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Daily evapo-transpiration (ET) was mapped at the regional extent over a Mediterranean vineyard watershed,
by using ASTER imagery along with two temperature differencing methods: the Simplified Surface Energy
Balance Index (S-SEBI) and the Water Deficit Index (WDI). Validation of remotely sensed estimates was
conducted during almost two growth cycles (August 2007–October 2008) over seven sites that differed in soil
properties, water status and canopy structure. S-SEBI and WDI were also intercompared at the watershed
extent by considering ASTER imagery collected between 2002 and 2008. In order to alleviate the experimental
efforts devoted to the validation exercise, ground truthing relied on in situ estimates from the HYDRUS-1D
model that simulates water transfers within the vadose zone after calibration against measured soil moisture
profiles. For two of the seven validation sites, the consistency of the HYDRUS-1D simulations was beforehand
controlled against direct measurements with eddy covariance devices. Thus, it was shown the HYDRUS-1D
simulations could be used as ground truthing.
Despite the use of simple differencing methods over a complex row-structured landscape, the obtained
accuracies (0.8 mm.d−1 for S-SEBI and 1.1 mm.d−1 for WDI) were similar to those reported in the literature
for simpler canopies, and fulfilled requirements for further applications in agronomy and hydrology. WDI
performed worse than S-SEBI, in spite of more determinism within the derivation of evaporative extremes
used for temperature differencing. This raised the question of compromising between process description and
measurement availability. Analyzing validation results suggested that among the possible factors that could
affect model performance (spatial variability, soil type and color, row orientation), the first-order influence
was row orientation, a property that can be characterized from very high spatial resolution remote sensing
data. Finally, intercomparing S-SEBI and WDI at the watershed extent showed estimates from both models
agreed within 1 mm.d−1, a difference similar to the model accuracies as estimated by the validation exercise.
Then, time averaged maps suggested the existence of spatial patterns at the watershed extent, which may be
ascribed to combined effects from soil type, soil depth and watertable level.

1. Introduction

Due to intimate linkswithmicrometeorology and soilmoisture, land
surface evapotranspiration (ET) is a key variable for hydrology,
agronomy and meteorology. Knowledge of daily ET is paramount in
semiarid contexts, since daily ET corresponds up to 70% of the yearly
water balance (Daneshkar, Arasteh, & Tajrishy, 2008; Moussa et al.,
2007). Knowledge of daily ET is especially important for vineyards
because grape yield and quality are critically dependent upon root zone
moisture throughout the growth cycle. Vine crops in theMediterranean
region are oftenmanagedwithout irrigation. They are therefore subject
to severe water stress, particularly before harvest (August–September)

when evaporative demand is maximal while rainfall is insignificant.
Water stress is necessary to regulate vegetativeand fruit growth, canopy
microclimate and fruitmetabolism. However, excessive stress can cause
severe damages in fruit development, thus affecting production and
especially quality. Vineyard water status and daily ET should therefore
be diagnosed at the appropriate growth stages. Additionally, water use
in Mediterranean regions is characterized by increasing competition
between the actors (including agriculture, industry and tourism),which
can affect vineyards through watertable extraction. The competition
maybe further sharpenedunder the influenceof globalwarming,where
the Mediterranean region has been recognized as a Hot-Spot (Diffen-
baugh et al., 2007; Giorgi, 2006). Vineyard water status and daily ET in
Mediterranean regions should therefore be prognosticated under the
influence of global change.

The estimation of vineyard ET has been investigated in several
studies over the last two decades. The field scale has often been
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considered, by implementing soil water balance models (Lebon et al.,
2003; Pellegrino et al., 2006), by estimating latent heat flux (LE) from
micrometeorological measurements (Heilman et al., 1994; Li et al.,
2008; Li et al., 2009; Oliver & Sene, 1992; Ortega-Farias et al., 2007;
Sene, 1994; Trambouze et al., 1998) or by estimating LE as the energy
balance residual (Giordani et al., 1996; Spano et al., 2000). Meanwhile,
the use of remote sensing to address larger scales was confined to the
monitoring of vine physiological conditions, by using chlorophyll
fluorescence indexes or changes in canopy reflectance (Flexas et al.,
2000; Montero et al., 1999; Moya et al., 2004; Zarco-Tejada et al.,
2005). On the other hand, remote sensing models devoted to ET
estimation have been mostly applied over full canopies or sparse
vegetation (Boegh et al., 2009; Courault et al., 2009; Hoedjes et al.,
2008; Olioso et al., 2005; van der Kwast et al., 2009; Zwart &
Bastiaanssen, 2007), with a desired accuracy of 0.8 mm.d−1 at the
daily timescale (Kalma et al., 2008; Seguin et al., 1999). Thus, very
little information is available for vineyard ET, where row structures
induce specific problems such as the influence of air turbulencewithin
the canopy and inter-row on convective fluxes (Heilman et al., 1996),
or the influence of shade effects on remote sensing data (Wassenaar
et al., 2001; Zarco-Tejada et al., 2005).

Several methods, either empirical or deterministic, are candidate
for mapping vineyard daily ET from remote sensing (Courault et al.,
2005; Kalma et al., 2008). Among these candidates, the relevant
choice for row structured vineyards is a two source modeling that
discriminates soil and vegetation components (Norman et al., 1995;
Sanchez et al., 2008) and even differentiates sunlit and shaded
components (van der Tol et al., 2009; Verhoef et al., 2007).
Nevertheless, a two source description requires information whose
collection is not straightforward (e.g. net radiation, roughness lengths
formomentum and heat, profiles within canopy for wind and leaf area
index), and subsequent modeling errors may be large when
considering row structured vineyards. An alternative possibility is
using differencing methods that rely on spatial contrasts, where ET is
characterized from differences in surface temperature rather than
from absolute values (Gillies et al., 1997; Menenti & Choudhury, 1993;
Moran et al., 1994; Roerink et al., 2000). This allows one to minimize
errors on both data and parameterization, and to benefit from
variabilities captured with high spatial resolution remote sensors
(Gomez et al., 2005; Holifield et al., 2003; Mendez-Barroso et al.,
2008; Moran et al., 1996; Sobrino et al., 2005; Sobrino et al., 2008),
where the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) sensor uniquely offers high quality spaceborne
data of surface temperature (French et al., 2008; Jacob et al., 2004;
Sabol et al., 2009; Sobrino, Jimenez-Munoz, et al., 2007).

The selection of differencing methods for the remote sensing of
vineyard daily ET is driven by compromising between feasibility and
accuracy. On the one hand, simplemodels are attractive since they are
easy to implement and they usually perform as well as complex
models (Kalma et al., 2008; Timmermans et al., 2007). Thus,
contextual models allow one to avoid delicate calculations of
biophysical variables, since the evaporative extremes used for the
temperature differencing are beforehand estimated from the spatial
variability captured within thermal imagery (Kalma et al., 2008).
Good performances were reported by Galleguillos et al. (2011) when
mapping vineyard daily ET with the Simplified Surface Energy Balance
Index (S-SEBI) model proposed by Roerink et al. (2000). On the other
hand, physically based models are more robust since the underlying
physics gives portability. Thus, the Water Deficit Index (WDI)
beforehand determines, by inverting surface energy balance, the
evaporative extremes that are used for the temperature differencing,
which involves ancillary information about aerodynamic and micro-
meteorological conditions (Moran et al., 1994). Furthermore, S-SEBI
and WDI differ in their characterization of the spatial variability: WDI
makes use of the (surface–air temperature gradient, vegetation cover
fraction) space (Gillies et al., 1997), whereas S-SEBI makes use of the

(temperature, albedo) space (Bastiaanssen et al., 1998). This is of
importance, since (i) albedo and vegetation cover fraction do not
contain the same information, and (ii) temperature–albedo spacemay
be more appropriate when land surfaces depict various vegetation
types and phenological stages (Merlin et al., 2010).

The objective of this study is to compare the S-SEBI and WDI
performances when estimating daily ET over a Mediterranean
vineyard watershed, where the models are used along with ASTER
imagery. For almost two growth cycles in 2007 and 2008, a
comparison against ground truthing is conducted over seven
validation sites distributed within the watershed, which allows both
models to be tested for a range of conditions, including canopy
structure, soil type and watertable level. In order to gain greater
insight across a large suite of environmental conditions (Choi et al.,
2009; French et al., 2005; Jacob et al., 2004; Timmermans et al., 2007),
an intercomparison of model estimates is also conducted at the extent
of the regional watershed (65 km2), by considering ASTER imagery
collected between 2002 and 2008. We first present the study site
(Section 2.1), the ground based and remote sensing data (Section 2.2),
the in situ and remotely sensed estimates of daily ET (Section 2.3 and
Section 2.4), as well as the assessment and validation strategies
(Section 2.5). We next report results when controlling the consistency
of ground based estimates (Section 3.1), when validating S-SEBI and
WDI retrievals against ground based estimates (Section 3.2), and
when intercomparing S-SEBI and WDI at the watershed extent
(Section 3.3). Outcomes are finally discussed and confronted against
literature materials (Section 4).

