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Abstract

Networks coming from protein-protein interactions, transcriptional regulation, signaling, or metabolism may appear to have
‘‘unusual’’ properties. To quantify this, it is appropriate to randomize the network and test the hypothesis that the network
is not statistically different from expected in a motivated ensemble. However, when dealing with metabolic networks, the
randomization of the network using edge exchange generates fictitious reactions that are biochemically meaningless. Here
we provide several natural ensembles of randomized metabolic networks. A first constraint is to use valid biochemical
reactions. Further constraints correspond to imposing appropriate functional constraints. We explain how to perform these
randomizations with the help of Markov Chain Monte Carlo (MCMC) and show that they allow one to approach the
properties of biological metabolic networks. The implication of the present work is that the observed global structural
properties of real metabolic networks are likely to be the consequence of simple biochemical and functional constraints.
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Introduction

Social networks exhibit ‘‘small world’’ characteristics [1,2]; food

webs have hierarchies coming from trophic levels [3]; gene

networks have small in-degree, broad out-degree, and contain

strongly over-represented motifs [4]. These kinds of ‘‘remarkable’’

features distinguish natural or even human made networks from

random graphs [5,6,7]. However, comparing the networks arising

in these different systems to random graphs is unsatisfactory

because it ignores all potentially relevant underlying factors that

constrain these networks. One should also ask whether these

networks are remarkable given where they come from, taking into

account the known factors which shape them. A way to address

this issue is to perform graph randomization. The most commonly

used such approach for biological networks is based on performing

edge exchanges [4,8,9]. This algorithm (illustrated in Figure S1) by

construction preserves the network’s degree distribution exactly.

Our focus in the present work is on metabolic networks. Previous

studies have revealed that metabolic networks of living organisms are

highly structured. For example, the degree distribution of the

metabolites in these networks has a power law tail [10,11]. Metabolic

networks seem to have further remarkable features such as a high

level of clustering [12]. However, to claim that such features are

remarkable, one has to use a benchmark. The use of random graphs

has the drawback of ignoring the special nature of the degree

distribution. If instead the comparison is made using the edge

exchange algorithm, one is confronted with a serious conceptual

problem that is specific to metabolism: the randomized ensemble

contains meaningless reactions (cf. Figure S1). That is because the

edge exchange procedure ignores all biochemistry, and in particular

the fact that most biochemical reactions correspond to adding or

removing small groups. Furthermore, this naive randomization

corresponds to using ‘‘random’’ reactions which will not balance

mass, charge and even less atomic elements; clearly this is enough to

cast a doubt on the relevance of such a procedure. To overcome this

problem, we have little choice but to force the reactions to have a

minimum of realism; that can be done by using reactions known to

arise in various organisms or in vitro. This corresponds to the first level

of ‘‘constraints’’ that should be imposed when randomizing metabolic

networks. Other levels can be introduced based on functionality. For

instance, to understand the differences between the metabolic

network of a given organism and ‘‘what might have been expected’’

in other realizations, one may appeal to the fact that organisms are

alive, eat, reproduce etc. The purpose of the present work is to show

how, within metabolic networks, one may introduce randomized

ensembles; these ensembles can be used as benchmarks, allowing one to

meaningfully ask whether a given organism’s metabolic network is

particularly atypical.

The outline of the paper is as follows. We first examine the fat

tail in the metabolite degree distribution when using realistic

biochemical reactions and investigate the source of this tail. Then

we address the randomization problem in metabolic networks and

introduce network ensembles subject to increasing levels of

constraints. We study the structural properties of metabolic

networks in these ensembles, including the clustering coefficient

and sizes of the strong components. These results are discussed in

the following section, while detailed methods are provided in the

last section.

Results

Degree distribution and the KEGG_Hybrid set of
reactions

Given a metabolic network such as illustrated in Fig. 1(a), the

degree of a metabolite is the number of reactions in which it

participates. With the availability of genome-scale metabolic
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networks [10], the metabolite degree distributions in a number of

organisms have been determined. A striking result is that all

organisms show metabolite degree distributions with fat tails well

described by a power fall-off [10,11]. Furthermore, the power of

this tail varies very little from one organism to another, being

always close to 2.2 [10]. Clearly there exist metabolites involved in

a large number of reactions; examples include ATP (which

provides the transfer of a phosphate group), NADH (which

provides the transfer of electrons) etc. This behavior is in fact

typical of all metabolites of high degree: they transfer small groups

and are therefore generally referred to as ‘‘currency’’ metabolites

[13,14]. Because these currency metabolites arise in so many

reactions, one can expect nearly all living organisms to produce

them. If this occurs, one also expects a similar power law to arise in

the metabolite degree distribution in different organisms.

To address this point in a quantitative framework, we ask what

would be expected in a ‘‘random’’ organism, that is, in one using

random biochemical reactions? One could introduce artificial reactions

in which randomly chosen metabolites would be transformed into

others; however this would not preserve atomic species, and even if

one could enforce conservation, it would nearly always lead to

reactions which have no existence. A more suitable approach is to

restrict ourselves to biochemically realizable reactions. We used a

database of such reactions compiled by Rodrigues and Wagner

[15]. These authors combined the reactions in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database [16] with

those of the E, coli iJR904 metabolic model [17] and curated the

resulting set (see Materials and Methods). This leads to a total of

5870 reactions and 4816 metabolites; we shall refer to this list of

reactions and metabolites as KEGG_Hybrid. Given this list of

possible reactions and metabolites, Fig. 2 shows the degree

distribution of the metabolites within the database on a log-log

scale. The power law is clearly a good approximation; fitting these

data using the method in [18,19] gives an exponent of 2.31. This

value is close to the exponent for the E. coli genome-scale

metabolic network [17] which is 2.17; the corresponding

distribution is also displayed in Fig. 2.

The metabolic network of E. coli has far fewer reactions than the

5870 in the KEGG_Hybrid database, and so the maximum

degree in E. coli must be smaller; this is visible in Fig. 2.

