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Abstract

Insulin-like growth factor-1 (IGF-1) plays a critical role in the development of the growing skeleton by establishing both
longitudinal and transverse bone accrual. IGF-1 has also been implicated in the maintenance of bone mass during late
adulthood and aging, as decreases in serum IGF-1 levels appear to correlate with decreases in bone mineral density (BMD).
Although informative, mouse models to date have been unable to separate the temporal effects of IGF-1 depletion on
skeletal development. To address this problem, we performed a skeletal characterization of the inducible LID mouse (iLID),
in which serum IGF-1 levels are depleted at selected ages. We found that depletion of serum IGF-1 in male iLID mice prior to
adulthood (4 weeks) decreased trabecular bone architecture and significantly reduced transverse cortical bone properties
(Ct.Ar, Ct.Th) by 16 weeks (adulthood). Likewise, depletion of serum IGF-1 in iLID males at 8 weeks of age, resulted in
significantly reduced transverse cortical bone properties (Ct.Ar, Ct.Th) by 32 weeks (late adulthood), but had no effect on
trabecular bone architecture. In contrast, depletion of serum IGF-1 after peak bone acquisition (at 16 weeks) resulted in
enhancement of trabecular bone architecture, but no significant changes in cortical bone properties by 32 weeks as
compared to controls. These results indicate that while serum IGF-1 is essential for bone accrual during the postnatal
growth phase, depletion of IGF-1 after peak bone acquisition (16 weeks) is compartment-specific and does not have a
detrimental effect on cortical bone mass in the older adult mouse.
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Introduction

Hormonal regulation throughout growth and adulthood is known

to affect skeletal strength. The interplay between hormones and

genetic factors accounts for significant variability in adult BMD, bone

quality, and the kinetics of bone accrual during growth and bone loss

during aging. IGF-1, which acts in an endocrine and autocrine/

paracrine manner, is one hormone implicated in the establishment

and maintenance of bone integrity. At the cellular level, numerous

in vitro and in vivo studies demonstrated that IGF-1 can affect

osteoblast growth and differentiation [1], induce type I collagen

expression [2] and inhibit type I collagen degradation in differen-

tiated fetal rat osteoblasts [3,4]. Further, IGF-1 plays an important

role in cell survival [5,6], promotes the formation of osteoclast-like

cells from mononuclear precursors and can subsequently stimulate

the resorptive activity of osteoclasts [7,8]. Thus, IGF-1 plays a

fundamental role in coordinating the cellular processes of bone

formation (apposition) and bone removal (resorption).

Serum IGF-1, which is produced largely by the liver, contributes

to the overall skeletal pool of IGF-1. During puberty, in both

humans and mice, linear growth and bone formation are associated

with a rise in serum and skeletal IGF-1. In mice, a rapid body weight

gain occurs from birth up to 4 weeks of age [9,10]. During this

period, liver IGF-1 gene expression is activated and rises to adult

levels [11]. Somatic growth during this early growth phase is

affected by global IGF-1 gene deficiency. For example, IGF-1 null

mice exhibit a 35% growth retardation at birth, which increases to

60% by 3 weeks of age [12]. Thus, IGF-1 is crucial in promoting

bone growth during the early growth phase (1–28 days). Early bone

growth plays a critical role in defining adult skeletal integrity

because during this time ,80–90% of adult femoral total area

(Tt.Ar) is established [9], but the later growth phase (4–16 weeks) is

also important as gains in the amount of cortical bone tissue area

(Ct.Ar) increase significantly through the addition of bone on both

the outer (perisoteal) and inner (endosteal) surfaces [9,13,14] and

small gains in longitudinal bone growth exists since the femoral

growth plate does not close after sexual maturation in mice as it does

in humans. These ontogenic changes in bone size and amount are

clearly dependent on serum IGF-1 levels as liver IGF-1 deficient

(LID) mice, with 75% reductions in serum IGF-1 from birth, exhibit

only ,6% decreases in bone length but significant reductions

(,30%) in bone mineral density (BMD), Tt.Ar, and Ct.Ar by the

middle of the late growth phase (8 weeks) [15].

