neurons with least mean squared error was attained
(Kolmogorov’s application). The network was
trained again by increasing the number over 7 hid-
den neurons. Finally, up to 12 hidden neurons, we
could in some trials achieve the least mean squared
error and excellent prediction of the response vari-
able. Further increase in hidden neurons produced
high error and poor network performance.

During this process, we have created a large
number of networks, and we have retained more
than just the best of these. Therefore, the exper-
iments might control how many networks should
be retained and the criteria were used in deciding
which networks to retain.

The performance of linear regressions, feed-
forward backpropagation, and cascade-forward
backpropagation were evaluated using Root Mean
Square Error (RMSE) technique. This has been
defined as:

RMSE =

√
√
√
√

∑N

i=1

(

Ci − Ĉi

)2

N
(4)

where Ci is the observed sediment concentration
value; Ĉi is the calculated sediment concentration
value; N is the number of elements; RMSE gives a
quantitative indication for the model error; it mea-
sures deviation of the forecasted and/or simulated
value from the actual observed value. The ideal
value for RMSE is 0.

Other possible mathematical associations were
tried with the independent variables. The model
efficiency factor EF of observed and predicted val-
ues were estimated for different predictions on vali-
dation datasets. The best model was selected based
on the EF value approaching one. The model effi-
ciency factor was estimated for all the validation
sets using the equation:

EF = 1 −
∑n

i=1

(

Ci − Ĉi

)2

∑n

i=1

(

Ci − C̄
)2 , (5)

where n is the total number of observations, Ci the
ith observed value, C̄ the mean of observed values,
and Ĉi the ith predicted value.

Errors of estimation (E) have been calculated
and expressed as percent errors of the estimated
sediment load value from the observed sediment
load one (13.63 × 106) as follows:

Error (%)=
(

Estimated sediment load
Observed sediment load

− 1
)

× 100.

(6)
A positive percent error represented was associ-
ated with an overestimation of the suspended sed-
iment load and a negative percentage represented
an underestimation of the value.

4. Results and discussion

4.1 Sediment load-based rating curve

The sediment rating curves developed using Q−C
and Q−Qs for all available data from Ain Assel
hydrometric station were presented in figure 3. The

Figure 3. Relationships of (a) sediment concentration ver-
sus water discharge and (b) sediment discharge versus water
discharge.
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best-fit of the theoretical functions, obtained with
single derived sediment rating curve equations,
have shown coefficients of correlation (r) equal to
0.55 and 0.93, respectively. The resulting RMSE
and EF were equal to 2.00 and 0.20, 233.69 and 0.74
for the Q−C and Q−Qs relationships, respectively.

The best-fit power function lines through the
data have underestimated the suspended sediment
concentrations and suspended sediment discharges
at high water discharges by 21% (table 1), and it
is important for the high water discharges to be
accurately represented because the main part of
the suspended sediment load is transported during
these very high discharge events. Indeed, the used
sediment rating curve has given somehow a low
underestimation, but the regression line can show
overestimation at low water discharge values.

Based on the 90% (978 sets) and 85% (924 sets)
training data, the training phase used to find the
model parameters was deduced through the regres-
sion analysis. The multiple regression of dependent
variables C or Qs at day t versus those variables
of Q, C, and Qs, at days t, t−1, t−2, have revealed
a positive, yet somewhat a less strong relation-
ship between water discharge and sediment con-
centration data but a strong relationship between
water discharge and sediment discharge (r = 0.93).
A comparative analysis, in terms of statistical mea-
sures, of RMSE, EF and r is summarized in table 1.
The results have shown less error and slightly
better efficiency for the Q−Qs relationship; how-
ever, the testing set revealed that performance of
the models did not capture the complex behaviour
of suspended sediments well. The results were not
significant in relation to the error (RMSE > 400)
and efficiency factor (EF = 0.79 and less) values,
whereas, values of r in this testing phase equal
to 0.91 were considered fairly good. Apparently,
it seemed that the estimated suspended sediment
discharges did not approximate the corresponding
observed sediment discharges at medium and high
values.

4.2 Sediment load-based ANNs

Two different types of neural networks (Lm and
Br) have been used to predict suspended sediments
in El Kebir River. An improvement in the sediment
discharge simulation performance has occurred.
This improvement in the suspended sediment pre-
diction has also been obtained through a random
division of data into three subsets with equal per-
centages at testing and validation stages where the
error in the test set did not reach a minimum at
a significantly different iteration number than the
validation set error; this has indicated a good divi-
sion of the dataset. The amelioration was also pos-
sible through a choice of the network functions
(FFBP and CF) as well as through a change of
the number of neurons in the hidden layer, where
they have played a significant role in ANN model
performance.