Furthermore, our objective is to compare E. coli to ‘‘random’’

organisms so we should force the number of reactions to be the

same as in E. coli, allowing any of the biochemical reactions in

KEGG_Hybrid. This defines a simple ensemble of possible

metabolic networks where the biochemical constraint of using

real reactions is enforced. We have thus generated 1,000 random

genomes (lists of n reactions chosen at random in KEGG_Hybrid,

n = nE = 831 being the number of reactions of the in silico E. coli

metabolic network) and computed the degree distribution in this

ensemble. The result is displayed in Fig. 2 with the label

Figure 1. Different graph-theoretic representations of a metabolic network. (a) Bipartite graph representation for the three reactions, HEX1,
PGI and PFK, in the glycolytic pathway. In the figure, reactions are depicted as rectangles and metabolites as ovals. Reversible reactions are shown in
grey and irreversible reactions in yellow. The primary or other metabolites (cyan ovals) are distinguished from currency metabolites (pink ovals) in
each reaction. If a reaction is reversible, then the links connecting the reaction to its reactant and product metabolites have arrows in both directions.
(b) Unipartite metabolite graph representation for the three reactions in the glycolytic pathway. Note that before constructing the directed unipartite
graph from the bipartite graph, we remove the currency metabolites.
doi:10.1371/journal.pone.0022295.g001
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‘‘Random’’, and the distribution again seems to follow a power law

but with a slightly higher exponent, around 2.51. Thus this

‘‘Random’’ ensemble leads to metabolic networks whose metab-

olite degree distribution has characteristics rather similar to those

of E. coli.

The similarity of the three distributions in Fig. 2 may seem

remarkable, but upon reflection it can be understood as follows.

The highest degree metabolites in the KEGG_Hybrid set

participate in many reactions. Thus they are most likely very

important biochemically, so they should be present in E. coli.

Quantitatively, we have checked this: among the metabolites of

degree at least 50 in KEGG_Hybrid, 94% are also present in E.

coli. Furthermore, this same pattern is expected in the Random

ensemble simply because choosing reactions at random gives a

higher probability of incorporating metabolites that participate in

many reactions. Again this can be tested explicitly: for any of the

metabolites that have degree at least 50 in KEGG_Hybrid, the

Random metabolic networks include them with probability above

0.99. Interestingly, the biochemical nature of these high degree

metabolites is quite specific: they are categorized as ‘‘carriers’’ or

as ‘‘precursors’’ in the biochemical literature [13]. Tanaka and

Doyle [14,20] have investigated the degree properties of these two

classes and found that indeed they are the contributors to the fat

tails in the degree distribution for different organisms, but we see

here that this also holds for the KEGG_Hybrid set and for our

‘‘Random’’ ensemble.

All the above concerns the degree of the metabolites. The same

kind of analysis can be performed for the degree of the reactions,

where the degree of a reaction is given by the number of its

substrates (metabolites it involves). In contrast to metabolites,

reactions do not have high degrees: a typical reaction will involve

just a few metabolites, the most frequent number being 4, and very

rarely will there be more than 6. This situation is illustrated in

Fig. 3 where we also distinguish the different kinds of metabolites

(see Materials and Methods for details). One sees from Fig. 3 that

reactions typically involve a currency pair, sometimes two, but that

almost always there are at most 3 metabolites per reaction that are

not of the currency type.

Ensembles: from implementing biochemical realism to
allowing for functional constraints

The ‘‘Random’’ ensemble is a first way to define randomized

metabolic networks: it takes into account both the need to use

meaningful biochemical reactions and the number of reactions in

the genome of interest. We shall consider that the metabolic

network (of an organism or of a randomized organism) is specified

by its set of enzyme coding genes, and we shall refer to this set as

its ‘‘genotype’’.

The approximate power law tail found in the degree

distribution of metabolites in living organisms can be traced to

the contribution of currency metabolites (cf. Fig. 2). However,

numerous other statistical properties of biological metabolic

networks set them aside from those in the Random ensemble;

for instance their number of metabolites is significantly lower, they

have fewer ‘‘blocked’’ [21,22] reactions (reactions that cannot

sustain flux for instance because they are not connected to other

reactions), etc. Just as we fixed the number of reactions n in the

genotypes forming the Random ensemble, it is appropriate to

Figure 2. The degree distribution of metabolites in metabolic
networks. The x-axis is the degree (k), the y axis is the probability P(k)
that a metabolite has degree k. The relatively linear behavior on the log-
log scale shows that a power law describes well the tail of the
distribution. Three cases are shown. (1) All metabolites (and reactions)
that are biochemically known (from the KEGG_Hybrid database),
referred to as ‘‘KEGG_Hybrid’’. (2) Metabolites in the E. coli genome-
scale metabolic model. (3) Metabolites in metabolic networks obtained
by taking nE random reactions in KEGG_Hybrid, nE being the number of
reactions in the E. coli genome-scale metabolic model (referred to as
‘‘Random’’). In all cases, a power fit to the tail of the distribution leads to
a satisfactory fit, the respective exponents being 2.31, 2.17 and 2.51.
doi:10.1371/journal.pone.0022295.g002

Figure 3. The degree distribution for reactions in the KEGG_
Hybrid universe of reactions. For each degree (number of substrates
in a reaction), we give the number of corresponding reactions having
that degree. We also distinguish for each case the fraction of those
reactions that have 0, 1, 2, … substrates which are currency
metabolites.
doi:10.1371/journal.pone.0022295.g003

Randomizing Metabolic Networks

PLoS ONE | www.plosone.org 3 July 2011 | Volume 6 | Issue 7 | e22295



include further ‘‘macroscopic’’ constraints to refine the random-

ization ensembles. For each added constraint, one can expect the

statistical characteristics in the ensemble to become closer to those

of living organisms, but the hope is that just a few relevant

constraints will be sufficient to have a quite satisfactory

randomized ensemble. Beyond the constraints already mentioned,

there is the simple fact that metabolism of living organisms allows

them to grow and reproduce. Although these are incredibly

complex tasks, genome-scale metabolic network models [23,24]

take into account the realizable fluxes through biochemical

reactions and the possibility that a given set of reactions (catalyzed

by enzyme coding genes) may produce all the biomass components

necessary for cell growth. In our most constrained ensemble, we

shall thus enforce the ‘‘functional’’ constraint that the genotype’s

metabolic network allows for production of these biomass

components. The simplest ensemble is the one previously

introduced under the term ‘‘Random’’ and we shall label it R

because it is simply based on using a fixed number of random

reactions in KEGG_Hybrid. Adding the constraint of the number of

metabolites gives the ensemble we label RM and so forth. We now

describe these successive ensembles and the computational tools

used to sample them. We shall then examine the statistical

properties of the networks in each of these ensembles and see the

effects of successively adding these constraints.