In contrast to our understanding of growth and development, the

contribution of serum IGF-1 to skeletal integrity during adulthood

remains unclear. In order to clarify the relationship between serum

IGF-1 levels and skeletal structure in adulthood (after 16 weeks), the

temporal variation in serum IGF-1 must be specifically addressed.
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Given that our LID mouse model exhibits a constitutive serum IGF-

1 deficiency (from birth) we could not rule out an accumulating

effect of IGF-1 on bone development in these animals. To quantify

the effects of IGF-1 during defined growth phases, we developed an

inducible liver IGF-1 deficient mouse model (iLID) that allows us to

deplete circulating IGF-1 at specific stages of mouse development.

The iLID model is based on the Cre/loxP system whereby the Cre

recombinase is expressed specifically in the liver under the anti-

trypsin 1a promoter, and can be induced by a single tamoxifen

injection that does not otherwise affect the skeleton. This model

permits us to dissect the temporal contribution of circulating IGF-1

and contrast the early and later effects of IGF-1 on skeletal

acquisition, maintenance, and micro-architecture.

Materials and Methods

Animals
The iLID model (C57BL/6 backgruond) has been described

previously [16]. Briefly, iLID was created using the Cre-loxP

system and crossing mice with floxed exon 4 of the IGF-1 gene

with transgenic mice expressing tamoxifen-inducible Cre-recom-

binase under the trypsin-1a promoter. In this model, iLID mice

(which are homozygous for the floxed IGF-1 and carry the Cre-

recombinase transgene) exhibit normal levels of IGF-1 in serum.

Upon tamoxifen injection, an igf-1 gene recombination occurs

specifically in hepatocytes, leading to ,60% reductions in serum

IGF-1 levels. Control mice are homozygous for the floxed IGF-1

allele but do not carry the Cre-recombinase and therefore do not

recombine the igf-1 gene in response to tamoxifen injection. Male

mice used in this study were given unrestricted access to water and

food, and housed to a maximum of 5 per cage under a 12 hours

light:dark cycle. Animal care and maintenance were provided

through the Mount Sinai School of Medicine AAALAC

Accredited Animal Facility. All procedures were approved by

the Institutional Animal Care and Use Committee of the Mount

Sinai School of Medicine (protocol number 06-1061).

Validation of the iLID Model
As this investigation required the use of tamoxifen to induce

Cre-recombinase-mediated gene recombination in liver, we

Figure 1. Validation of the iLID model. (A) Liver expression of IGF-1 in control mice (mean 6 SE) is not altered following 0.3 mg tamoxifen
injection. Control mice at 4, 8, 12, 16 and 32 weeks of age were injected with 0.3 mg tamoxifen and livers were dissected four weeks later for gene
expression analysis using real time PCR (n = 3 per group). Control and ‘‘constitutive’’ LID mice were used as positive control for the assay. Cycle
number was corrected to b-actin and levels related to vehicle control, which was set as 1. (B) Mean serum IGF-1 levels in control mice (6 SE) injected
with 0.3 mg of tamoxifen (+) at 4 or 8 weeks were not altered compared to vehicle treated controls (2) at 8 or 16 weeks, respectively. (C) Mean serum
GH levels in control mice (6 SE) injected with 0.3 mg of tamoxifen (+) at 4 or 8 weeks were not altered compared to vehicle treated controls (2) at 8
or 16 weeks, respectively. Sera from triple knockout of LID/acid labile subunit KO/IGFBP-3KO (LAB) mice, which have high serum GH levels [24], served
as a positive control. (D) BV/TV (bone volume/total volume) from micro-CT analysis of control mice injected with vehicle (2) or 0.3 mg tamoxifen (+)
at 4, 8, and 12 weeks of age and then analyzed at 8, 12, and 16 weeks, respectively. Trabecular bone was analyzed at the femoral distal metaphysis
(n = 6 per group). No significant differences were found between vehicle and 0.3 mg tamoxifen injected mice.
doi:10.1371/journal.pone.0014762.g001
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needed to determine the minimal dose of tamoxifen that would 1)

reduce serum IGF-1 levels by at least 50% in the iLID mice

without affecting bone remodeling per se and 2) not affect

circulating IGF-1 levels in floxed controls. The first part of this

validation has been published previously. Tamoxifen (Sigma

Aldrich, St. Louis, MO, USA) was dissolved in seed oil with

10% ethanol at a concentration of 3 mg/ml, sonicated for 30

minutes and injected intraperitoneally to both iLID and control

mice at the indicated time points. We examined a dose response

effect of tamoxifen on serum IGF-1 levels as well as on igf-1 gene

expression in liver [16]. The minimal effective dose of tamoxifen in

the adult mouse was a single injection of 0.3 mg of tamoxifen.