2. Material and methods

2.1. Study site: the Peyne watershed

The Peyne watershed (43.49°N, 3.37°E, 80 m above sea level) is
located in the Languedoc–Roussillon region, southern France. This
65 km2 size watershed contains vine mono-cultures (70%) that are
mostly rainfed (more than 95%). The remaining 30% include olive and
wheat crops, native scrublands, forested areas, urban zones and water
bodies. Annual rainfall ranges from 400 mm to 1300 mm, with a
bimodal distribution in autumn and spring and a significant inter-
annual variability (Trambouze & Voltz, 2001). Yearly Penman ET is
close to 1100 mm. Vineyards are located over relatively flat terrain
that depict 3% slopes in average (1.5° inclination), whereas 90% of
these terrain have slopes lower than 8% (4.5° inclination).

The area holds a large suite of conditions for soil (with various
parent materials) and watertable level that induce differences in
water availability for vine plants. To capture this variability for
validation purposes, seven sites corresponding to rainfed vineyards
were selected (Table 1). They depicted similar trellis structures (2.5 m
row spacing, 1 m maximum row width and 1.5 m averaged canopy
height) apart from row orientation. Each of Site 1 to 5 and 7
corresponded to one field, with size ranging from 0.03 to 0.09 km2.
Site 6, with a 0.15 km2 size, spread over nine contiguous fields
including vineyards by 90% in surface area. It was split into north (6N)
and south (6S) sub-sites for validation purposes.

2.2. Data

The validation exercise, which lasted between August 2007 and
October 2008, was designed to alleviate experimental efforts for cost,
device maintenance and data collection. Among the existing possi-
bilities for in situ estimation of daily ET, we used the HYDRUS-1D
model that simulates water transfers within the vadose zone after
calibration against soil moisture profiles, provided meteorological
forcing and watertable level are known. This alternate method was
first assessed through a comparison against reference measurements
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from Eddy Covariance (EC) devices. EC devices were setup on two of
the seven validation sites (Site 6 and 7).

The intercomparison of S-SEBI and WDI at the extent of the
regional watershed required few ground based observations only (i.e.
meteorological records). It was therefore possible to consider a larger
temporal window than that selected for the validation exercise
(August 2007–October 2008), andwe included thewhole set of ASTER
imagery collected over the Peyne watershed from 2002.

We present hereafter the in situ measurements used to
implement the ground truthing procedure, and next the ASTER
remote sensing data to be used along with S-SEBI and WDI. Table 2
displays the spatial and temporal features of the dataset collected for
(i) assessing the relevance of the HYDRUS-1D simulations through a
comparison against EC measurements within two of the seven
validation sites, (ii) validating the S-SEBI and WDI estimates of daily
ET against HYDRUS-1D simulations within the seven validation sites
and (iii) intercomparing the S-SEBI and WDI estimates of daily ET at
the extent of the Peyne watershed.

2.2.1. Ground based data

EC devices were setup for continuous measurements of daily ET
within two validation sites that differed in canopy structure, soil
hydrodynamic properties and watertable dynamics: a permanent flux
tower on Site 6, and a temporary flux station on Site 7 for three day
windows centered on ASTER overpasses. Each flux station was
equipped with a R.M. Young 81000 3D sonic anemometer and a fast

hygrometer (Licor LI7500 for Site 6 and Campbell KH2O for Site 7) to
measure wind speed components, air temperature and humidity. For
Site 6 (respectively Site 7), the sensors were setup 5.7 m (respectively
1.5 m) above canopy and acquisition frequency was 10 Hz (respec-
tively 20 Hz). EC footprint over Site 6 encompassed both sub-sites 6N
and 6S.

Hourly values of air temperature, wind speed, relative humidity,
solar irradiance and rainfall were continuously collected at Site 6 with
a CIMEL ENERCO 400 station, by following meteorological standards
apart from wind speed (measured at 2 m height rather than 10 m for
agrometeorological purposes). Hourly net radiation was continuously
measured over a representative vineyard within Site 6, by using a
Campbell NR-lite device. Vine canopy within the NR-lite footprint
ranged between 0% in winter (dormant vegetation with no leaves)
and 66% in summer (active vegetation along with maximum
vegetation cover fraction).

In order to infer daily ET from HYDRUS-1D simulations, each of the
seven validation sites was monitored for soil moisture, watertable
level and vegetation canopy structure. The data collection included
the following items.

• Soil moisture profiles were sampled every 0.2 m down to 2.5 mwith
a Vectra 503-DR CPN Neutron Probe (NP) device, and completed for
the top 0.15 m using a Soil Moisture Equipment TRASE 6050 Time
Domain Reflectometry sensor. Within each site, the number of
locations for collecting profiles (Table 1) varied according to site size
and to soil heterogeneity derived from a pedological map. Profiles
were collected around local solar noon, biweekly and after each
significant (i.e. large or lengthy) rainfall.

• Soil horizons were characterized for depth and texture, by using in
situ observations and expert knowledge. This was performed once
at all sites, for each location of soil moisture profile.

• Watertable level was monitored down to 2.5 m, either continuously
at Site 6 by using automated piezometric devices, or intermittently
(i.e. with a two week frequency and after each significant rainfall,
around local solar noon) at other sites by using manual piezometric
devices. In accordance with continuous observations at Site 6, data
collected on the other sites were linearly interpolated at the hourly
timescale.

• Vegetation was monitored for canopy structure (height above soil
for base and top of canopy, canopy width), over one (Site 1 to 5
and 7) or more (Site 6) fields. Following Trambouze (1996), these
observations were performed in winter (dormant vegetation with
no leaves) and in summer (period of maximum vegetation cover),
and they were next linearly interpolated at the daily timescale. On
average over the seven validation sites, canopy height was 1.5 m
with a 0.1 m standard deviation (7% in relative) and canopy width
was 1 m with a 0.1 m standard deviation (10% in relative). Row
orientation and spacing were measured once.

Table 1

Main characteristics of the validation sites within the Peyne watershed. The “Devices”
column indicates (i) the number of locations within each site for collecting soil
moisture profiles from Neutron Probe (NP) device, (ii) the collection of Eddy
Covariance (EC) measurements when applicable, and (iii) the collection of net
radiation (Rn) measurements when applicable. Each location of NP data was equipped
for piezometric measurements. EC footprint over Site 6 encompassed both sub-sites 6N
and 6S, whereas Rn footprint on Site 6 encompassed sub-site 6N only. Row orientation
was characterized through row azimuth, where north is origin and positive values are
clockwise. A soil was considered as shallow when the depth to parent material was less
than 2.5 m. An absent watertable (respectively permanent watertable) means a
piezometric level below 2.5 m depth (respectively above 2.5 m depth) throughout the
year. A seasonal watertable means a piezometric level above 2.5 m depth during winter
and spring.

Site
number

Devices Soil
depth

Soil
texture

Watertable
conditions

Size
(m2)

Row
azimuth (°)

1 1 NP Shallow Sandy, silty Absent 32701 343
2 1 NP Shallow Clay, gravels Seasonal 74966 42
3 2 NP Shallow Silty, sandy Absent 29894 326
4 1 NP Deep Clay loam Permanent 53851 24
5 2 NP Deep Clay Seasonal 81052 35
6N 5 NP, EC, Rn Deep Clay loam Seasonal 87493 85
6S 4 NP, EC Shallow Silty Absent 58328 359
7 1 NP, EC Deep Clay Absent 92312 318

Table 2

Spatial and temporal features of the dataset along with the corresponding investigations. The spatial features include the locations of ground based measurements when applicable
and the spatial extents. The temporal features include the period of data acquisition for both ground based measurements and ASTER imageries.

03/2002–07/2007 08/2007–10/2008

Site 6 and 7
Ground based data for
• HYDRUS-1D simulations
• EC measurements

Assessing the consistency of HYDRUS-1D simulated
daily ET through comparison against EC measurements
No ASTER imagery

Site 1 to 7
Ground based data for
• HYDRUS-1D simulations
• ASTER net radiation, WDI vertexes and ET0.

Validating S-SEBI and WDI estimates of daily ET against
the HYDRUS-1D simulations
11 ASTER imageries

Peyne watershed
Ground based data (Site 6) for
• ASTER net radiation,
WDI vertexes and ET0.