The ensembles R, RM, and uRM. The allowed reactions

will always be taken from the aforementioned KEGG_Hybrid list.

This guarantees that every reaction satisfies atomic conservation

laws. Also, these reactions are either reversible or irreversible, and

this is taken into account in the modeling. The first ensemble R

constrains the number of reactions; it consists of genotypes having

exactly n reactions in the KEGG_Hybrid list where n is the

number of reactions of the ‘‘reference’’ organism which one wants

to benchmark in a randomization test; for specificity, the reader

can think of this reference organism as being E. coli. The second

ensemble further constrains the number of metabolites; the

number of metabolites m in a genome is obtained by counting

all the distinct metabolites associated with the reactions in that

genotype. In practice, the sampling is simpler if one constrains m to

be in a range; we shall use m#mE where mE is the number of

metabolites in the reference organism E. coli. We denote this

second ensemble which imposes two constraints by RM. (Note that

to go from a sample of m#mE to one with m = mE, it is sufficient to

use the subsample satisfying m = mE.) The third ensemble, denoted

by uRM, restricts the nature of the reactions in KEGG_Hybrid

that we permit ourselves to consider. The motivation for this

restriction comes from the fact that KEGG_Hybrid includes many

reactions involving ‘‘exotic’’ metabolites which are involved with

just one reaction. In such cases, those reactions will necessarily be

isolated and thus ‘‘afunctional’’ biochemically; unless the

associated metabolites are part of the biomass, such reactions

would have no reason to be kept in a biological organism. (Note

that some of these cases may be due to errors or missing reactions

in KEGG_Hybrid; these limitations are expected to be resolved in

the not so distant future as databases get improved.) A similar

situation arises when a reaction requires a metabolite that can only

be produced in particular chemical environment that we do not

consider; such a reaction will then be blocked. Our working

definition of a ‘‘blocked’’ reaction is based on the possible fluxes it

can sustain in the steady state; if a reaction is guaranteed to be

never used in such conditions, then it is considered as blocked and

removed from the KEGG_Hybrid list. In practice, for all the

reactions in KEGG_Hybrid we determine whether they are

blocked [21,22] (cannot sustain non zero flux; see Materials and

Methods for the details); the reduced set of unblocked reactions is

then used as input for constructing genotypes. The nomenclature

uRM of the ensemble indicates that we use unblocked reactions

with constrained numbers of reactions and metabolites.

The ensembles uRM-V1, …, uRM-V10. The essence of

living organisms is growth and reproduction. Metabolism plays a

central role therein, transforming various nutrients brought in

from outside the cell into primary metabolites (amino acids,

nucleic acids, fatty acids, etc). These are then used as bricks for

building proteins, DNA, lipids, etc. Genome-scale metabolic

models provide a tested framework to relate genotypes (lists of

enzyme-coding genes) to metabolic capabilities and phenotypes

[23,24]. The framework, often called FBA for ‘‘Flux Balance

Analysis’’, allows one to compute the possible flux distributions

through all the reactions assuming the metabolic network is in the

steady state [23,24,25]. One may ask whether all the biomass

compounds can be produced given a chemical environment, i.e., a

set of nutrients defining allowed input fluxes into the cell. If a

genotype’s metabolic network satisfies this constraint, we say that

the genotype is ‘‘viable’’ on that chemical environment because

the in silico FBA predicts that the cell can grow given those

nutrients. This is illustrated in Fig. S2.

There are many possible choices of nutrients; clearly one needs

sources of all major elements (H, C, O, N, S, P). It is common

practice to focus on the carbon utilization because it is often

limiting; we thus work with ‘‘minimal’’ environments having a

single carbon source. In the lab, it is easy to test whether a

microorganism grows on a whole panel of different environments,

and the corresponding list of growth/no-growth results is referred

to as the growth phenotype of the organism. This growth phenotype

can be considered a constraint to impose on a randomization. In

this spirit, we consider a succession of ensembles associated with

viability on multiple environments. Specifically, given an organism

like E. coli and its growth phenotype, we can consider the random

genotypes that have the same in silico growth phenotype (as

predicted by FBA). The associated ensemble thus takes into

account viability constraints. These constraints can be considered

as being imposed successively: one can force growth first on one

chemical environment, then on two, then on three, and so on. We

refer to these ensembles as uRM-V1, uRM-V2, uRM-V3, etc.

Interestingly, the first step, namely going from uRM to uRM-V1,

turns out to be the most stringent as the ones thereafter give rise to

only rather small changes.

MCMC sampling of each ensemble. The ensemble R can

be sampled by drawing genotypes with the correct number of

reactions, but the constraints inherent to the other ensembles do

not allow such a simple procedure. We thus resort to Markov

Chain Monte Carlo (MCMC) as a way to sample each ensemble.

This requires obtaining an element of the ensemble as a starting

point, and then performing random walks within the ensemble.