Using this dose we were able to decrease serum IGF-1 by 60% in

the iLID compared to vehicle treated control (seed oil). We also

verified the time course of serum IGF-1 decrease and revealed that

at ,18 hours after tamoxifen injection both serum IGF-1 levels

and liver IGF-1 mRNA levels were decreased [16].

Serum Hormones
Serum was obtained from blood samples after mandibular

bleeding in the fed state. Serum levels of IGF-1 and GH were

determined using commercial radio-immuno assays as described

previously [15,17,18].

Bone Morphology and Microarchitecture
Diaphyseal and distal metaphyseal regions of left femora were

analyzed using micro-computed tomography (micro-CT). A three-

dimensional micro-CT image of the entire femur was obtained

using an eXplore Locus SP micro-CT system (GE Healthcare,

London, Ontario, CA), which was engineered to minimize beam-

hardening and to produce field flatness through the use of x-ray

filters and an equilibration bath. Scans were performed at 8.7 mm

voxel resolution and bone was delineated from non-bone using a

standard global thresholding algorithm. From the reconstructed

micro-CT images, a 2 mm region of the mid-diaphysis (cortical

bone) beginning immediately distal to the third trochanter was

examined for total cross-sectional bone area (Tt.Ar), cross-

sectional marrow area (Ma.Ar), cortical bone (tissue) area (Ct.Ar),

polar moment of inertia (Jo), cortical thickness (Ct.Th). Relative

cortical area (RCA) was defined as Ct.Ar/Tt.Ar and represented

the relative amount of bone tissue packed into a give bone area.

From the reconstructed images of the distal metaphysis, a 2 mm

region (trabecular bone) immediately proximal to the growth plate

Figure 2. Experimental design, gene expression and serum levels for control and iLID mice. A) Schematic representation of the
experimental design. (B) igf-1 gene expression in liver in control and iLID mice injected with tamoxifen at different ages (C) Mean serum IGF-1 levels
(6 s.d) in control (n = 6) and iLID (n = 6 each) before (4 weeks) and after (16 weeks) injection of 0.3 mg of tamoxifen at 4 weeks. Serum IGF-1 levels in
iLID mice are statistically different from control mice as expected (ANOVA, p,0.05). (D) Serum GH levels in control (n = 8) and iLID mic (n = 10) after
depletion of serum IGF-1 by tamoxifen injection.
doi:10.1371/journal.pone.0014762.g002

Figure 3. Body weight and length data for control and iLID
mice. (A) Mean body weight and body length (6 SE) of control (n = 6)
and iLID (n = 6) mice at 16 weeks after injection of 0.3 mg of tamoxifen
at 4 weeks. (B) Body weights and body lengths (6 s.d) for 32 week
control and iLID after injection of tamoxifen at either 8 or 16 weeks of
age.
doi:10.1371/journal.pone.0014762.g003

Table 1. Mean cortical and trabecular bone traits values (6
s.d) obtained from micro-CT measurements of male femora
from control (n = 6) and iLID mice (n = 6) at 16 weeks of age
after injection with tamoxifen at 4 weeks.

Cortical Bone Traits Control 4-16 iLID 4-16

Ct.Ar (mm2) 0.93 6 0.14 0.77 6 0.05*

Tt.Ar (mm2) 1.90 6 0.27 1.72 6 0.14

Ma.Ar (mm2) 0.97 6 0.19 0.94 6 0.10

Jo (mm4) 0.45 6 0.11 0.35 6 0.05

Ct.Th (mm) 0.20 6 0.03 0.17 6 0.01*

RCA 0.49 6 0.05 0.45 6 0.02

TMD (mg/cc) 1217 6 31 1184 6 49

Trabecular Bone Traits Control 4-16 iLID 4-16

BMD (mg/cc) 104 6 34 105 6 13

BV/TV (%) 19.4 6 4.5 22.5 6 1.6

TMD (mg/cc) 525 6 61 464 6 38

Tb.Th (mm) 0.054 6 0.004 0.050 6 0.001*

Tb.N (mm-1) 3.59 6 0.59 4.50 6 0.35*

Tb.Sp (mm) 0.23 6 0.05 0.17 6 0.02*

*Significantly different from control (ANOVA, p,0.05).
doi:10.1371/journal.pone.0014762.t001
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was examined for bone mineral density (BMD), bone volume/total

