D. Citer-ce,

M. .. Chakrabarti, N. .. Zhang, C. Sauvage, S. Munos, J. .. Blanca et al., A cytochrome P450 regulates a domestication trait in cultivated tomato, p.110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646387

, Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Version définitive du manuscrit publiée dans / Final version of the manuscript, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.17125-17130, 2013.

, Comment citer ce document

M. .. Chakrabarti, N. .. Zhang, C. Sauvage, S. Munos, J. .. Blanca et al., A cytochrome P450 regulates a domestication trait in cultivated tomato, p.110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646387

, Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Version définitive du manuscrit publiée dans / Final version of the manuscript, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.17125-17130, 2013.

, Comment citer ce document

M. .. Chakrabarti, N. .. Zhang, C. Sauvage, S. Munos, J. .. Blanca et al., A cytochrome P450 regulates a domestication trait in cultivated tomato, p.110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646387

, Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Version définitive du manuscrit publiée dans / Final version of the manuscript, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.17125-17130, 2013.

, For computing phylogenetic distance, a cut off value of 50% bootstrap value was used. Frequency of the derived and ancestral alleles of M9 was analyzed in the following sub-populations: S. p_Per (N=30), reconstructed using the Neighbor-Joining statistical method with 1000 bootstrap replications and Maximum Composite Likelihood model

, Darwin C (1868) The variation of animals and plants under domestication

J. Diamond, Guns, Germs, and Steel, 1997.

B. D. Smith, Seed plant domestication in eastern, North America. Last Hunters-First Farmers, vol.354, pp.193-213, 1995.

B. Pickersgill, Domestication of plants in the Americas: Insights from mendelian and molecular genetics, Ann Bot, vol.100, issue.5, pp.925-940, 2007.

J. Blanca, Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato, Plos One, vol.7, issue.10, p.48198, 2012.

H. J. Klee and J. J. Giovannoni, Genetics and control of tomato fruit ripening and quality attributes, Annu Rev Genet, vol.45, pp.41-59, 2011.

I. Paran and E. Van-der-knaap, Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper, J Exp Bot, vol.58, issue.14, pp.3841-3852, 2007.

S. D. Tanksley, The genetic, developmental, and molecular bases of fruit size and shape variation in tomato, Plant Cell, vol.16, pp.181-189, 2004.

S. Grandillo, H. M. Ku, and S. D. Tanksley, Identifying loci responsible for natural variation in fruit size and shape in tomato, Theor Appl Genet, vol.99, issue.6, pp.978-987, 1999.

A. Frary, 2: a quantitative trait locus key to the evolution of tomato fruit size, Science, vol.289, issue.5476, pp.85-88, 2000.

, Comment citer ce document

M. .. Chakrabarti, N. .. Zhang, C. Sauvage, S. Munos, J. .. Blanca et al., A cytochrome P450 regulates a domestication trait in cultivated tomato, p.110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646387

, Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Version définitive du manuscrit publiée dans / Final version of the manuscript, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.17125-17130, 2013.

M. Guo, Cell Number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis, Plant Cell, vol.22, issue.4, pp.1057-1073, 2010.

M. Libault, The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato, Theor Appl Genet, vol.62, issue.5, pp.139-147, 2003.

N. Zhang, M. T. Brewer, and E. Van-der-knaap, Fine mapping of fw3.2 controlling fruit weight in tomato, Theor Appl Genet, vol.125, issue.2, pp.273-284, 2012.

A. L. Blas, Genetic mapping of quantitative trait loci controlling fruit size and shape in papaya, Mol Breeding, vol.29, issue.2, pp.457-466, 2012.

L. Costantini, J. Battilana, F. Lamaj, G. Fanizza, and M. S. Grando, Berry and phenologyrelated traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes, BMC Plant Biol, vol.8, p.38, 2008.

S. Doganlar, A. Frary, M. C. Daunay, R. N. Lester, and S. D. Tanksley, Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant, Genetics, vol.161, issue.4, pp.1713-1726, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02672591

I. Eduardo, QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect, Tree Genet Genomes, vol.7, issue.2, pp.323-335, 2011.

G. R. Zhang, Fruit size QTL analysis of an F-1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry, Tree Genet Genomes, vol.6, issue.1, pp.25-36, 2010.

N. Ranc, S. Munos, S. Santoni, and M. Causse, A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (Solanaceae), BMC Plant Biol, vol.8, p.130, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00489786

N. Zhang, Fine mapping and characterization of fw3.2, one of the major QTL controlling fruit size in tomato, pp.1-152, 2012.

E. Anastasiou, Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling, Dev Cell, vol.13, issue.6, pp.843-856, 2007.

A. H. Paterson, Convergent domestication of cereal crops by independent mutations at corresponding genetic loci, Science, vol.269, issue.5231, pp.1714-1718, 1995.

N. M. Adamski, E. Anastasiou, S. Eriksson, C. M. O'neill, and M. Lenhard, Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling, Proc Natl Acad Sci U S A, vol.106, issue.47, pp.20115-20120, 2009.

W. Fang, Z. Wang, R. Cui, J. Li, and Y. Li, Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana, Plant J, vol.70, issue.6, pp.929-939, 2012.

T. Ito and E. M. Meyerowitz, Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in arabidopsis, Plant Cell, vol.12, issue.9, pp.1541-1550, 2000.

K. Miyoshi, PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450, Proc Natl Acad Sci U S A, vol.101, issue.3, pp.875-880, 2004.

T. Katsumata, Involvement of the CYP78A subfamily of cytochrome P450 monooxygenases in protonema growth and gametophore formation in the moss Physcomitrella patens, Biosci Biotechnol Biochem, vol.75, issue.2, pp.331-336, 2011.