Each trial step involves doing a reaction swap (exchanging a

reaction in the genotype with one that is not) to respect the

constraint of having a fixed number of reactions. Then the

different constraints of the ensemble of interest are checked; if they

are satisfied, the trial step (to a new genotype) is accepted,

otherwise it is rejected. The schematic representation of this is

given in Fig. 4 while the detailed procedures are given in Fig. S3

for the ensemble uRM-V1. Note that by construction, in each

ensemble, all of the elements are equiprobable; our ensembles are

then just nested sets of genotypes satisfying increasing numbers of

constraints. The reduction in size of these sets as each constraint is

added can be extremely severe. For instance, when going from all

reactions to unblocked reactions, over half of the reactions are

discarded, leading to a reduction of the genotype space by

approximately a factor 2n. Similarly, it was shown in previous work

Randomizing Metabolic Networks
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[26] that including the viability constraint on the first chemical

environment leads to a reduction by at least a factor 1022. These

numbers drive home the necessity of using MCMC for sampling:

direct random sampling is hopelessly inefficient.

Metabolic network statistical properties
Genetic diversity. In any of our ensembles sampled by

MCMC, two genotypes taken at random will share some reactions

and differ in others. For instance, in the ensemble uRM-V10, we

find a total of 106 specific reactions that are necessary for any

genotype to have nonzero biomass flux. These 106 reactions are

then present in every genotype of the ensemble uRM-V10.

Nevertheless, two genotypes taken at random in this ensemble

tend to be rather different. Specifically, if one takes two genotypes

G1 and G2 at random in uRM-V10, we find that on average G2 will

have more than 50% of its reactions that are not in G1. This also

holds true when we compare a random genotype to that of E. coli.

In the ensembles with fewer constraints (eg. uRM-V1), the level of

dissimilarity between random genotypes is even higher. Thus, in

spite of some shared reactions in all genotypes, the genotypes in

our ensembles are not very similar to each other or to E. coli: the

ensembles have a high level of genetic diversity.

Global topological properties. To each genotype is

associated a list of reactions and their corresponding metabolites;

the whole can be represented by a bipartite graph (cf. Fig. 1(a)).

From this graph, one may form a reduced graph for only the

metabolites, or one for only the reactions; these graphs are called

the metabolite-metabolite graph and the reaction-reaction graph

respectively. (See the Materials and Methods section for the

associated procedures.) It is appropriate to emphasize that the

bipartite graph representation of the metabolic network contains

more information than its associated unipartite graph

representation.

For each genotype generated and saved in the different

ensembles, we have constructed its metabolite-metabolite graph.

Then we measure several of the standard structural properties of

that (directed) graph. These are as follows. (1) The clustering

coefficient C which roughly is a measure of the frequency of

triangles in the network. (2) The average path length L between

randomly chosen nodes. (3) The probability PC that two randomly

selected nodes A and B are connected by a directed path from A to

B; this gives an indication of whether a metabolite is involved in

another’s production. (4) The size of the largest strong component

(LSC) which measures the connectivity of the network. In a

directed graph, a strong component is defined as a maximal sub-

graph such that there exists a directed path between any two of its

nodes; in the case of an undirected graph, it is then just a maximal

connected component. We focus on the largest of these strong

components in this work. (5) The ‘‘IN’’ (respectively the ‘‘OUT’’)

sub-graph for a given strong component is the set of nodes for

which there is a directed path to (respectively from) the strong

component [27]. We shall monitor the union of the largest strong

component (LSC) and its associated IN and OUT parts.

For each of these indicators of graph structure, we have

computed the mean values within the different ensembles for the

metabolite-metabolite graph, and have also determined the value

for the graph associated with the E. coli genotype. In Fig. 5 we

display as a function of the increasingly constrained ensembles

three structural quantities related to connectivity: the average of

PC, the average size of the LSC, and the average size of

LSC+IN+OUT. To the right of the bar associated with uRM-V10

we show the value for E. coli. Clearly the first constraints strongly

affect the structure of the metabolic networks, while increasing the

number of environments on which one forces viability gives rise

only to modest changes. When considering the other structural

properties of networks in the ensembles, we see that for the

clustering coefficient, the first constraint (going from R to RM) is

the most important (cf. Fig. S4). For the average path length,

already at the level of R one has quite good agreement with the

value in E. coli, just as was the case for the degree distribution (cf.

Fig. S5). Thus we have ensembles of randomized metabolic

networks that are good benchmarks of comparison for the

biological network.

Functional constraints shape global network structure.

The trends described above can be summarized by following the

joint statistics of the structural properties in the ensembles as one

adds successive constraints. This is illustrated in Fig. 6 for three of

the structural properties. Each ensemble is represented by 1000

of its genotypes and for clarity we have displayed only three of the

ensembles. We see a systematic change in the structural

properties as constraints are added, and that the three clouds

associated with the constraints represented here have little

overlap. Note that by construction our ensembles are actually

embedded sets of genotypes; each added constraint reduces the

genotypes allowed. Such a hierarchical structure does not prevent

the clouds in Fig. 6 from being rather well separated.

Figure 4. MCMC sampling of genotypes in a randomized
ensemble. The space of genotypes with exactly nE reactions within
KEGG_Hybrid (as in the E. coli) is very large, and only a tiny fraction of
these genotypes are in any of the ensembles RM, uRM, uRM-V1 etc.
MCMC allows one to sample this tiny fraction by generating a random
walk restricted to the genotypes in the ensemble of interest. The MCMC
starts with the E. coli genotype (shown in the figure as G0) and proceeds
as follows. At each trial step, a modified genotype is generated by
applying a reaction swap to the current genotype. If the modified
genotype satisfies the constraints of the ensemble, the trial move is
accepted (shown in the figure as blue arrow) with the modified
genotype becoming the next genotype of the walk. If the modified
genotype does not satisfy the constraints of the ensemble, the trial step
is rejected (shown in the figure by red arrows) and the walk stays at the
previous genotype for that step. The advantage of using reaction swaps
in our approach is that it leaves the number of reactions constant over
time. The genotypes on the boundary of the large circle are in the
neighborhood of genotype Gk and differ from it by a single reaction
swap.
doi:10.1371/journal.pone.0022295.g004
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Furthermore, the trend with addition of constraints very clearly

brings the clouds closer to the point representing the structural

properties of E. coli. This was visible too at the level of the

individual observables (cf. Figs. 5 and 6).

While computing the above mentioned structural properties, the

construction of the metabolite-metabolite graph plays a key role.