Intercomparing S-SEBI and WDI estimates of daily ET at the extent of the Peyne regional watershed
9 ASTER imageries 11 ASTER imageries
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The ground based data above-presented were collected from
August 2007 to October 2008, apart from meteorological data that
were collected on Site 6 since 2002. Each instrument was manufac-
turer calibrated, apart from NP device that was calibrated to account
for soil type and soil moisture. Calibration was performed against
gravimetric soil moisture data at each measurement depth (soil
density was estimated using a Campbell DR 501 gamma probe). The
calibration residual error was 0.04 m3.m−3 (15% relative error).

2.2.2. Remote sensing data

We used ASTER official products for surface reflectance, waveband
emissivity and radiometric temperature (Abrams, 2000). Their
accuracies were 5%, 0.01 and 1.5 K respectively (Jacob et al., 2008;
Sabol et al., 2009; Sobrino, Jimenez-Munoz, et al., 2007; Thome et al.,
1998). These products resulted from 20 scenes sun-synchronously
collected under clear sky conditions around 11:00 UTC with a close-
nadir viewing. Among these 20 scenes, 11 could be used for validation
exercises thanks to simultaneous ground based measurements: three
in 2007 (14 Aug, 15 Sep, and 2 Nov) and eight in 2008 (22 Jun, 8 Jul, 15
Jul, 24 Jul, 31 Jul, 1 Sep, 26 Sep, and 3 Oct). Nine archive scenes were
also considered for model comparison at thewatershed extent: two in
2002 (13 Jun, and 29 Jun); one in 2003 (8 Feb); three in 2005 (20May,
27 May, and 15 Aug); one in 2006 (10 Jul) and two in 2007 (10 May,
and 13 Jul). Reflectances at 15 m (visible and near infrared) or 30 m
(shortwave infrared) were averaged at the 90 m resolution of the
thermal infrared products (emissivity and radiometric temperature).
Images were then geolocated against a 0.5 m spatial resolution aerial
orthophotograph collected in summer 2007.

2.3. In situ estimation of daily ET

2.3.1. Direct estimation from EC measurements

For Site 6 and 7, sensible and latent heat fluxes were calculated
over hourly intervals from the EC measurements, by applying the
whole set of instrumental corrections and the double rotation
correction proposed by the ECPACK 2.5.20 library (Dijk et al., 2004).
Fluxes were calculated alongwith tolerance intervals, where the latter
were about 20% and 12% in relative for Site 6 and 7, respectively.
When checking energy balance closure as an indicator of EC data
quality, convective fluxes and available energy agreed within 80% in
relative. Daily ET was finally calculated as the sum of hourly ET
between sunrise and sunset.

2.3.2. Indirect estimation from HYDRUS-1D model simulations

For the seven validation sites, ground truthing of daily ET was
obtained from simulations of HYDRUS-1D (Simunek et al., 2008)
which is a physically-based model that simulates water flow in the
vadose zone from Richards equation (Richards, 1931):

∂θ

∂t
=

∂

∂z
K

∂h

∂z
+ cos βð Þ

� �� �

−S hð Þ ð1Þ

where θ is volumetric water content, t is time, z is vertical ascending
coordinate, K is unsaturated hydraulic conductivity, β is the angle
between the water flow and the vertical axis (β=0° for ascending
flow). The sink term S(h) represents water uptake by roots as a
function of pressure head h, and corresponds to the volume of
extracted water per soil volume unit and per time unit. We present
here the model implementation and the derivation of daily ET from
model simulations of actual plant transpiration and soil evaporation.

Meteorological forcing included rainfall and reference evapotrans-
piration ET0. Rainfall was measured at the meteorological station
(Section 2.2.1). Following Riou et al. (1994), ET0 was estimated from
the data collected at the meteorological station, by using the Penman
formulation under standard conditions that can be found in Valiantzas
(2006). ET0 was then split into reference transpiration T0 and

reference evaporation E0, by using the Riou's model designed for
vineyards (Bsaibes, 2007; Riou et al., 1994; Trambouze & Voltz, 2001).
First, T0 was calculated as a fraction of ET0, by assuming this fraction is
almost equal to the ratio of solar irradiance absorbed by vine leaves Rv
(geometrically derived from solar position and canopy structure) to
that absorbed by the whole vineyard (1−av)Rg:

T0 = ET0
Rv

1−avð ÞRg

ð2Þ

where Rg is solar irradiance. Vineyard albedo av was set to 0.2
(Bsaibes, 2007). This was done for the seven validation sites
whose trellis structures were similar apart from row orientation
(Section 2.1). Second, E0 was determined as the residual of the ET0
splitting into T0 and E0 : E0=ET0−T0. Next, vine maximum
transpiration Tm was set to reference transpiration T0, which was
within the confidence interval reported by Trambouze and Voltz
(2001) who suggested a 10% larger value.

The soil was split into a limited number of horizons (between two
and four including topsoil, in accordance with in situ observations and
expert knowledge, Section 2.2.1), and discretized into 251 layers
between 0 and 2.5 m depth. Root density was distributed according to
in situ observations and outcomes from previous studies (Bsaibes,
2007; Trambouze & Voltz, 2001). The resulting averaged profile
considered 75% of roots between 0.25 and 1.25 m, with a 2.2 m
maximum depth. The sink term S(h) was calculated as the product of
two functions. The first function represented the layer maximum
transpiration, expressed as the product of T0 and root relative density
(i.e. root density for the layer divided by the cumulated density over
the root profile). The second function represented the modulation of
maximum transpiration according to soil moisture. It was expressed
by using the Feddes functions that depend on soil water potential
(Feddes et al., 1978), where threshold pressures were set at−0.1 mbar
and −1.5 mbar by following observations from Trambouze and Voltz
(2001) for vineyards. Lower boundary conditions were set to free
outflow when piezometric data indicated watertable absence, and to
fixed pressure head at the watertable level otherwise.

For each soil horizon, unsaturated hydraulic conductivity and
retention curves were characterized using the van Genuchten
functions that depend on (i) residual θr and saturated θs soil moisture,
(ii) saturated hydraulic conductivity Ks, (iii) bubbling pressure α and
(iv) pore-size distribution index n (van Genuchten, 1980). For each
soil horizon, θr and θs were set to maximum and minimum soil
moisture values throughout time series of NP measurements
(biweekly observations between August 2007 and October 2008,
Section 2.2.1). For topsoil (first horizon), the three other inputs of van
Genuchten functions (Ks, α and n) were estimated by following
previous studies over the Peyne watershed (Bsaibes, 2007; Trambouze
& Voltz, 2001). For deeper horizons, they were determined by using the
HYDRUS-1D inverse mode, where the cost function to be minimized
was the quadratic difference between measured and simulated soil
moisture profiles over the simulationperiod. Initial guesses for the three
parameters to be estimated were derived from in situ observations and
expert knowledge (Section 2.2.1), from previous studies for similar soils
(Bsaibes, 2007; Trambouze & Voltz, 2001), or from the HYDRUS-1D
ROSETTA module.

Actual evapotranspiration was calculated as the sum of soil
evaporation and plant transpiration. First, plant transpiration was
calculated as the sum of root water uptake S(h) over all layers. Second,
soil evaporation was simulated using the Neuman's conditionality,
where evaporation is driven by E0, surface pressure head and soil
moisture (Neuman et al., 1974). The threshold values were set to
−10 m (respectively +0.01 m) for the minimum (respectively
maximum) soil potential pressure that corresponds to conditions of
complete dryness (respectively runoff initiation).
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For each location where soil moisture profiles were collected with
NP measurements (Table 1), HYDRUS-1D was calibrated against the
resulting time series that spanned the [August 2007–October 2008]
period. Calibration relied on noon values, since NP data acquisition
periods were centered on noon (Section 2.2.1). Hourly simulations
allowed one to account for changes in sunlit and shadow within
vineyard rows, and resulting ET was aggregated at the daily timescale.

2.4. Remote sensing estimation of daily ET

The data to be used as inputs for S-SEBI and WDI are listed in
Table 3. The obtaining of these inputs and the resulting implemen-
tation of both models are presented in the current section.

2.4.1. Meteorological and biophysical inputs for S-SEBI and WDI models

Values of meteorological variables at the time of ASTER overpass
were obtained by interpolating the hourly data collected at the
meteorological station (Section 2.2.1). Air temperature and solar
irradiance were interpolated using the formulations proposed by de
Wit et al. (1978) and Jackson et al. (1983), respectively. Air humidity,
wind speed and atmospheric pressure were linearly interpolated,
since they did not depict any specific temporal behavior at the day or
half-day timescales.