volume (BV/TV), trabecular number (Tb.N), trabecular thickness

(Tb.Th), and trabecular spacing (Tb.Sp). BMD was calculated as

the ratio of bone mineral content (BMC, mg) to the total volume of

distal metaphysis analyzed after removing (masking) marrow space

grayscale variability. In addition, tissue mineral density (TMD)

values were obtained which represent the amount of mineral in a

given bone tissue as compared to a hydroxyapatite standard.

Histology
Animals were injected with calcein (20 mg/kg) twice before

sacrifice. Isolated femora were cleaned of soft tissue, fixed in 10%

buffered formalin and embedded in poly-methylmethacrylate

(PMMA). For trabecular analysis, longitudinal sections (5 mm

thick) were cut at the 50% coronal plane using a Leica 2265

microtome, deplasticized and stained with Goldner’s Trichrome

stain for static measurements based on morphology (e.g.,

osteoblast and osteoclast number). Additional sections were cut

at 10 mm for the dynamic (fluorescent) measurements. For each

sample, a region of interest was defined 250 mm distal to the

growth plate and extending 1 mm downward (thereby avoiding

the primary spongiosa) through the metaphysis of the femur.

Standard bone histomorphometry was performed as described

previously [19] using Bioquant Image Analysis software (R & M

Biometrics, Nashville, TN). For cortical analysis, 200 mm sections

were cut at the mid-diaphysis using a low-speed diamond saw

(Buehler, Inc., Lake Bluff, IL, USA). Sections were mounted on

glass sides, polished to ,50 mm, and analyzed for dynamic

(fluorescent) measurements using OsteoMeasure (Osteometrics,

Atlanta, GA, USA) as described previously [19].

Gene Expression
Total RNA was extracted from liver samples using TRIzol

reagent according to the manufacturer’s instructions (Invitrogen

Corp., Carlsbad, California, USA). RNA integrity was verified

using Bioanalyzer (Agilent Technologies 2100 Bioanalyzer-Bio

Sizing, Version A.02.12 SI292). One mg of RNA was reverse-

transcribed to cDNA using oligo(dT) primers with a RT-PCR kit

according to the manufacturer’s instructions (Invitrogen). Quan-

titative RT-PCR was performed with the QuantiTectTM SYBRH

green PCR kit (Qiagen, Valencia, CA, USA) according to the

manufacturer’s instructions in ABI PRISM 7900HT sequence

detection systems (Applied Biosystems, Foster City, CA USA).

Each transcript in each sample was assayed three times and the

fold change ratios between experimental and control samples were

calculated relative to b-actin.

Statistics
Statistical differences between mean trait values of iLID mice and

control mice were assessed using one-way ANOVA and Bonferroni

post-hoc tests (p,0.05, Statistica 6.0, Statsoft, Tulsa, OK, USA).

Results

Validation of the iLID model for Skeletal Studies
To address whether injection of 0.3 mg of tamoxifen affected

liver igf-1 gene expression in wild-type mice, we injected 0.3 mg of

Figure 4. Micro-CT images of control and iLID mice indicating
differences in cortical and trabecular bone accrual. (A) Mice
injected with tamoxifen at 4 weeks and sacrificed at 16 weeks. (B) Mice
injected with tamoxifen at 8 weeks and sacrificed at 32 weeks. (C) Mice
injected with tamoxifen at 16 weeks and sacrificed at 32 weeks.
doi:10.1371/journal.pone.0014762.g004
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tamoxifen into control mice at different ages and assessed liver

IGF-1 mRNA levels by real time PCR. No differences in igf-1 gene

expression were detected between tamoxifen and vehicle-injected

control mice at any age (4, 8, 12, 20 and 32 weeks) (Figure 1A).

Serum IGF-1 levels following a 0.3 mg tamoxifen injection were

evaluated using radio-immunoassay and revealed no differences

between tamoxifen and vehicle injected control mice (Figure 1B).