However, the unipartite metabolite graph construction relies on a

classification of metabolites into currency and non currency

Figure 5. Graph-based characteristics of the metabolic networks in the different ensembles. (a) Probability PC that a path exists between
two nodes taken at random in the directed metabolite-metabolite graph. (b) Fraction of nodes belonging to the largest strong component (LSC) or to
the union of LSC, IN and OUT components. Different bars from left to right correspond to network ensembles incorporating an increasing number of
constraints and the last bar corresponds to the E. coli metabolic network. The standard deviation is also displayed for each ensemble.
doi:10.1371/journal.pone.0022295.g005

Figure 6. Synthetic view of the statistical properties of randomized networks in different ensembles and comparison to the E. coli
metabolic network. The three axes are associated with graph characteristics of the networks. PC is the probability that a path exists between two
nodes. c is the exponent of the power law fit to the metabolite degree distribution. The vertical axis is the fraction of nodes in the union of LSC, IN
and OUT components. Each cloud represents 1000 randomized networks in the ensemble considered.
doi:10.1371/journal.pone.0022295.g006
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metabolites, and such a classification is not clear-cut. Indeed some

currency metabolites have a carrier role in some reactions and a

non carrier role in others. To check that our conclusions are not

sensitive to some level of arbitrariness in the classification scheme,

we have repeated the whole calculation for a modified set of

currency metabolites, removing 20 currency metabolites from the

original list in Table S1. We display in Fig. S6 the analog of Fig. 6;

the difference between the two figures is hardly detectable by eye,

showing that the trends found above are robust.

Discussion

Over the past decade, genome-scale metabolic networks have

been constructed for several organisms. In all cases, the metabolite

degree distribution exhibits a fat tail compatible with a power

decay [10,11] of exponent around 2.2. We found that this

behavior can be traced to the metabolite degree distribution in the

set of all known biochemical reactions as given for instance in

KEGG. The fundamental source of these fat tails is the large

number of currency metabolites that transfer small groups in nearly

all real biochemical reactions. It is essential to take into account

this fact when testing whether biological metabolic networks have

unexpected features. The commonly used edge exchange

algorithm has the desirable property of preserving the network

degree distribution but it is inappropriate because the procedure

introduces fictitious reactions having no meaning. Any sensible

testing framework should force the benchmark (the randomized

ensemble) to incorporate real biochemical reactions. We showed

that this could be done in practice by using a database of real

biochemical reactions compiled from KEGG and iJR904. In this

framework, we found that the degree distribution of metabolites

had a fat tail very similar to what is seen in real organisms.

One may ask whether the observed fat tail is an artifact of the

KEGG database itself which summarizes the reactions in today’s

organisms. It is quite possible that other reactions and cofactors

can act as substitutes to the ones occurring in KEGG, and thereby

affect the degree distribution. However, it is likely that selection

pressures act against such substitutes, for instance because of

efficiency of catalysis or availability of molecular species. In effect,

the use of KEGG reflects evolutionary constraints in addition to

the purely biochemical ones. Thus, the present work is relevant for

natural organisms but much less so for synthetic ones.

Another caveat associated with this study is the bias arising due

to incompleteness of the KEGG database. Firstly, KEGG is

missing transporters of less studied organisms; as a consequence a

number of reactions appear to be blocked. Secondly, many

biosynthesis pathways are incomplete; this is especially true for

rare (or poorly understood) pathways. However, both of these

biases can be expected to have only mild consequences within our

study. Indeed for our choices of chemical environments, the

curation of genome-scale models of different organisms has filled

the gaps for transporters. Furthermore, our use of the E. coli

biomass reaction formula makes our growth phenotypes insensitive

to missing reactions as long as they arise in rare biosynthetic

pathways.

Looking at structural properties beyond the degree distribution,

we found that the ensemble R showed significant differences with

the biological case (where the ensemble R corresponds to choosing

randomly a given number of reactions in the database KEGG_

Hybrid). Since understanding the topological properties of

networks can give insights into their structure-function relation-

ship, it is appropriate to refine the benchmark ensemble. Thus, we

successively added further global constraints, in particular by

enforcing metabolic capabilities, in this context biomass produc-

tion. Adding such functional constraints takes into account the

growth properties of living organisms and thus the ‘‘macroscopic’’

forces which shape biological metabolic networks. We find that by

adding biochemical and functional constraints, the structural

properties of the random networks in our ensembles become very

close to what is seen biologically as illustrated in Fig. 6; that this is

possible without taking into account any microscopic properties is

really remarkable. Depending on the structural feature considered,

we find that some features emerge relatively ‘‘early’’, that is follow

from fewer macroscopic constraints than others.

Perhaps most strikingly, these trends occur within ensembles

that maintain a high level of genetic diversity. Indeed even in our

most constrained ensemble, uRM-V10, the metabolic networks

show large differences in reaction usage. Quantitatively, two

randomly chosen networks in the ensemble uRM-V10 will typically

differ in half of their reaction content. As a cautionary note, it is

important to stress that the observed trends here concern global

structural measures commonly used in general network analysis.

One cannot exclude the possibility that consideration of

metabolism-specific observables based for instance on fluxes may

lead to a different picture.

In conclusion, the present work indicates that the observed

global structural properties of metabolic networks in living

organisms are likely to be consequences of the simplest

biochemical and functional constraints. Such a possibility has

been previously suggested [28,29] but remained in the spirit of a

conjecture; we hope that the direct computational evidence

provided in this work will transform conjecture into paradigm.

Materials and Methods

Biochemical reaction sets
KEGG__Hybrid reaction set. We have used a hybrid

database compiled by Rodrigues and Wagner [15] containing

4816 metabolites and 5870 biochemical reactions for this work.