The Soil Adjusted Vegetation Index (SAVI) proposed by Huete
(1988) was considered for characterizing vegetation cover fraction
from ASTER images, where SAVI is defined as (ρnir are ρred are surface
reflectances over near infrared and red wavebands):

SAVI = 1 + Lð Þ
ρnir−ρred

ρnir + ρred + L
ð3Þ

The choice of this index was motivated by its ability to account for
soil effects, which was appropriated for studying row structured
vineyards. The coefficient L (soil adjusted constant) was set to 1/2 by
following Huete et al. (1992) for a large variety of vegetation canopies,
since no value was proposed for vineyards.

Net radiation Rn was derived from ASTER imagery by using the
standard formulation (Chehbouni et al., 2008; Courault et al., 2003;

Er-Raki et al., 2007; Jacob et al., 2002), where σ is the Stefan
Boltzmann constant:

Rn = 1−asð ÞRg + εs Ra−σT
4
s

� �

ð4Þ

This required beforehand estimating the involved components.

• Albedo as was computed as a linear combination of ASTER
waveband reflectances. Due to deficient shortwave infrared chan-
nels in 2008, we used the generic two channel (red and near
infrared) formulation proposed by Weiss et al. (1999), where the
latter was beforehand linearly corrected against the ASTER seven
channel formulation (visible–near infrared–shortwave infrared)
proposed by Liang (2001). The linear correction was calibrated
over the 2007 ASTER dataset, with a relative unsystematic error of
6%, andwas applied to the 2007–2008 ASTER dataset. Accuracy on as
was calculated as the quadratic combination of (i) the accuracy of
the ASTER seven channel formulation and (ii) the unsystematic
error on the linear correction of the generic two channel
formulation. This yielded an accuracy of about 0.20 in absolute
(10% in relative).

• Broadband emissivity εs was computed as a linear combination of
ASTER waveband emissivities, by following Ogawa et al. (2003).

• Atmospheric irradiance Ra was estimated frommeasurements of air
temperature and vapor pressure collected at the meteorological
station (Section 2.2.1), by using the formulation proposed by
Brutsaert (1975) for clear-sky conditions.

• Solar irradiance Rg was derived frommeasurements collected at the
meteorological station (Section 2.2.1).

• Surface temperature Ts was provided by ASTER official products
(Section 2.2.2).

Finally, soil heat flux G0was derived from ASTER imagery using the
formulation proposed by Clothier (1986), where G0 is expressed as a
fraction of net radiation Rn:

G0 = Rn 0:295−0:01331
ρnir
ρred

� �

ð5Þ

This formulation was chosen since it was recommended by Moran
et al. (1994) when implementing WDI along with optical remote
sensing imagery.

2.4.2. S-SEBI estimates of daily ET

Below is a model overview, see Roerink et al. (2000), Gomez et al.
(2005), Verstraeten et al. (2005), and Sobrino et al. (2005) for detailed
descriptions. Deriving daily ET, ETd, from S-SEBI along with optical
imagery, where the latter captures contrasts driven by evaporation
processes, is twofold. Evaporative fraction Λ, the ratio of latent heat
flux to available energy, is firstly computed from the differences
between surface temperature Ts and extreme temperatures (Tmax and
Tmin for maximum and minimum temperature, respectively) within a
given albedo class, where the extreme temperatures are those
captured within ASTER thermal imagery. Second, assuming the
instantaneous Λ at satellite overpass is equal to the daily Λ, and
neglecting daily soil heat flux, ETd is derived from Λ by extrapolating,
at the daily timescale, instantaneous net radiation at satellite overpass
Rni. This is performed using the ratio Cdi=Rnd/Rni where Rnd is daily
net radiation. Overall, the twofold procedure yields (L is latent heat of
vaporization):

ETd = Λ
Rnd

L
=

Tmax−Ts
Tmax−Tmin

CdiRni

L
ð6Þ

S-SEBI was implemented along with ASTER imagery as following
(Fig. 1). The temperature–albedo space was characterized by
calculating, for each 10−3 width albedo class, mean albedo and

Table 3

Listing of the model inputs for WDI and S-SEBI, when differentiating inputs derived
from (i) ground based measurements only, (ii) remotely sensed measurements only,
(iii) both ground based and remotely sensed measurements and (iv) other sources of
information (e.g. bibliographic).

Model

S-SEBI WDI

Inputs Derived from ground
based measurements
only

Ratio of daily to
instantaneous values
of net radiation (2)

Solar irradiance (1)
Air temperature (1)
Air humidity (1)
Atmospheric pressure (1)
Wind speed (1)

Derived from remotely
sensed measurements
only

Surface Temperature
Surface albedo

Surface Temperature
SAVI

Derived from both
ground based and
remotely sensed
measurements

Instantaneous net
radiation

Instantaneous net
radiation (1)
Instantaneous soil
heat flux (1)

Derived from
bibliography
(aerodynamic
properties and
vegetation
parameters)

Canopy resistances (1)
Roughness length (1)
kB−1 parameter (1)

(1) For calculations of WDI vertexes and/or ET0 (Section 2.4.3).
(2) Instantaneous values at ASTER overpass (11:00 UTC).
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extreme temperatures. Next, Tmax upper limit (respectively Tmin lower
limit) was determined from the linear regression between mean
albedo and maximum (respectively minimum) temperature of each
albedo class. As proposed by Roerink et al. (2000), Tmax upper limit
was computed by excluding albedoes below the threshold value that
discriminates evaporative and radiative regimes, where the threshold
albedo corresponds to the maximum temperature of the concave
temperature–albedo relationship (Bastiaanssen et al., 1998). To
reduce noise influence, Tmin lower limit was computed by including
all albedoes (Verstraeten et al., 2005), rather than excluding classes
above the threshold value (Roerink et al., 2000). To include all
(temperature, albedo) pairs within the outer limits, an offset was
added to Tmax (respectively subtracted to Tmin) regression line, where
the offset equaled the standard deviation of maximum (respectively
minimum) temperature over the albedo classes.

Following Gomez et al. (2005), the Cdi coefficientwas calibrated on
a daily basis using ground based measurements of net radiation
collected within Site 6 (Section 2.2.1). Therefore, the calibrated
coefficient depended on satellite overpass time, and was assumed to
be uniform within the Peyne watershed.

Applying S-SEBI over the Peynewatershed implicitly assumed the
latter simultaneously held dry and wet areas at ASTER overpass
times. This was consistent with the presence of bare soils, forested
areas, rivers and water bodies. In order to preserve this variability,
the whole watershed was considered within the ASTER imagery,
without removing any part. Thus, estimating evaporative fraction
from temperature differencing (Eq. (6)) implicitly assumed micro-
meteorological and aerodynamic conditions were similar for all
vegetation canopies within the watershed. Although this was far
from reality, because of differences in roughness lengths, wind speed
and Monin–Obukhov length, the resulting errors was expected to be
low. Indeed, previous studies showed S-SEBI performed well when
applied over various agrosystems that included patchworks of
vegetation canopies (Boronina & Ramillien, 2008; Gomez et al.,
2005; Roerink et al., 2000; Sobrino, Gomez, et al., 2007; Sobrino et al.,
2005; Verstraeten et al., 2005).

2.4.3. WDI estimates of daily ET

Water Deficit Index (WDI) is a physically based index devoted to
characterizing land surface water status (Moran et al., 1994). It is
defined as the complementary to unity with the ratio of actual ET, ETa,
to maximum ET, ETm. Similarly to S-SEBI, deriving daily ET from WDI
along with optical remote sensing imagery is twofold. By assuming air
temperature Ta is homogeneous within the study area, WDI is firstly
computed from the differences between surface temperature TsB and
extreme temperatures (maximum TsC and minimum TsA) that
correspond to the same vegetation cover fraction (see Fig. 2 for the
setting of TsA, TsB, TsC):

WDI = 1−
ETa
ETm

=
Ts−Tað ÞB− Ts−Tað ÞA
Ts−Tað ÞC− Ts−Tað ÞA

=
TsB−TsA
TsC−TsA

ð7Þ

where the extreme temperatures TsC and TsA are determined from
energy balance calculation. Once WDI is calculated, a second step
consists of extrapolating values of instantaneous ET at the daily
timescale. Assuming WDI is constant during daytime, similarly to Λ

(Section 2.4.2), daily ET, ETd, is computed by using an estimate of
maximum evapotranspiration ETm at the daily timescale ETmd:

ETd = 1−WDIð ÞETmd ð8Þ

The trapezoid displayed in Fig. 2 characterizes the possible
extremes (in that sense they may not occur) in terms of vegetation
cover fraction and water status. Segment 1–3 represents wet edge
with well watered situations (WDI=0) from bare soils to full
canopies. Segment 2–4 represents dry edge with complete absence
of water (WDI=1) from bare soils to full canopies. Segment 1–2
(respectively 3–4) represents full canopies (respectively bare soils)
from wet to dry conditions.