The input layer combination with flows at days
t, t − 1, t − 2 and t + 1 has provided best perfor-
mance criteria. After training was over, the weights
were saved and used to test each network perfor-
mance on test data. In both the neural network
algorithms the significantly chosen number of neu-
rons in input layer and output layer varied between
6 and 12. Generally, network training was stopped
by predefined error level known as goal or on com-
pletion of predefined number of epochs (table 2).
From the models listed in the later table, a possible
drawback of applying the ANN approach could be
done in which for each chosen data ratio division,
the feed-forward or the cascade network had to be
fixed during the training; meanwhile, the number
of hidden neurons needed to be gradually increased
for each simulation to get the best performance.

In Lm for cascade-forward network and Br for
feed-forward backpropagation, adaptive learning
procedures were followed because they have pro-
vided the best estimation of sediment discharge.
From the several trainings, the ANN results
have given an accepted relationship, with slight

Table 1. Statistical results of the water discharges and sediments relationships.

Variables RMSE EF r

C − Q 2.00 0.20 0.59

Q − Qs 233.69 0.74 0.93

Training Testing

Ratio (%) RMSE EF r RMSE EF r∗

Ct versus Qt, Qt−1, Ct−1, Qt−2, Ct−2 90:10 1.80 0.19 0.61 2.27 0.37 0.62

85:15 1.81 0.17 0.60 2.08 0.34 0.62

Qst versus Qt, Qt−1, Qst−1, Qt−2, Qst−2 90:10 166.86 0.65 0.93 490.66 0.78 0.91

85:15 166.01 0.61 0.93 414.00 0.79 0.91

r*: coefficient of correlation of the observed C, Qs versus estimated C, Qs.
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Table 2. Performances of Lm and Br during the testing period.

Networks Training SL simulated Error of

Hidden neurons function function RMSE r EF (×106 tonnes) estimation (%)

Ratio 80:10:10

9 FFBP Lm 0.040 0.975 0.95 13.75 +0.88

12 FFBP Lm 0.038 0.978 0.96 13.57 −0.47

9 FFBP Br 0.040 0.976 0.95 13.56 −0.51

12 FFBP Br 0.039 0.977 0.95 13.53 −0.73

9 CF Lm 0.040 0.975 0.95 13.62 −0.07

11 CF Br 0.039 0.977 0.95 13.58 −0.37

12 CF Br 0.039 0.976 0.95 13.71 +0.59

Ratio 70:15:15

10 FFBP Lm 0.038 0.977 0.96 13.80 +1.25

12 FFBP Lm 0.037 0.979 0.96 13.43 −1.47

6 FFBP Br 0.040 0.975 0.95 13.59 −0.29

10 FFBP Br 0.040 0.975 0.95 13.87 +1.76

11 CF Lm 0.043 0.972 0.94 13.95 +2.35

9 CF Br 0.040 0.975 0.95 13.49 −1.03

12 CF Br 0.040 0.975 0.95 13.52 −0.81

Table 3. Performance evaluation of training, validation and testing for two ratio sets.

Operation Networks function Nodes Equation r RMSE

Ratio 80:10:10

Training CF (Lm) 9 Output = 0.94Target+0.059 0.97 0.116

Validation CF (Lm) 9 Output = 0.99Target+0.012 0.99 0.021

Testing CF (Lm) 9 Output = 0.77Target+0.220 0.86 0.439

All CF (Lm) 9 Output = 0.95Target+0.046 0.98 0.094

Ratio 70:15:15

Training FFBP (Br) 6 Output = 0.94Target+0.058 0.97 0.115

Validation FFBP (Br) 6 Output = 0.95Target+0.042 0.96 0.090

Testing FFBP (Br) 6 Output = 0.98Target+0.026 0.99 0.045

All FFBP (Br) 6 Output = 0.95Target+0.046 0.98 0.094

underestimations (E=−0.07 in CF–Lm with 9
nodes and E = −0.29 in FFBP–Br with 6 nodes).
The use of a number of hidden neurons equal
to 9 and 6 and a number of iterations (epochs)
of 120 and 240, respectively, has provided a best
validation performance of the training, validation
and testing of 0.0016 and 0.24 stopped at training
epochs of 60 and 200 to avoid any increase of the
validation error. These performances correspond to
the mean squared error (MSE) of both models.
Based on the Levenberg–Marquardt and Bayesian
regularization algorithms that were used for train-
ing, these relations have shown reasonable curve
trend results, because the test set error and the val-
idation set error have similar characteristics, and it
did not appear that any significant overfitting has
occurred.

When analyzing results from the descriptive
statistics shown in table 2, the RMSE and error
of estimation (%) were found to proffer a different
trend in which one parameter values were not

directly proportional to the other ones. As
explained previously, the error (%) and RMSE pro-
vide different types of information about predic-
tive capabilities of the model. Nevertheless, the
reason of their dissociation was due to the fact
that the RMSE measured the goodness-of-fit rele-
vant to high values whereas the error (%) yielded
a more balanced perspective of the goodness-of-fit
at moderate values.