This database of 5870 reactions was compiled by merging the

Kyoto Encyclopedia of Genes and Genomes (KEGG) LIGAND

reaction database [16] with the E. coli genome-scale metabolic

model iJR904 [17], followed by appropriate pruning to exclude

elementally imbalanced and generalized polymerization reactions

[15]. Of the 5870 reactions in the hybrid database, 3369 are

irreversible and 2501 are reversible reactions. Also, more than

5500 reactions are contained in the KEGG LIGAND database

and so less than 300 reactions are specific to the E. coli genome-

scale metabolic model iJR904. In this work, we will refer to the set

of 5870 reactions contained in the hybrid database [15] as

‘‘KEGG_Hybrid reactions’’.

The hybrid database also contains transport reactions for 143

external metabolites in the E. coli iJR904 metabolic model; these

can be used to transport such metabolites across the cell boundary.

The 143 external metabolites were taken to be the set of possible

uptake and secreted metabolites in the network. Further, an

objective function Z in the form of a biomass reaction, that

requires synthesis of all biomass components of E. coli, as defined

in the iJR904 model [17], is also included in the hybrid database.

The biomass reaction is used to determine the viability of a

network.

Unblocked KEGG__Hybrid reaction set. Genome-scale

metabolic networks typically contain ‘‘blocked’’ reactions that

can have only zero flux in every investigated chemical

environment under any steady state condition [21,22]. Such

blocked reactions cannot contribute to the steady state flux

distribution. With the set of 143 external metabolites in the E. coli

iJR904 model, we found 2968 of the 5870 reactions in the hybrid
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database to be blocked under all environmental conditions [26].

We have excluded the 2968 blocked reactions from the set of 5870

reactions in the hybrid database to arrive at a reduced reaction set

of 1597 metabolites and 2902 reactions. We refer to this reduced

set of 2902 reactions in this work as ‘‘Unblocked KEGG_Hybrid

reactions’’.

The E. coli metabolic network. The E. coli metabolic model

iJR904 [17] contains 931 reactions which are also part of the

hybrid database. After having excluded the 2968 blocked reactions

from the hybrid database, the unblocked reaction set of 2902

reactions still contains 831 reactions of the E. coli iJR904 model. In

this work, we refer to this set of 831 reactions as the E. coli

metabolic network.

Graph-theoretic representations of metabolic networks
The metabolic network can be represented as a directed

bipartite graph built up of two types of nodes, metabolites and

reactions, connected by two types of links. We can distinguish

reactant metabolites from product metabolites of a reaction as

follows: A link from a metabolite node to a reaction node specifies

a reactant while a link from a reaction node to a metabolite node

specifies a product. Note that in a bipartite graph, links between

similar types of nodes are forbidden. It is important to differentiate

between reversible and irreversible reactions in the network. In

Fig. 1(a) we have used the bipartite representation to show three

reactions in the glycolytic pathway.

Starting from a directed bipartite graph of metabolites and

reactions, we can construct an associated directed unipartite

graph of metabolites, referred to as a metabolite-metabolite

graph. It summarizes the metabolic network structure by

assigning links from reactant metabolites to product metabolites

in each reaction. In the simplest definition, two metabolites will

be ‘‘neighbors’’ (connected by a link) if and only if they appear in

at least one common reaction [11]. However, a sizeable fraction

of metabolites in the network have quite high degree, so this

construction leads to very dense graphs whose statistical

properties are dominated by the role of the currency metabolites.

To overcome this problem and also maintain biochemical

relevance, we construct the metabolite-metabolite graph by first

removing the currency metabolites, and then assigning links from

reactant metabolites to product metabolites in each reaction

[13,14]. This representation has the advantage that the (directed)

link between two metabolites signifies transformation of one into

the other. For reversible reactions, the links between metabolites

appear in both directions. See Fig. 1(b) for an illustration.

The different treatment of currency vs. non currency metabolites

is based on the fact that biochemical reactions most often consist of

adding or removing a small group (proton, phosphate, methyl, etc) of

a large compound. Currency metabolites are the co-factors

responsible for such transfers, and they are quite ubiquitous.

Examples of currency metabolites include ATP, ADP, NADH,

NAD+, H2O, H+, Pi that are normally used as carriers for

transferring electrons or certain functional groups such as phosphate

group, amino group, methyl group, one carbon unit, etc. In our

construction of the unipartite graph, we omit links arising due to

presence of currency metabolites in each reaction. In Fig. 1(b), we

show the unipartite graph corresponding to the bipartite graph

shown in Fig. 1(a) for the three reactions in the glycolytic pathway.

The list of currency metabolites used in our work was based on that

in the paper by Ma and Zeng [13] and is given in Table S1.

Structural properties of metabolic networks
Metabolite degree distribution. The degree of a

metabolite i (denoted by ki) is the number of reactions in which

the metabolite i participates either as a reactant or a product in the

network. The metabolite degree distribution P(k) is defined as the

probability that a randomly selected metabolite node participates

in exactly k reactions in the network. We use the bipartite graph

representation of the metabolic network to compute the metabolite

degree and degree distribution.

In Fig. 2, we have displayed several metabolite degree

distributions after applying logarithmic binning. It is seen that the

metabolite degree distributions approximately follow a power law,

P(k) ,k-c [5], and the degree exponents c were extracted by using

the maximum likelihood estimate method [18,19] recently proposed

by Newman and colleagues rather than by fitting the binned data.

Reaction degree distribution. The degree of a reaction is the

number of substrates that participate either as a reactant or a

product in it. The reaction degree distribution P(k) gives the

probability that a randomly selected reaction has exactly k substrates

in it. We use the bipartite graph representation of the metabolic

network to compute the reaction degree and degree distribution.

Fig. 3 shows this distribution in the KEGG_Hybrid database.

Clustering coefficient. The clustering coefficient quantifies

the extent to which the neighbors of a node in a graph are

connected to each other [1]. The global clustering coefficient of a

graph measures the fraction of triangles among the connected

triples [30]. It is given by: C~
ND

N3
where ND is the number of

triangles and N3 is the number of connected triples in the graph. In

this work, we have computed the clustering coefficient for each

network in our ensemble using the unipartite metabolite graph

representation. Note that when computing the clustering

coefficient, the graph is considered undirected.