Whereas S-SEBI determines extreme temperatures from minimum
andmaximum values captured within thermal imagery (Section 2.4.2),

Fig. 1. Typical example of the scatterplots we obtained for the surface temperature
(y-ordinate) versus albedo (x-abscissa) diagram used to compute evaporative
fraction with S-SEBI. Full diamonds correspond to the (temperature–albedo) pairs
for minimum temperature values of each albedo class, to be used for computing the
lower limit through linear regression. Empty circles correspond to the (temperature–
albedo) pairs for maximum temperature values of each albedo class, to be used for
computing the upper limit through linear regression. Such a scatterplot was obtained
for each of the 20 ASTER scenes we considered.

Fig. 2. Typical example of the scatterplots we obtained for the SAVI (y-ordinate) versus
Ts−Ta (x-abscissa) diagram used to compute WDI, where SAVI is used for
characterizing vegetation cover fraction, and Ts−Ta is surface–air temperature
gradient. Numbers are vertices that allow one to determine possible extremes (in
dotted lines). Segment 1–2 (respectively 3–4) corresponds to full canopies (respec-
tively bare soils). Segment 1–3 (respectively 2–4) corresponds to wet edge with
maximum evapotranspiration (respectively dry edge with negligible evapotranspira-
tion). A, B and C are possible water status for a vineyard plot with a given vegetation
cover fraction, where A is for fully wet condition, C is for complete dry condition and B is
an intermediate situation that represent the pixel status. Such a scatterplot was
obtained for each of the 20 ASTER scenes we considered.
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WDI determines these extrema from energy balance calculation,
provided net radiation, soil heat flux, meteorological and aerodynamic
conditions are known. This determination relies on estimating the four
vertices that delineate the trapezoid in Fig. 2, which consists of inverting
the sensible heat flux formulation:

Ts−Tað Þ = ra
Rn−G0

Cp

!

γ 1 + rc = rað Þ−VPD

Δ + γ 1 + rc = rað Þ

� �

ð9Þ

where Cp is air isobaric specific heat that depends on Ta; γ is
psychrometric constant that depends on Ta and atmospheric pressure
Pa; Δ is the slope of the saturated vapor pressure–temperature
relation that depends on Ta; VPD is air vapor pressure deficit that
depends on Ta and air humidity ea; Rn is net radiation; G0 is soil heat
flux; rc is canopy resistance to vapor transport and ra is aerodynamic
resistance derived from the reference formulation of Thom (1975):

ra =
1
k2u

ln
zr−d

z0m

� �

−ψm

z−d

LMO

� �� �

ln
zr−d

z0h

� �

−ψh

z−d

LMO

� �� �

ð10Þ

where k is Von Kármán constant, u is wind speed, zr is reference
height, d is displacement height, z0m and z0h are roughness lengths for
momentum and heat respectively, ψm and ψh are stability correction
functions for momentum and heat respectively, and LMO is Monin–
Obukhov length defined as :

LMO = −
ρaCpu

3

⁎
Ta

kgH
ð11Þ

where ρa is air density, u⁎ is friction velocity, g is gravity acceleration
and H is sensible heat flux.

When implementing WDI along with ASTER imagery, the first step
consisted of estimatingmaximumandminimumvalues for vegetation
cover fraction, where the latter was characterized through SAVI
(Section 2.4.1). Since no SAVI values were found in the literature for
full canopies and bare soils within vineyards, we used the maximum
and minimum values observed within the watershed and throughout
the experiment that spanned two growth cycles.

The second step for implementing WDI along with ASTER imagery
consisted of estimating the variables involved in the calculations of
the four vertices (Fig. 2).

• Cp, γ, Δ and VPD were derived from measurements of air
temperature Ta, air humidity ea and atmospheric pressure Pa at
the meteorological station (Section 2.2.1). Wind speed u was also
derived from measurements at the meteorological station (Section
2.2.1).

• Determining net radiation Rn and soil heat flux G0 for each of the four
vertices was not straightforward. Indeed, these four extremes were
not observedwithin thewatershed, as illustrated by Fig. 2where there
is no data point near the vertices.We therefore considered the closest
data points, by averaging Rn and G0 values over pixels that
corresponded to pairs of extremes values for SAVI and Ts−Ta (i.e.
(SAVI)max and (Ts−Ta)

max, (SAVI)max and (Ts−Ta)
min, (SAVI)min and

(Ts−Ta)
min, (SAVI)min and (Ts−Ta)

max). These four pairs were derived
from quantiles of SAVI and Ts−Ta.

• Canopy resistance rc was determined for each vertex according to
vegetation cover and water status. Vertex 1 corresponds to full-
covering and well-watered vegetation, which yields rc=rcp where
rcp is canopy resistance at maximum evapotranspiration. By
following Ortega-Farias et al. (2007), rcp over vineyards was set to
25 s.m−1, although Sene (1994) suggested this value can range
between 10 and 100 s.m−1. Vertex 2 corresponds to full-covering
vegetation without any water supply (ET is negligible), which
induces rc=rcx where rcx is canopy resistance associated to nearly
complete stomatal closure. By following Giordani et al. (1996), rcx

over vineyards was set to 2000 s.m−1. Vertex 3 corresponds to a
saturated bare soil with a negligible canopy resistance: rc=0 s.m−1.
Vertex 4 corresponds to a dry bare soil with an infinite canopy
resistance equivalent to complete stomatal closure: rc=∞.

• Aerodynamic resistance ra was also estimated for each of the four
vertices. First, roughness length for momentum and displacement
height were set to 3/100 and 2/3 of canopy height, respectively, by
following Sene (1994) and Ortega-Farias et al. (2007). Second, the
ratio zom/zoh was set to 100, as recommended by Giordani et al.
(1996) for vineyards. The kB−1 factor was then close to five, which
was lower than the value of eight obtained by Verhoef et al. (1996)
for a vineyard site. Third, Monin–Obukhov length was estimated by
discriminating well watered situations for which LMO=∞, and dry
situations for which H=Rn−G in Eq. (11). For dry situations,
friction velocity u⁎was derived from the ECmeasurements collected
within Site 6 (Section 2.2.1).

Finally, maximum evapotranspiration at the daily timescale ETmd

was set to reference evapotranspiration, by following outcomes from
Williams and Ayars (2005) who reported values of grapevine crop
coefficient close to one during the period of maximum vegetation
cover. Reference evapotranspiration was derived frommeasurements
at the meteorological station by using the Penman formulation
(Section 2.3.2).

Conversely to S-SEBI, which has been widely used by including all
vegetation canopies within the study area, Moran et al. (1994)
recommended using WDI on a vegetation biome basis, where further
studies acted accordingly (Holifield et al., 2003; Li & Lyons, 1999;
Luquet et al., 2003; Vidal & Devaux-Ros, 1995; Wang & Takahashi,
1999). Therefore, assumption about aerodynamic resistance (i.e. ra
was identical for all vegetation canopies) was not as sharp as
compared to S-SEBI, since it was restricted to a unique vegetation
biome that might depict lower variabilities in terms of aerodynamic
and meteorological conditions. For WDI implementation, vineyards
within ASTER imagery were therefore selected by using a mask
derived from cadastral maps and aerial orthophotographs.

2.5. Assessment strategy

The different steps of the assessment strategy, along with the
involved ground based and remote sensing data, are listed in Table 2.

We firstly controlled the consistency of HYDRUS-1D simulations,
by (i) quantifying calibration residual error (i.e. the differences
between measured and simulated soil moisture profiles) over the
seven validation sites within the Peyne watershed and (ii) comparing
simulated daily ET against direct EC measurements over two of the
seven validation sites (Site 6 and 7).We secondly validated S-SEBI and
WDI estimates of daily ET against ground truthing (i.e. HYDRUS-1D
simulations) over the seven validation sites. We thirdly compared
S-SEBI and WDI estimates of daily ET at the extent of the whole
watershed.

When comparing HYDRUS-1D simulated daily ET against EC
estimates over Site 6, we averaged the nine HYDRUS-1D simulations
that corresponded to the nine locations of NP measurements within
the footprint of EC measurements (Table 1, Section 2.2.1 and Section
2.3.2). For Site 7, one HYDRUS-1D simulation only was involved,
corresponding to one location of NP measurements within the
footprint of EC measurements.