From the simulation study which was carried out
on three proportions of ratio as listed in table 3, it
was found that the Bayesian regularization model
has given a higher coefficient of correlation but a
slightly higher RMSE during the testing; mean-
while, the validation in the Lm algorithm has pro-
vided a higher coefficient of correlation and a lower
RMSE. The results, though producing some dif-
ferent patterns, often did not differ broadly by an
order of magnitude between outputs and targets.

The regression performance and the computa-
tion of EF have also provided information about
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the predictive capabilities of the models. Single
plot displays of network outputs with respect to
targets for training, validation, and test sets were
represented by a coefficient of correlation equal to
0.98 (figure 4). For a perfect fit, the data fitting a
function should fall along a 45 degree line, where
the network outputs are equal to the targets. On
other hand, the high r values resulted from the
dataset of 9 and 6 neurons ANN models have pro-
vided higher values of the model efficiency factor
(EF = 0.95). Overall, the results indicated that
ANNs were a promising method for predicting
suspended sediment concentrations, as they have
performed better than the conventional sediment
rating curve method.

Using results of Q and Qs ANN model at days
t, t−1, and t−2, it has been observed that the esti-
mated sediment loads using CF–Lm and FFBP–
Br were equal to 22.91 × 106 tonnes and 23.01 ×
106 tonnes respectively, corresponding to a mean
annual sediment yield of 1404 T km−2 year−1 and
1410 T km−2 year−1 during the 24-year period.

Figure 4. Observed (target) and predicted (output) sus-
pended sediment concentrations using ANN models.

The bulk of suspended sediment transport in the
El Kebir River, according to ANNs model, took
place in the winter months (figure 5). The stream-
flows and yields were highest in the winter sea-
son (December to February) as represented by the
downstream station of Ain Assel. In fact, these win-
ter months have represented 59.60% (CF–Lm) and
59.36% (FFBP–Br) of the total annual sediment
values. Nevertheless, it appeared from figure 5 that
the high sediment loads have reached their peaks
before the water discharge peak. This is mainly due
to more efficient sediment supply and transport
during the months of December and January.

In the study catchment, sediment transport was
at its lowest during the period June to August
and September. Month-to-month suspended sedi-
ment concentration variability was more consistent
from November to May, where the monthly means
ranged from 7.00 to 3.12 g/l.

Heavy and excessive rainfall trigger high water
discharge and suspended sediment load. This shows
the effect of a few days with extremely high sus-
pended sediment transport, a trend similar to water
discharge in the basin (Gupta and Chakrapani
2007). A possible explanation for the considerable
higher sediment yield in El Kebir River lied on the
fact that morphological factors (e.g., rainfall inten-
sity and land use) coupled with the dominant weak
geological layers (e.g., clay and marl) and topog-
raphy have acted as additional forces to sediment
availability within the catchment. Hence, we might
expect that the dam suffering from sedimentation
would gradually increase in near future and conse-
quently the rate of loss of storage capacity would
increase. Lack of proper study or adequate data on
reservoir sedimentation in the region was a problem
in estimating the rate of silting and the economic
life time of the Mexa reservoir.

Figure 5. Seasonal pattern of suspended sediment loads in
the study catchment.



1312 Z A Boukhrissa et al.

5. Conclusion

In the present study, an effort was made to com-
pare the ANN and sediment rating curve mod-
els for prediction of suspended sediment load from
the mean runoff resulting from the rainfall events
of different intensities and durations over the El
Kebir catchment. It was seen that including flow
and suspended sediment concentration or sediment
discharge in a nonlinear function could not per-
form a good prediction of sediment load in spe-
cial conditions. Meanwhile, the use of three-layered
ANN structure with the number of nodes in hid-
den layer via Levenberg–Marquardt and Bayesian
regularization algorithms has improved the simu-
lation results and therefore was sufficient to obtain
satisfactory performance in suspended sediment
load prediction. Therefore, the obtained results
were of significance since the ANN predicted sus-
pended sediment concentration values representing
the average behaviour, providing a total sum close
to the observed one.

Neural network can be a potential estimation
method which can be used for a better understand-
ing of sediment flux that was considered high in
the study catchment. The prediction of suspended
sediment loads has carried significance for the pos-
sible reservoir sedimentation in the present. There-
fore, the results of this study which have shown
that ANNs were an important tool in suspended
sediment load simulation, could be considered as
progress for sediment transport modelling.

Lack of long-term sediment load data has repre-
sented key constraints on such work, but surrogate
data on past sediment obtained from the monitor-
ing station and from reservoir sediment deposits
and through space–time substitution clearly could
possess considerable potential in such work.
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