Path length and connectivity. The average path length

,L. is a measure of the overall navigability in a network. It is

defined as the average length of the shortest paths between all

pairs of nodes in the directed unipartite metabolite graph. When

computing the average path length for a disconnected graph, one

considers only the node pairs for which a directed path exists. We

have also computed the probability PC that a directed path exists

between any two nodes in the unipartite metabolite graph. The

clustering coefficient C, average path length ,L. and probability

PC that a path exists between two nodes in a graph were computed

using the igraph library [31].

Largest strong component. Given a directed graph, a strongly

connected component is a maximal set of nodes such that for any pair

of nodes i and j in the set there is a directed path from i to j and from j

to i [32]. In general, a directed graph may have one or many strong

components. The strong components of a graph are disjoint sets. The

strong component with the largest number of nodes is designated as

the largest strong component (LSC). The associated IN component

consists of nodes which have access to LSC nodes via some directed

path, but lack access from LSC nodes back to them via any directed

path. The OUT component consists of nodes which can be accessed

from the LSC nodes via some directed path, but lack access to LSC

nodes from them via any directed path. Note that the so-called ‘‘bow-

tie’’ architecture of networks is based on these LSC, IN and OUT

components; that architecture has been observed both in the World

Wide Web (WWW) [27] and in bacterial metabolism [33,34]. In this

work, we have computed the fraction of nodes in the largest strong

component (LSC) and in the union of LSC, IN and OUT

components for networks in our ensembles using the directed

unipartite metabolite graph representation.

Genotype-to-phenotype map
A metabolic network genotype is any subset of reactions taken

from the global reaction set itself consisting of N reactions. A
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simple representation of a metabolic network genotype G uses a

binary string of length N, e.g., G~(b1,:::,bN ), with each reaction i

being either present (bi = 1) or absent (bi = 0) (see Fig. S2 for an

example). Each randomized network in our ensemble can be

thought of as one genotype existing in a vast genotype space of

possible metabolic networks. For any genotype, we can use flux

balance analysis (FBA) [23,24,25] to determine whether the

corresponding network has the ability to synthesize all biomass

components in a given chemical environment or medium. FBA

primarily uses information about the stoichiometry of reactions in

the network to obtain a prediction for the steady-state fluxes of all

reactions and the maximum possible biomass synthesis rate. The

predictions of FBA and related approaches are generally in good

agreement with experimental results [35,36].

We consider a genotype to be ‘‘viable’’ in a given chemical

environment if and only if its maximum biomass flux predicted by

FBA is non-zero (see Fig. S2). Otherwise, we consider the genotype

to be non-viable. We use FBA and the E. coli biomass composition

[17] to determine viability of a genotype in different chemical

environments corresponding to minimal media. Specifically, we

consider only minimal environments that contain a limited

amount of a carbon source, along with unlimited amounts of the

following inorganic metabolites: oxygen, water, protons, sulfate,

ammonia, pyrophosphate, iron, potassium and sodium. Here, we

have considered 10 carbon sources: glucose, acetate, succinate,

pyruvate, oxoglutarate, glucose-6-phosphate, sucrose, acetalde-

hyde, glycerol and glycerol-3-phosphate.

Generation of randomized ensembles
Random ensemble R of genotypes with fixed number of

reactions. A genotype in the ‘‘random’’ ensemble R can be

simply generated by uniformly sampling subsets with exactly nE

valid biochemical reactions from the KEGG_Hybrid reaction set

of N = 5870 reactions, where nE = 831 is the number of reactions in

the E. coli metabolic network. Using this procedure, we have

generated 1000 genotypes in the random ensemble to compare

with the E. coli metabolic network. Our motivation to fix the

number of reactions in our genotypes is as follows: The

biochemical reactions inside the cell are catalyzed by enzymes

which are proteins coded by genes. By fixing the number of

reactions in our genotype, we impose the constraint of fixed

metabolic genome size.

Ensemble RM of genotypes with fixed number of

reactions and metabolites in the KEGG_Hybrid set. The

E. coli metabolic network consists of nE = 831 reactions involving

mE = 668 metabolites. Though the genotypes in the random

ensemble R have exactly the same number of reactions as in E. coli,

they typically contain many more metabolites than in the E. coli

network. As a next step, we enforce the additional constraint that

the genotypes have the same number of metabolites mE as in the E.

coli network. Note that we cannot pick a fixed number of reactions

at random from the KEGG_Hybrid reaction set if they are to

satisfy the additional constraint of fixed number of metabolites.

Hence, we use the Markov Chain Monte Carlo (MCMC) method

to sample genotypes in the KEGG_Hybrid reaction set with same

number of metabolites and reactions as in E. coli.

The MCMC method produces a sequence of genotypes forming

a chain, the term ‘‘chain" coming from the property that the

(k+1)th element of the sequence is generated from the kth one using

a probabilistic transition rule. We start with the E. coli genotype

and then propose a small modification in the genotype; if this

modified genotype has its number of metabolites # mE (the

number in E. coli), one accepts it as the next genotype of the

sequence, otherwise the next genotype is identical to the current

genotype. In this work, the modification introduced at each

transition step is a reaction swap. That is, each modification adds

one reaction from KEGG_Hybrid reaction set and removes

another reaction from the current genotype, so as to keep the

number of reactions nE constant in the genotype. The MCMC

thereby produces a walk in the subspace of genotypes of nE

reactions and at most mE metabolites. Starting from the initial E.

coli genotype, we first carried out 105 attempted swaps or Markov

chain steps to erase the memory of the starting genotype. After this

initial phase, we continued the MCMC procedure to sample

genotypes with exactly nE reactions and at most mE metabolites.

During this phase, it is not useful to keep all of the genotypes

produced because they are strongly correlated. We thus saved only

every 1000th genotype generated, and we did 106 steps. We refer

to the set of 1000 genotypes with nE reactions and # mE

metabolites within KEGG_Hybrid reaction set as the RM

ensemble. We find that the procedure is relatively efficient, with

an acceptance rate 0.22 that is not small. We also find that a

substantial fraction of the networks have in fact m = mE.