When validating ASTER/S-SEBI and ASTER/WDI estimates against
HYDRUS-1D simulations of daily ET, we differentiated years and sites
in relation to soil type, watertable conditions and canopy structure.
For comparison over sites with two locations of NP measurements
(Site 3 and 5), we averaged the two corresponding HYDRUS-1D
simulations. For comparison over Site 6, HYDRUS-1D simulations
were averaged for each sub-site 6N and 6S (Table 1, Section 2.2.1 and
Section 2.3.2). From an ASTER viewpoint, we extracted each pixel
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matching a site or sub-site. Finally, S-SEBI and WDI were inter-
compared over vineyards only, since WDI did not provide any
estimate due to the masking of other biomes.

From a growth cycle perspective, investigations were conducted
by considering two situations: the whole dataset on the one hand, and
the period of maximum vegetation cover on the other hand.
Motivations for this were the following. First, the period of maximum
vegetation cover is the most critical for vine quality. Second, the
canopy conditions for the various sites within the watershed were
more similar during this period. Third, most ASTER observations
(75%) were collected during this period.

3. Results

3.1. Assessing the consistency of the HYDRUS-1D simulations

When averaged over all dates and locations of NP measurements,
Root Mean Square Error (RMSE) between measured and simulated
soil moisture decreased with depth, between 0.05 and 0.03 m3.m−3,
with largest values (0.06 m3.m−3) around 1 m depth. These RMSE
values corresponded to a range of relative RMSE (RRMSE) between 30
and 10%, where RRMSE was computed as the ratio of RMSE to
reference mean value. When averaged over each profile, the RMSE
between measurements and simulations varied from one date and
one location to another, between 0 and 0.15 m3.m−3 (0% and 60% in
relative). Lowest and largest RMSE values were observedwithin Site 4
and Site 1, respectively, but no evident link could be underlined with
watertable conditions or soil type. For a given location, RMSE between
measurements and simulations decreased with simulation time.
When focusing on soil water storage at noon obtained by integrating
moisture profile, RRMSE between simulations andmeasurements was
around 10%.

RMSE between HYDRUS-1D estimates and EC measurements of
daily ET was 0.4 mm.d−1 (18% in relative) for Site 7, where water
stress resulted from a deep watertable and a clay soil. For Site 6, with
an intermediate water status related to a shallowwatertable and silty/
clay loam soils, RMSE was 0.6 mm.d−1 (33% in relative). Merging
statistics of both sites yielded an RMSE of 0.55 mm.d−1 (32% in
relative). Over the two sites, HYDRUS-1D simulations overestimated
EC estimates for large ET values after significant rainfalls. Absolute
RMSE was stable along the simulations, resulting in larger relative
RMSE between August and December 2007 when ET was low, as
compared to the [January–October] 2008 period. Similar results to
those abovementioned were obtained with a dataset restricted to the
period of maximum vegetation cover (Fig. 3a) or to ASTER overpass
days (Fig. 3b), with RMSE of 0.6 mm.d−1 (29% in relative) and
0.5 mm.d−1 (22% in relative), respectively.

When focusing on HYDRUS-1D simulations of daily ET throughout
the experimental period, an important temporal dynamics was
observed for all sites, including seasonal variations, with values
ranging from 0 to 6.5 mm.d−1. An example is displayed in Fig. 4, for
two contrasted sites in terms of pedology and watertable dynamics
(Table 1). Site 1 corresponded to a shallow soil, with a sandy–silty
texture, where absence of watertable induced restrictive water
conditions for vine plants. Site 4 corresponded to a deep soil with a
silty clay texture, where permanent watertable provided a continuous
water supply for vine plants. As expected, the evapotranspiration rate
was more important within Site 4 (averaged daily ET of 2.9 mm.d−1)
than within Site 1 (averaged daily ET of 2.1 mm.d−1), whereas the
temporal variability was lower for Site 4 (standard deviation of
1.1 mm.d−1) than Site 1 (standard deviation of 1.5 mm.d−1). An
analysis at a finer timescale underlined specific periods with opposite
trends. Over the [August–October] period, evapotranspiration was
lower for Site 1 (daily ET values between 0 and 2 mm.d−1) than Site 4
(daily ET values between 2 and 4 mm.d−1), as expected. On the other
hand, evapotranspiration was larger for Site 1 (daily ET values

between 4 and 6 mm.d−1) than Site 4 (daily ET values between 2 and
4 mm.d−1) over the [May–July] period.

3.2. Validating remotely sensed estimates

A first step focused on net radiationwhich is a key variable in S-SEBI
and WDI calculations (Section 2.4.2 and 2.4.3). Validation of ASTER
estimates against in situ measurements collected within Site 6 (Section
2.2.1) provided a RMSE of 45W.m−2. A second step aimed to quantify
standard deviation of daily ET within 3×3 pixel windows centered on
each of the seven validation sites, which provided an overall value of
0.4 mm.d−1.

Fig. 3. Comparison of ET HYDRUS-1D estimates against ECmeasurements for Sites 6 and
7 when selecting (a) the period of maximum vegetation cover (1 Aug to 15 Oct 2007
and 1 Jul to 15 Oct 2008) and (b) ASTER overpasses only (error bars indicate the
tolerance intervals provided by the ECPACK 2.5.20 library along with ET calculations
from EC data). R2 is determination coefficient, Slope and Offset results from linear
regression (dotted line) between x (reference estimates from EC measurements) and y
(estimates from HYDRUS-1D simulations) axis data. RMSE is Root Mean Square Error.
RRMSE is Relative Root Mean Square Error calculated as the ratio of RMSE to reference
mean value. Continuous line is the 1:1 line.
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Regardless of considered ground truthing (i.e. direct estimates from
ECmeasurements on two of the seven validation sites – Site 6 and 7 – or
indirect estimates fromHYDRUS-1D simulations on the seven validation
sites), the validation exercise provided similar results for S-SEBI andWDI
estimates of daily ET, where slightly better results were obtained with
S-SEBI. When validating ASTER/S-SEBI (respectively ASTER/WDI) retrie-
vals against ECbasedestimatesover Site6 andSite7, a0.5 mm.d−1RMSE
value and a 0.82 determination coefficient (respectively 1.1 mm.d−1

and 0.66) were obtained (Fig. 5a and c respectively). When validating
ASTER/S-SEBI (respectively ASTER/WDI) retrievals against HYDRUS-1D
based estimates over the seven validation sites (including the two sub

sites 6N and 6S), a 0.8 mm.d−1 RMSE value and a 0.74 coefficient
determination (respectively 1.1 mm.d−1 and 0.52) were obtained
(Fig. 5b and d respectively). Regardless of considered ground truthing
(i.e. direct estimates from EC measurements or indirect estimates from
HYDRUS-1D simulations), a larger unsystematic error was observed for
WDI as compared to S-SEBI, with greater discrepancies around the
regression lines.

Table 4 summarized statistics for S-SEBI and WDI models on a site
basis and a year basis. For S-SEBI, determination coefficients ranged
from 0.52 to 0.90, and RMSE ranged from 0.5 to 1.3 mm.d−1 (from
26% to 56% in relative). Validation results for WDI were worse, with

Fig. 4. Daily rainfall distribution, daily ET simulated by HYDRUS-1D, ASTER/S-SEBI and WDI remote sensing estimates, over Site 1 (top) and Site 4 (bottom) throughout the 2007–
2008 period. Continuous lines represent HYDRUS-1D simulated ET and dotted lines represent Penman-Monteith reference evapotranspiration (ET0). Missing ET values fromWDI on
2 Nov 2007 resulted from negativeWDI values because of pixels located left of thewet edge (Fig. 2). This was also observed on archive image of 8 Feb 2003, andwas ascribed to errors
on ground based and remote sensing data as suggested by Moran et al. (1996).
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Fig. 5. Comparison of ASTER/S-SEBI (upper subplots) and ASTER/WDI (lower subplots) retrievals of daily ET against those derived from EC estimates within Site 6 and 7 (left
subplots), and from HYDRUS-1D simulations over the seven validation sites (right subplots). R2 is determination coefficient. Slope and offset result from linear regression (dotted
line) between x (reference estimates from EC data or HYDRUS-1D simulations) and y (ASTER remotely sensed estimates from S-SEBI or WDI) axis data. RMSE is Root Mean Square
Error. RRMSE is Relative Root Mean Square Error calculated as the ratio of RMSE to reference mean value. Continuous line is the 1:1 line.