In the LID model we showed that the low levels of serum IGF-1

were not adequate to inhibit pituitary GH secretion. As seen in

Figure 1C, serum GH levels were not affected by 0.3 mg

tamoxifen injection in control mice. To quantify the effects of

0.3 mg of tamoxifen on the trabecular architecture, we analyzed

33 femurs of male control mice at different ages. Our results

revealed no differences in distal femoral BV/TV in control mice

injected once with tamoxifen at 4 weeks and then analyzed at 8

weeks, nor any differences in animals injected at 8 weeks and

analyzed at 12 or 16 weeks (Figure 1D).

Depletion of serum IGF-1 levels during puberty leads to
reductions in cortical and trabecular bone acquisition by
adulthood

As a result of the aforementioned experiments, a single

0.3 mg/mouse injection of tamoxifen was chosen as an

appropriate dose to study the effect of temporal IGF-1 deletion

on the skeletal development of growing mice. Using the iLID

model only one injection of tamoxifen is required since

hepatocytes (in which gene recombination is induced) have low

turnover rate and the genetic recombination is persistent for at

least 16 weeks. Our experimental design is presented in figure 2A;

male control and iLID mice were injected once with tamoxifen

(0.3 mg/mouse) at 4, 8 or 16 weeks of age and were followed

until peak bone acquisition, at 16 (based on prior studies of

cortical bone growth in C57BL/6 mice [9,13]) or at 32 weeks of

age. A single injection of tamoxifen resulted in decreased igf-1

gene expression in liver of all iLID groups (Figure 2B) and

consequent reductions in serum IGF-1 levels, which persisted

until sacrifice at 16 or 32 weeks of age in iLID mice (Figure 2C).

The reduction in serum IGF-1 levels in the iLID mice were

accompanied by elevations in serum GH levels, which were

detectable at the age of sacrifice (Figure 2D).

When depleted of serum IGF-1 at 4 weeks, body weight and

body length of iLID mice did not differ significantly from controls

at 16 weeks of age (Figure 3A). However, 16-week cortical bone,

analyzed at the mid-diaphysis, showed significant reductions in

Ct.Ar and Ct.Th in iLID mice depleted of serum IGF-1 at 4 weeks

of age (Table 1, Figure 4A). Although histomorphometric analysis

of cortical bone did not show significant differences between

control and iLID mice at this age, likely due to the fact that bone

formation slows appreciably by 16 weeks, mean values were all

lower for iLID mice as compared to controls (Table 2). Trabecular

architecture from the femoral distal metaphysis was also quantified

using micro-CT (Table 1, Figure 4A). We found that depletion of

serum IGF-1 beginning at 4 weeks of age resulted in a significant

increase in Tb.N by 16 weeks of age compared to the vehicle

treated group. There was also a concomitant decrease in Tb.Th

and Tb.Sp for both groups.

Depletion of serum IGF-1 levels before and after peak
bone acquisition affects cortical and trabecular bone
architecture differently in the adult mouse

Additional groups of male control and iLID mice were injected

once with tamoxifen (0.3 mg/mouse) at 8 or 16 weeks and were

followed until 32 weeks (post-peak bone acquisition) (Figure 2A) to

determine if a reduction in serum IGF-1 (Figure 2C) during the

late growth phase (8 weeks) and at peak bone acquisition (16

weeks) would have different consequences during the adult growth

phase (after peak bone acquisition). At 32 weeks body weights and

body lengths were identical between iLID and control mice that

had been injected with tamoxifen at 8 weeks (Figure 3B). Micro-

CT data of cortical bone revealed significant reductions in Ct.Ar

and Ct.Th of iLID mice at 32 weeks as compared to controls

(Table 3, Figure 4B). Although histomorphometric analysis of

cortical bone did not show significant differences between control

and iLID mice at this age, likely due to the fact that bone

formation has slowed tremendously by 32 weeks, mean values

were all lower for iLID mice as compared to controls (Table 4).

Trabecular bone architecture was not significantly different

between 8 week injected iLID and control mice at 32 weeks of

age (Table 3). For mice injected at 16 weeks, body weights of iLID

mice also did not differ significantly from controls at 32 weeks

(Figure 3B). Further, micro-CT analysis revealed that temporal

depletion of serum IGF-1 at 16 weeks resulted in no significant

alterations of cortical bone properties at 32 weeks of age (Table 3).