Ensemble uRM of genotypes with fixed number of
reactions and metabolites in the Unblocked KEGG_Hy-
brid set. ‘‘Blocked’’ reactions can have only zero flux in every

investigated chemical environment under steady state conditions, and

thus are ‘‘afunctional’’ in all genotypes. As a next step, we enforce the

constraint that the genotypes in the ensemble are sampled within the

Unblocked KEGG_Hybrid reaction set rather than the KEGG_Hy-

brid reaction set. We refer to this ensemble of genotypes containing

the same number of metabolites mE and reactions nE as in the E. coli

network within the unblocked reaction set as uRM. We generate the

genotypes in the uRM ensemble through a slightly modified MCMC

method from that mentioned above to generate the RM ensemble. In

this case, at each transition step, we impose a reaction swap to the

current genotype that is restricted to the Unblocked KEGG_Hybrid

set, i.e., we remove one reaction from the current genotype and add a

reaction from the Unblocked KEGG_Hybrid set. The rest of the

procedure is exactly the same as above for sampling RM. We have

sampled 1000 genotypes in the uRM ensemble with nE reactions and

at most mE metabolites.

Ensembles of viable genotypes with fixed number of

reactions and metabolites. The E. coli metabolic network has

the ability to produce biomass components starting from nutrient

metabolites in its environment for growth and maintenance. Thus

as a next step, we enforce the additional functional constraint of

growth in a chemical environment. We define the ensemble uRM-

V1 as that part of uRM in which the genotypes satisfy the functional

constraint of non-zero biomass flux in the glucose minimal

environment (as determined by FBA; see Fig. S2). We sample the

genotypes in uRM-V1 ensemble using a slightly modified MCMC

method from that mentioned above to generate the uRM ensemble.

In this case, at each transition step, we perform a reaction swap to

the current genotype that is restricted to the Unblocked reaction set

and accept the swap if the modified genotype satisfies the following

two conditions: (a) the number of metabolites in the modified

genotype is at most mE, the number in E. coli, and (b) the modified

genotype is viable under glucose minimal environment. The rest of

the procedure is exactly same as when sampling genotypes in the

ensemble uRM; a flowchart of the MCMC algorithm for sampling

the ensemble uRM-V1 is shown in Fig. S3. We have sampled 1000

genotypes in this uRM-V1 ensemble.

Since, E. coli is able to survive and grow under diverse

environmental conditions (rather than just one chemical environ-

ment), we have further generated two ensembles of genotypes

satisfying increased functional constraints of (a) viability under 5

specified minimal environments (referred to as the ensemble uRM-
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V5) and (b) viability under 10 specified minimal environments

(referred to as ensemble uRM-V10), respectively. These ensembles

can be sampled by a MCMC procedure that is just a slight

modification from the one shown in Fig. S3.

Supporting Information

Figure S1 Edge exchange randomization is biochemi-
cally meaningless. The commonly used edge exchange or link

permutation procedure for randomizing biological networks is

inappropriate for metabolic networks as the method generates

fictitious reactions violating balance of mass, charge and atomic

elements. Here, starting with two reactions (ASPT: asp-L R fum +
nh4; CITL: cit R oaa + ac), we perform an edge exchange

associated to metabolites fum and ac that generates two new

hypothetical reactions (ASPT*: asp-L R ac + nh4; CITL*: cit R
oaa + fum) that violate balance of mass and atomic elements. Note

that ac has 2 carbon atoms and fum has 4 carbon atoms.

(TIF)

Figure S2 Schematic summary of the relationship
between genotypes and phenotypes. The genotype specifies

the list of reactions in a metabolic network. The phenotype is

determined by whether the metabolic network can produce

biomass components (growth) in a choice of chemical environ-

ments; this condition is computed using FBA.

(TIF)

Figure S3 Flowchart of the MCMC algorithm to sample
genotypes in the ensemble uRM-V1. The Markov chain

starts with the E. coli genotype. We then perform 105 Markov

Chain steps to erase the memory of the initial genotype. After this

initial phase, we continue the MCMC procedure to sample the

genotype network and save every 1000th genotype generated. We

terminate the Markov chain after saving 1000 genotypes. Note

that the length of the run (and the choice of saving frequency)

should be long enough to obtain a meaningful and uncorrelated

sample of genotypes using this algorithm.

(TIF)

Figure S4 Clustering coefficient C of the metabolic
networks in the different ensembles. Different bars from

left to right correspond to network ensembles incorporating an

increasing number of constraints and the last bar corresponds to

the E. coli metabolic network. The standard deviation is also

displayed for each ensemble.

(TIF)

Figure S5 Average path length ,L. of the metabolic
networks in the different ensembles. Different bars from left

to right correspond to network ensembles incorporating an

increasing number of constraints and the last bar corresponds to

the E. coli metabolic network. The standard deviation is also

displayed for each ensemble.

(TIF)

Figure S6 Statistical properties of randomized net-
works in different ensembles and the E. coli metabolic
network using a modified currency list. The three axes are

associated with graph characteristics of the networks and are same

as in Figure 6. Each cloud represents 1000 randomized networks

in the ensemble considered. In order to compute graph

characteristics of randomized networks shown in this figure, we

have constructed the metabolite-metabolite graph corresponding

to each randomized network using a currency list modified from

that listed in Table S1. The modified currency list was generated

as follows. We first ranked metabolites in the currency list (given in

Table S1) based on metabolite degree in the complete reaction

database. The lowest degree metabolite in the currency list was

designated rank 1. The 20 metabolites of smallest rank in this

ranked currency list were then eliminated to generate the modified

currency list used for computing graph characteristics shown in

this figure. By comparing this figure with its analog (Figure 6), one

sees that our conclusions are the same for the two definitions of

currency metabolites.

(TIF)

Table S1 List of currency metabolites used to construct
the unipartite graph. This list was built mostly from

information in the paper by Ma and Zeng (Bioinformatics, 19,

270 (2003)). The metabolites shaded in grey were absent in the

modified currency list used to generate Figure S6.

(XLS)
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