Table 4

Summary of statistics when validating ASTER/S-SEBI and ASTER/WDI estimates of daily ET against ground based estimates from HYDRUS-1D simulations: absolute and Relative Root
Mean Square Error (RMSE and RRMSE), slope and offset from linear regression between ASTER estimates and HYDRUS-1D simulations, and determination coefficient R2. Results for
Sites 1–7 include data from both 2007 and 2008. The last two rows indicate aggregate results for all sites partitioned by year.

Model

S-SEBI WDI

Slope Offset
(mm.d−1)

R2 RMSE
(mm.d−1)

RRMSE
(%)

Slope Offset
(mm.d−1)

R2 RMSE
(mm.d−1)

RRMSE
(%)

Site 1 0.54 0.9 0.76 0.1 40 0.66 0.8 0.58 1.1 37
2 0.73 0.4 0.83 0.5 26 0.84 0.9 0.44 1.2 45
3 0.77 0.5 0.90 0.6 28 0.65 1.3 0.60 1.2 50
4 0.94 0.0 0.71 0.6 23 1.54 1.8 0.46 1.1 36
5 0.62 0.4 0.86 1.0 37 0.73 0.7 0.44 1.1 34
6N 0.65 0.6 0.77 0.7 29 0.91 0.4 0.66 0.8 31
6S 0.80 0.8 0.86 0.7 25 0.69 0.9 0.56 1.1 38
7 0.45 0.6 0.82 1.3 56 0.65 1.2 0.59 1.0 32

Year 2007 0.76 0.5 0.52 0.7 57 0.67 1.3 0.32 1.3 75
2008 0.68 0.5 0.69 0.9 30 0.83 0.5 0.53 1.0 33
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determination coefficients ranging from 0.32 to 0.66 and RMSE
ranging from 0.8 to 1.3 mm.d−1 (from 31% to 75% in relative). Overall,
S-SEBI performed better thanWDI for the two years and for the seven
sites apart from Site 7.

On a site basis, RMSE for WDI decreased from 1.2 to 0.8 mm.d−1

while RMSE for S-SEBI oppositely increased from 0.6 to 1.3 mm.d−1.
This resulted in a determination coefficient between these RMSE
values of 0.25 when including all sites, and of 0.7 when removing Sub-
Site 6N. A deeper analysis showed RMSE for S-SEBI (respectivelyWDI)
decreased (respectively increased) when row orientation (Table 1)
changed from −50° West to +50° East (North being 0°), with a
determination coefficient around 0.5. On the other hand, no
correlation was found between RMSE for S-SEBI or WDI and
watertable conditions, soil color or soil type.

On a year basis, results were better for both models in 2008 (eight
ASTER snapshots) than in 2007 (three ASTER snapshots). When
focusing on finer timescale, bothmodels provided dynamics similar to
that simulated by HYDRUS-1D (Fig. 4), but few differences were
observed. S-SEBI provided better estimates apart from 15 Jul 2008, 24
Jul 2008 and 31 Jul 2008, where it underestimated retrievals from
both WDI and HYDRUS-1D. Beyond Site 1 and Site 4 used as instances
for Fig. 4, underestimation from S-SEBI was observed for all validation
sites on these three dates.

3.3. Comparing remote sensing retrievals at the watershed extent

Intercomparing S-SEBI and WDI estimates of daily ET at the
watershed extent showed both models provided similar results, as
displayed in Fig. 6 where all 20 dates of ASTER overpass were
considered, either prior to (nine archive imageries between 2002 and
mid 2007) or during (11 imageries between mid 2007 and late 2008)
the field experiment. Corresponding statistics were a quadratic

difference of 1.1 mm.d−1 (39% in relative), a determination coeffi-
cient of 0.52 and a 0.95 slope value when computing linear regression
between both predictions. Similar results were obtained when
restricting the comparison over the seven validation sites (figure
not shown), with a quadratic difference of 1 mm.d−1 (40% in
relative), a 0.61 determination coefficient and a 1.1 slope value.
Therefore, both intercomparisons, either over the seven validation
sites or over the whole watershed, provided similar results to those
obtained with validation exercises (Section 3.2), where RMSE values
ranged between 0.8 and 1.1 mm.d−1, and determination coefficients
ranged between 0.5 and 0.9.

Through plot density that represents occurrence frequencies, Fig. 6
also indicates the existence of three clusters. The first group is located
above the regression line, and corresponds to large ET values that
occur during spring and early summer. In this case, WDI retrievals
significantly overestimated S-SEBI estimates of daily ET. The second
group is located on the regression line and corresponds to an
intermediary situation, where medium ET values occur during early
spring and middle summer. In this case, WDI retrievals slightly
overestimated S-SEBI estimates. The third group is located close to the
1:1 line and corresponds to low ET values that occur at the summer
end. This case corresponds to the better agreement between both
retrievals, with slight underestimation of S-SEBI estimates by WDI
retrievals.

We finally focused on time-average values of daily ET maps by
considering median values over estimates obtained during periods of
maximum vegetation cover (15 Aug 2005, 10 Jul 2006, 13 Jul 2007, 14
Aug 2007, 15 Sep 2007, 8 Jul 2008, 15 Jul 2008, 24 Jul 2008, 31 Jul
2008, 1 Sep 2008, 26 Sep 2008, and 3 Oct 2008). Maps of median
values derived from S-SEBI and WDI estimates are displayed in
Fig. 7. It is shown that similar spatial patterns were depicted from both
S-SEBI andWDI estimates, where (i) the corresponding coefficients of

Fig. 6. Intercomparison, at the extent of the Peyne watershed, between daily ET estimates derived from ASTER imagery through S-SEBI and WDI. Dashed line is the 1:1 line. R2 is
determination coefficient, Slope and Offset results from linear regression (dotted line) between x (S-SEBI estimates) and y (WDI estimates) axis data. Continuous line is the 1:1 line.
Gray scale represents occurrence frequencies.
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variation ranged between 0 and 40%, and (ii) differences between
S-SEBI and WDI estimates were within 1 mm.d−1. Median ET values
ranged between 1 and 4.5 mm.d−1 and depict a Gaussian distribution
in magnitude. Patterns of low and large values were disseminated
within the watershed.

4. Discussion

When comparing HYDRUS-1D simulations of soil moisture profiles
against NP measurements, the lowering of RMSE with depth was
ascribed to a larger temporal stability for water flows within deep soil
layers, whereas the largest RMSE values around 1 m depth were
imputed to temporal variations of soil moisture in relation to root water
uptake. Further, the diminution of RMSE with simulation time was
explainedby stabilization of numerical computations as simulation time
increased, in relation to possible errors in HYDRUS-1D initialization.
Finally, the obtaining of a 10% relative accuracy on simulated soil water
storage at noonwas considered as acceptable, given (i) the large suite of
conditions in soil type andwatertable level, and (ii) the uncertainties on
NP data, about 15% in relative (Section 2.2.1).

When comparing HYDRUS-1D estimates of daily ET against EC
based retrievals, the larger differences observed for Site 6 were
ascribed to a larger amount of data (continuous measurements over
nine locations of NP measurements versus temporary measurements
over one location for Site 7). Differences between HYDRUS-1D
simulations and EC estimates after large or lengthy rainfalls could
be explained by HYDRUS-1D deficiencies, such as an inadequate
characterization of vegetation functioning and/or the lack of consid-
eration for both inter-row weeding and lateral water flows within the
vadoze zone. The slightly lower RMSE value we obtained when
restricting the dataset to ASTER overpass days (0.5 mm.d−1) was
ascribed to meteorological conditions that were favorable under clear
sky conditions. Overall, the obtained accuracy, around 0.6 mm.d−1,
was close to that required for further applications, of about 0.8 mm.d−1

(Kalma et al., 2008; Seguin et al., 1999). As compared to outcomes
reported in the literature for lower spatial extents and summer periods
only (Bsaibes, 2007; Trambouze et al., 1998), the current study enlarged
the assessment of HYDRUS-1D capabilities, with similar RMSE values
ranging from 0.4 to 0.6 mm.d−1. Finally, these results were obtained by
comparing two independent estimation methods, based either on near
surface turbulent fluxes (EC measurements) or on vadose-zone water

transfers (HYDRUS-1D simulations). This emphasized the pertinence of
HYDRUS-1D simulations for being used as ground truthing of daily ET
estimates.