However, we found significant changes in trabecular bone

architecture where BMD, BV/TV, and Tb.N increased and

Tb.Sp decreased in iLID mice (Table 3, Figure 4C). These

findings were supported by histomorphometric data, indicating

significant increases in mineralizing surface (MS) and bone

formation rate (BFR) for iLID mice as compared to controls

(Table 5). To determine if tissue-level expression of IGF-1 or the

IGF-1R was altered in mice injected with tamoxifen at 16 weeks,

we performed immunofluoresence on sections of 32 week cortical

and trabecular bone from control and iLID mice and detected no

differences between iLID and control mice (Figure 5).

Table 2. Mean femoral histomorphometric data (6 s.d) of cortical bone from male control (n = 7) and iLID mice (n = 9) at 16 weeks
of age after injection with tamoxifen at 4 weeks.

L. Pm MAR BFR/B. Pm # Samples Lacking

(%) (mm/day) (mm/day*100) Double Labels

Periosteal Control 32.4 6 10.2a 1.3 6 0.2 49.0 6 12.1 2

Surface iLD 24.9 6 10.8a,b 1.2 6 0.4 35.6 6 20.1a 2

Endosteal Control 54.1 6 16.7 1.2 6 0.1 69.3 6 23.5 1

Surface iLID 44.7 6 9.8 1.1 6 0.3 50.3 6 15.1 0

aSignificantly different from control endosteal,
bsignificantly different from iLID endosteal (ANOVA, p,0.05).
doi:10.1371/journal.pone.0014762.t002
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Discussion

In humans, serum GH and IGF-1 decline gradually from ,30

years of age [20,21], while in mice serum IGF-1 levels remain

fairly constant [22]. Mouse models with disrupted genes that

encode components of the GH/IGF axis typically show develop-

mental impairment of the skeletal system, which is carried on to

adulthood [23,24]. Moreover, tissue specific approaches, where

genes of the GH/IGF system were ablated or overexpressed, were

not able to distinguish the skeletal effect of IGF-1 during

development and adulthood phases [25,26]. In sharp contrast,

the iLID model permits both temporal and spatial manipulation of

the igf-1 gene, allowing us to induce igf-1 gene recombination

specifically in the liver at different time points during growth,

adulthood or aging.

In this study we present a novel application of the induced liver

IGF-1 deficiency (iLID) mouse model for skeletal characterization.

Our initial experiments were conducted to validate the iLID

model for skeletal studies. We found that a single intraperitoneal

injection of tamoxifen (0.3 mg) to iLID mice is sufficient to induce

igf-1 gene recombination in the liver and consequently drop serum

IGF-1 levels by ,60%. In control mice, however, this dose of

tamoxifen did not alter igf-1 gene expression in the liver, nor did it

result in reductions in serum IGF-1 levels. Tamoxifen is a selective

estrogen receptor modulator (SERM) that exhibits a potent anti-

estrogen effect on mammary epithelium [27] and a partial

agonistic effect on trabecular bone [28,29,30]. Thus, we assessed

the consequences of tamoxifen injection in vivo on bone

microarchitecture. We found that our selected tamoxifen dose

(i.e., 0.3 mg) did not affect BV/TV in control mice at 4, 8, 16, or

32 weeks of age as no differences were found between tamoxifen

and vehicle injected mice.

Using the iLID model we found that depletion of serum IGF-1

at 4 weeks of age (beginning of late growth phase) did not affect

body weight or body length at 16 weeks. This is in contrast to the

LID mice, which show constitutive reductions in serum IGF-1

from birth and thus significant reductions in body weight

beginning at ,12 weeks [24,31]. We therefore conclude that

maintenance of normal serum IGF-1 levels prior to puberty

(before 4 weeks) enabled iLID mice to maintain body weight and

length values that were identical to adult controls (16 weeks).

Assessment of skeletal architecture showed that depletion of serum

Table 4. Mean femoral histomorphometric data (6 s.d) of cortical bone from male control (n = 10) and iLID mice (n = 6) at 32
weeks of age after injection with tamoxifen at 8 weeks.