K. B. Meyer, A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression, PLoS Genet, vol.7, issue.7, p.1002165, 2011.

M. .. Chakrabarti, N. .. Zhang, C. Sauvage, S. Munos, J. .. Blanca et al., A cytochrome P450 regulates a domestication trait in cultivated tomato, p.110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646387

, Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Version définitive du manuscrit publiée dans / Final version of the manuscript, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.17125-17130, 2013.

A. Nakki, Allelic variants of IL1R1 gene associate with severe hand osteoarthritis, BMC Med Genet, vol.11, p.50, 2010.

S. Nischwitz, More CLEC16A gene variants associated with multiple sclerosis, Acta Neurol Scand, vol.123, issue.6, pp.400-406, 2011.

S. Uno, A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese, Nat Genet, vol.42, issue.8, pp.707-710, 2010.

N. N. Sandal, K. Bojsen, and K. A. Marcker, A small family of nodule specific genes from soybean, Nucl Acids Res, vol.15, issue.4, pp.1507-1519, 1987.

J. Stougaard, J. E. Jorgensen, T. Christensen, A. Kuhle, and K. A. Marcker, Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin-Lbc3 and N23 gene promoters, Mol Gen Genet, vol.220, issue.3, pp.353-360, 1990.

M. F. Vieweg, The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbusculecontaining cells of mycorrhizal roots from different legume and nonlegume plants, Mol Plant-Microbe Inter, vol.17, issue.1, pp.62-69, 2004.

G. Gillaspy, H. Ben-david, and W. Gruissem, Fruits: a developmental perspective, Plant Cell, vol.5, issue.10, pp.1439-1451, 1993.

D. J. Iglesias, Physiology of citrus fruiting, Brazil J Plant Physiol, vol.19, issue.4, pp.333-362, 2007.

L. Marcelis and L. Hofman-eijer, Cell division and expansion in the cucumber fruit, J Hort Sci, vol.68, issue.5, pp.665-671, 1993.

H. Xiao, Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape, BMC Plant Biol, vol.9, p.49, 2009.

B. Cong, J. Liu, and S. D. Tanksley, Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations, Proc Natl Acad Sci U S A, vol.99, issue.21, pp.13606-13611, 2002.

G. U. Rao, B. Chaim, A. Borovsky, Y. Paran, and I. , Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens, Theor Appl Genet, vol.106, issue.8, pp.1457-1466, 2003.

M. T. Brewer, Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species, Plant Physiol, vol.141, issue.1, pp.15-25, 2006.

H. Xiao, N. Jiang, E. Schaffner, E. J. Stockinger, and E. Van-der-knaap, A retrotransposonmediated gene duplication underlies morphological variation of tomato fruit, Science, vol.319, issue.5869, pp.1527-1530, 2008.

S. Zhong, High-throughput illumina strand-specific RNA sequencing library preparation, Cold Spring Harb Protoc, issue.8, pp.940-949, 2011.

Z. J. Huang, J. Van-houten, G. Gonzalez, H. Xiao, and E. Van-der-knaap, Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato, Mol Genet Genomes, vol.288, issue.3-4, pp.111-129, 2013.

A. Ben-chaim, QTL analysis for capsaicinoid content in Capsicum, Theor Appl Genet, vol.113, issue.8, pp.1481-1490, 2006.

C. L. Schardl, Design and construction of a versatile system for the expression of foreign genes in plants, Gene, vol.61, issue.1, pp.1-11, 1987.

S. Ossowski, R. Schwab, and D. Weigel, Gene silencing in plants using artificial microRNAs and other small RNAs, Plant J, vol.53, issue.4, pp.674-690, 2008.

, Comment citer ce document

M. .. Chakrabarti, N. .. Zhang, C. Sauvage, S. Munos, J. .. Blanca et al., A cytochrome P450 regulates a domestication trait in cultivated tomato, p.110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646387

, Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Version définitive du manuscrit publiée dans / Final version of the manuscript, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.17125-17130, 2013.

P. J. Bradbury, TASSEL: software for association mapping of complex traits in diverse samples, Bioinformatics, vol.23, pp.2633-2635, 2007.

D. Falush, M. Stephens, and J. K. Pritchard, Inference of population structure using multilocus genotype data: dominant markers and null alleles, Mol Ecol Notes, vol.7, issue.4, pp.574-578, 2007.

O. J. Hardy and X. Vekemans, SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels, Mol Ecol Notes, vol.2, issue.4, pp.618-620, 2002.

P. Librado and J. Rozas, DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, vol.25, issue.11, pp.1451-1452, 2009.

K. Tamura, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol Biol Evol, vol.28, issue.10, pp.2731-2739, 2011.

, Comment citer ce document

M. .. Chakrabarti, N. .. Zhang, C. Sauvage, S. Munos, J. .. Blanca et al., A cytochrome P450 regulates a domestication trait in cultivated tomato, p.110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646387

, Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Version définitive du manuscrit publiée dans / Final version of the manuscript, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.17125-17130, 2013.

, Comment citer ce document

M. .. Chakrabarti, N. .. Zhang, C. Sauvage, S. Munos, J. .. Blanca et al., A cytochrome P450 regulates a domestication trait in cultivated tomato, p.110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646387

, Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript Version définitive du manuscrit publiée dans / Final version of the manuscript, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.17125-17130, 2013.

S. , S. , and S. Pennellii, are depicted in red, black, green and blue, respectively. Large (>60 g), medium (>10g and <60g) and small (<10g) fruit-bearing lines are represented as large, medium and no dots after their name, respectively. Accessions carrying the M9 mutation are depicted with an asterisk (*). C. Frequency of derived and ancestral M9 SNP allele in tomato subpopulations