Despite the satisfactory simulations of daily ET obtained with the
HYDRUS-1Dmodel, implementing the latter over the seven validation
sites was not straightforward. Indeed, this implementation required a
large number of inputs in relation to pedological conditions, water-
table level, soil moisture profile, root distribution, canopy structure
and reference evapotranspiration. Such field information is usually
difficult to collect, especially when dealing with hydrodynamic
properties (e.g. soil horizons and related textures, profiles of root
density). To avoid these difficulties, we concentrated the experimen-
tal efforts on the most important HYDRUS-1D inputs that were
previously identified by Bsaibes (2007) through a sensitivity analysis
conducted under similar environmental conditions. This study
showed HYDRUS-1D simulations were more sensitive to canopy
height, trellis width and watertable level (relative variations from the
reference simulation of about 25%) than to root profile, horizon
distribution and topsoil characteristics (relative variations from the
reference simulation lower than 10%). Thereby, we obtained good
simulations with the physical HYDRUS-1D model once it was well
documented for the key inputs that drive model simulations.

The specific periods we observed when analyzing the temporal
dynamics of HYDRUS-1D simulations suggested foreseeing a larger
panel of possible factors that drive vineyard ET. Indeed larger values of
daily ET where observed during the [May–July] period over a
validation site with supposedly restrictive water conditions (Site 1),
as compared to another validation site with permanent watertable
(Site 4). Additional factors to be suspected were (i) agricultural
practices such as inter-row weeding and canopy thinning, (ii) water
balance after large and lengthy rainfall that may induce waterlogging,
and (iii) plant physiology in relation to adaptation to pedo-climatic
conditions since the grape variety established within Site 1 (Syrah)
was premature as compared to that established on Site 4 (Cabernet
Sauvignon).

The 45 W.m−2 RMSE value obtained when validating ASTER
retrievals of net radiation against ground based measurements was
larger than those usually reported in the literature (French et al.,
2005; Gomez et al., 2005; Jacob et al., 2002; Timmermans et al., 2007).
This was ascribed to the difference between the vegetation cover
fraction within the Campbell NR-lite footprint and that within the

Fig. 7. Maps of time-averaged (median values) daily ET from S-SEBI (left) and WDI (right), where median values were computed over estimates obtained during the period of
maximum vegetation cover. Validation sites are labeled 1 to 7, and double circles correspond to sites with EC measurements (Site 6 and Site 7). Missing values are white.
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ASTER pixel (66% versus 40% for maximum vegetation cover fraction,
Section 2.2.1). Further, the 0.4 mm.d−1 value obtained for daily ET
standard deviation within 3×3 pixel windows centered on validation
sites was lower than accuracy on ground based estimates (around
0.6 mm.d−1). This indicated the spatial variability at the ASTER spatial
resolution in the neighborhood of validation sites had no significant
influence on the validation exercise.

Validation exercises for ASTER/S-SEBI and ASTER/WDI over the
seven validation sites indicated performances similar to those
reported in the literature for S-SEBI (no validation exercise was
found forWDI retrievals of daily ET), where these performances range
between 1 and 1.5 mm.d−1 for finer (~20 m) and coarser (~1 km)
spatial resolutions (Boronina & Ramillien, 2008; Gomez et al., 2005;
Roerink et al., 2000; Sobrino, Gomez, et al., 2007; Sobrino et al., 2005;
Verstraeten et al., 2005). On the one hand, S-SEBI performances were
better than WDI ones by 25% in relative, along with lower
unsystematic errors. On the other hand, WDI deterministically
calculates evaporative extremes through the inversion of sensible
heat flux along with meteorological data, whereas S-SEBI determines
these extremes from variabilities captured within thermal infrared
imagery–concept of contextual model as proposed by Kalma et al.
(2008). Then, poor performances for WDI may be related to the
inclusion of significant errors into flux calculations, since meteoro-
logical forcing at the watershed extent was characterized from a
unique measurement location within Site 6. Overall, the obtaining of
better performances with the contextual model was in agreement
with conclusions from Timmermans et al. (2007) and Kalma et al.
(2008) who reported physically based models are not necessarily
more accurate. This raises the question of compromising between
process description and measurement availability, where further
investigations will focus on sensitivity analysis for both WDI and
S-SEBI models in relation to their underlying assumptions.

Validation results on a site basis showed correlations between
model performances, in relation to row orientation, which suggested
the latter drove the accuracy of remotely sensed retrievals. The
influence could be radiative, with illumination and shadow effects on
ASTER data according to sun position and row orientation, as already
pointed out by Zarco-Tejada et al. (2005). The influence could also be
aerodynamic, with the coupling between wind direction and row
orientation that affects vineyard ET (Heilman et al., 1996). This
aerodynamic issuemight be sharpened by strongwind speeds that are
usual within the Peyne watershed. Therefore, future investigations
should address the inclusion of row orientation, where the latter can
be retrieved from aerial images with automatized frequency analysis
(Delenne et al., 2008).

From a temporal viewpoint, we noted S-SEBI performed worse
than WDI for specific dates during early summer. A possible
explanation is the failure of the assumption on which rely contextual
models (and therefore S-SEBI), where it is assumed the variability
captured within the thermal infrared imagery is large enough for
properly characterizing water status over the whole study area. In our
case, this failure may be ascribed to a lack of dry conditions within the
watershed, because of water storage filling after spring rainfalls. This
was in agreement with conclusions from Vidal and Devaux-Ros
(1995) who addressed the performances of the triangle method (a
contextual model) when used along with Landsat data on early
summer.

Intercomparison of ASTER/S-SEBI and ASTER/WDI retrievals at the
watershed extent provided results similar to those obtained when
intercomparing over the validation sites or when validating against
ground based estimates. This a posteriori confirmed the choice of the
validation sites for capturing the variability within the watershed that
included a larger range of environmental conditions. Overall, obtained
differences between models are within the range of accuracies
reported in the literature, between 1 and 1.5 mm.d−1 (Boronina &
Ramillien, 2008; Gomez et al., 2005; Roerink et al., 2000; Sobrino,

Gomez, et al., 2007; Sobrino et al., 2005; Verstraeten et al., 2005), and
close to the 0.8 mm.d−1 accuracy regularly quoted in literature as a
requirement for many applications (Kalma et al., 2008; Seguin et al.,
1999). On the other hand, intercomparison at the watershed extent
emphasized three groups of scatterplots that correspond to different
periods of the year, and therefore to different magnitudes in terms of
ET and vegetation cover fraction. Further investigations are necessary
for deepening these differences, which may result either from the
ways the models characterized the evaporative extremes or from the
characterization of spatial variability through albedo or vegetation
cover fraction (Merlin et al., 2010).

Finally, averaging maps of daily ET over the period of maximum
vegetation cover underlined the existence of spatial patterns at the
watershed extent. Given that we focus on perennial plants with deep
rooting systems, these spatial structures may result from pedological
and landscape conditions such as soil depth and texture, watertable
level, solar exposure, and position within the watershed. Ongoing
investigations address a possible link between these factors and the
observed spatial patterns.

5. Conclusion

The objective of this study was to compare the performances of
two differencing methods for the retrieval of daily ET over a
Mediterranean vineyard watershed. The S-SEBI and WDI models
were implemented with ASTER imagery, and validated during almost
two growth cycles in 2007 and 2008. Validation against HYDRUS-1D
simulations was conducted over seven contrasted sites that depicted
important dynamics of daily ET in relation to soil and watertable
conditions. S-SEBI andWDIwere also intercompared at thewatershed
extent by considering ASTER imagery collected over the 2002–2008
period.

Within two of the seven validation sites, HYDRUS-1D simulations
were controlled through a comparison against reference estimates
based on EC measurements. Thus, the differences between
HYDRUS-1D simulations and EC estimates were about 0.6 mm.d−1.
Validation of S-SEBI and WDI estimates against HYDRUS-1D simula-
tions indicated accuracies between 0.8 mm.d−1 and 1.1 mm.d−1.
These accuracies were close to that regularly quoted in the literature
as a requirement for further applications (Kalma et al., 2008; Seguin et
al., 1999). The simpler approach (S-SEBI) produced better results than
the more physical method (WDI), which raised the question of
compromising between process description and measurement avail-
ability. A deeper analysis of these validation results suggested a partial
influence of row orientation for both models. Model intercomparison
over the seven validation sites only and at the watershed extent
provided results close to those obtained from validation, with
quadratic differences around 1 mm.d−1. Finally, multi-date inspec-
tion suggested the existence of spatial patterns at the watershed
extent, which was ascribed to landscape conditions in relation to soil
depth, soil type and watertable level.

Future works will address (i) model sensitivities to their
underlying assumptions, in relation to the compromising between
process description and measurement availability, (ii) inclusion
within model parameterizations of row orientation that can be
characterized from remote sensing data collected at very high spatial
resolution, and (iii) the possible links between the spatial structures
we observed on daily ET maps and the landscape conditions.
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