L. Pm MAR BFR/B. Pm # Samples Lacking

(%) (mm/day) (mm/day*100) Double Labels

Periosteal Control 39.6 6 8.5 0.7 6 0.2 27.2 6 9.6 0

Surface iLD 32.0 6 18.0 0.5 6 0.1 20.3 6 9.8 1

Endosteal Control 45.5 6 13.1 0.7 6 0.1 31.9 6 12.8 0

Surface iLID 27.5 6 7.7 0.6 6 0.2 17.9 6 8.8 1

No significant differences were found.
doi:10.1371/journal.pone.0014762.t004

Table 3. Mean cortical and trabecular bone traits values (6 s.d) obtained from micro-CT measurements of male femora from
control (n = 12) and iLID mice (n = 7) at 32 weeks of age after injection with tamoxifen at 8 weeks and male femora from control
(n = 14) and iLID mice (n = 14) at 32 weeks of age after injection with tamoxifen at 16 weeks.

Cortical Bone Traits Control 8-32 iLID 8-32 Control 16-32 iLID 16-32

Tt.Ar (mm2) 1.87 6 0.22 1.77 6 0.11 1.93 6 0.13 1.90 6 0.20

Ct.Ar (mm2) 0.85 6 0.06 0.77 6 0.06* 0.88 6 0.05 0.85 6 0.07

Ma.Ar (mm2) 1.01 6 0.19 1.01 6 0.08 1.05 6 0.09 1.05 6 0.15

Jo (mm4) 0.41 6 0.07 0.36 6 0.04 0.44 6 0.05 0.42 6 0.08

Ct.Th (mm) 0.18 6 0.01 0.17 6 0.01* 0.19 6 0.01 0.18 6 0.01

RCA 0.46 6 0.05 0.43 6 0.03 0.46 6 0.02 0.45 6 0.03

TMD (mg/cc) 1330 6 45 1331 6 54 1338 6 30 1317 6 42

Trabecular Bone Traits Control 8-32 iLID 8-32 Control 16-32 iLID 16-32

BMD (mg/cc) 46 6 18 45 6 14 61 6 16 76 6 22*

BV/TV (%) 8.4 6 1.7 11.5 6 3.1 8.4 6 1.7 11.5 6 3.1*

TMD (mg/cc) 584 6 52 588 6 50 708 6 64 654 6 89

Tb.Th (mm) 0.029 6 0.004 0.029 6 0.003 0.034 6 0.004 0.033 6 0.004

Tb.N (mm-1) 2.66 6 0.98 2.64 6 0.81 2.49 6 0.44 3.48 6 0.96*

Tb.Sp (mm) 0.43 6 0.27 0.38 6 0.12 0.38 6 0.07 0.27 6 0.08*

*Significantly different from tamoxifen injection-matched control (ANOVA, p,0.05).
doi:10.1371/journal.pone.0014762.t003
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IGF-1 at the beginning of the late growth phase window (4 weeks

of age) resulted in significant reductions in Tb.Th and Tb.Sp while

Tb.N increased. In addition, there was a tendency towards

increased BV/TV in iLID mice. Thus, depletion of IGF-1 during

late growth results in changes to the trabecular architecture by

adulthood. These changes may be due to elevations in GH levels

that are found in iLID mice [24]. iLID mice depleted of IGF-1 at 4

weeks had significant reductions in Ct.Ar and Ct.Th as compared

to control mice highlighting the importance of serum IGF-1

during the pubertal growth period. Given that significant growth is

also achieved after puberty (8 weeks), we predicted that depletion

of serum IGF-1 at 8 weeks should result in a measurable growth

deficit at a later age. In support of this, injection of iLID mice at 8

weeks resulted in significant reductions in cortical bone properties

(Ct.Ar, Ct.Th) by 32 weeks suggesting that reductions in serum

IGF-1 in the middle of the late growth phase (8 weeks) can

influence cortical bone properties in the older adult mouse. These

findings are in agreement with previous findings regarding mouse

development; although the greatest changes in cortical bone

properties are seen before 16 weeks, new bone continues to be

added more slowly well into adulthood [9,13,14]. Thus, although

depletion of serum IGF-1 from birth or early post-natally (before 4

weeks) result in reductions in cortical bone accrual that exist

throughout growth and into adulthood [32], reductions of serum

IGF-1 levels during pubertal growth (late growth phase) are also

Figure 5. Representative immunofluroescene images of cortical and trabecular bone from 32 week control and iLID mice that were
serum IGF-1 depleted at 16 weeks of age. Antibody staining for IGF-1 and the IGF-1R showed no differences when comparing control and iLID
mice.
doi:10.1371/journal.pone.0014762.g005

Table 5. Mean femoral histomorphometric data (6 s.d) of
trabecular bone from male control (n = 6) and iLID mice (n = 7)
at 32 weeks of age after injection with tamoxifen at 16 weeks.

Control 16-32 iLID 16-32

ES/BS 1.19 6 0.55 1.31 6 0.69

N.Ob/BS (#/mm) 10.74 6 2.81 12.59 6 1.33

N.Oc/BS (#/mm) 0.48 6 0.20 0.42 6 0.21

MS/BS (%) 38.80 6 3.51 66.08 6 8.59*

MAR (mm/day) 0.71 6 0.16 0.86 6 0.16

BFR/BS (mm/day) 0.28 6 0.07 0.57 6 0.11*

*Significantly different from control (ANOVA, p,0.05).
doi:10.1371/journal.pone.0014762.t005
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important for establishing the cortical bone properties seen in later

adulthood.

In the second part of our study we depleted IGF-1 at 16 weeks

and assessed the skeletal response at 32 weeks of age. Mean Ma.Ar

was not different between iLID and control mice at any age

(regardless of the age of tamoxifen injection). In our previous study

with the LID mice we show compensatory decreases in Ma.Ar by

32 weeks [24], likely due to inhibition of periosteal bone

apposition. The absence of Ma.Ar changes in iLID mice suggests

that compensatory marrow infilling occurs when a cumulative

effect of reduced serum IGF-1 is present early post-natally and

during puberty. In contrast to depletion at 4 weeks, depletion of

serum IGF-1 at 16 weeks had no effect on cortical bone

architecture assessed by 32 weeks of age, but did result in

significant increases in trabecular BMD, BV/TV, and Tb.N.

These results imply that serum IGF-1 depletion at maturity (after

establishment of peak bone acquisition), does not affect cortical

skeletal integrity and tissue mineral density (TMD) in the older

adult mouse, but does alter trabecular architecture. Whether this

trabecular enhancement can be maintained during aging (.52

weeks) is unknown. However, given the lack of a cortical bone

phenotype in mice depleted of serum IGF-1 at 16 weeks and

analyzed at 32 weeks, it is possible that the association of serum

IGF-1 with BMD, although noted for peak bone mass in mice

[33], may not hold during adulthood when bone mass gains slow

and bone loss becomes more prevalent. Indeed, the correlations

between serum IGF-1 and BMD noted in several human cohort

studies of older individuals [34,35,36,37], are likely not a direct

cause and effect relationship.

One limitation to this study is that, although serum levels are

reduced in the iLID model, compensatory changes in tissue level

IGF-1 production may result. Robust measures of tissue-level IGF-

1 are not easily obtained as any IGF-1 protein observed may still

be a result of autocrine/paracrine or endocrine production.

Further, such examinations would require knowledge of the

specific time after serum IGF-1 depletion that corresponds to IGF-

1 upregulation. However, we examined IGF-1 and IGF-1R

expression in 32 week control and iLID animals by immunohis-

tochemistry and found no differences. Further, in our iLID mice

up-regulations in tissue IGF-1 are unlikely to be present or, if

present, are insufficient given that impaired cortical skeletal

development was observed by 16 weeks. Thus, we are confident

that changes in tissue-level IGF-1 are not compensating for

reductions in serum IGF-1.

This study and others have shown that heritable differences in

circulating IGF-1 track with bone mass during growth (post-natal

and during puberty) and are most evident during peak bone

acquisition. Such differences may place certain individuals at an

‘‘at-risk starting point’’ for age-related bone loss. Our results of

serum IGF-1-depleted adult mice suggest that reductions of IGF-1

in older adults have less impact on bone mass than reductions in

serum IGF-1 during growth. We suggest that the relationships

observed between IGF-1 and bone mass in the aging human are

likely a ‘‘carry-over’’ from the IGF-1-dependent differences in

bone morphology and composition that are established during

early growth (post-natal to pubertal).
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