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Abstract

IPSIM (Injury Profile SIMulator) is a generic modelling framework presented in a companion paper. It aims at predicting a
crop injury profile as a function of cropping practices and abiotic and biotic environment. IPSIM’s modelling approach
consists of designing a model with an aggregative hierarchical tree of attributes. In order to provide a proof of concept, a
model, named IPSIM-Wheat-Eyespot, has been developed with the software DEXi according to the conceptual framework of
IPSIM to represent final incidence of eyespot on wheat. This paper briefly presents the pathosystem, the method used to
develop IPSIM-Wheat-Eyespot using IPSIM’s modelling framework, simulation examples, an evaluation of the predictive
quality of the model with a large dataset (526 observed site-years) and a discussion on the benefits and limitations of the
approach. IPSIM-Wheat-Eyespot proved to successfully represent the annual variability of the disease, as well as the effects
of cropping practices (Efficiency = 0.51, Root Mean Square Error of Prediction = 24%; bias = 5.0%). IPSIM-Wheat-Eyespot does
not aim to precisely predict the incidence of eyespot on wheat. It rather aims to rank cropping systems with regard to the
risk of eyespot on wheat in a given production situation through ex ante evaluations. IPSIM-Wheat-Eyespot can also help
perform diagnoses of commercial fields. Its structure is simple and permits to combine available knowledge in the scientific
literature (data, models) and expertise. IPSIM-Wheat-Eyespot is now available to help design cropping systems with a low
risk of eyespot on wheat in a wide range of production situations, and can help perform diagnoses of commercial fields. In
addition, it provides a proof of concept with regard to the modelling approach of IPSIM. IPSIM-Wheat-Eyespot will be a sub-
model of IPSIM-Wheat, a model that will predict injury profile on wheat as a function of cropping practices and the
production situation.
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Introduction

Stem base diseases on cereals and grasses are widespread in

many eco-regions of the world and cause important production

and economic losses. The most detrimental foot and root

pathogens on cereals in temperate areas are Pseudocercosporella

herpotrichoides; Fusarium spp, Rhizoctonia cerealis and Gaeumannomyces

graminis [1]. Eyespot caused by the necrotrophic and soil-borne

fungi Oculimacula yallundae and O. acuformis, anamorph Pseudocercos-

porella herpotrichoides [2–4] is considered to be the most important

stem base disease of cereals in temperate countries [5]. Under cool

and wet conditions in autumn and spring, both species sporulate

and infect the stem bases of their hosts. Without any host crops

(cereals, ryegrass), the pathogen survives on previously infected

stubble, on which splash-dispersed conidia and air-dispersed

ascospores are produced [6]. Injuries interfere with the circulation

of nutrients and water through the base of the stem [7] leading to a

weakening and possibly to a breakage of the stem base, causing

lodging before harvest [5,8]. Relative yield losses of up to 50%

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e75829



have been reported for the most severe attacks on winter wheat

with lodging [2,7,9–11].

In the past, the control of eyespot has relied largely on chemical

protection [12]. However, due to the development of resistance to

the main available fungicides in O. yallundae and O. acuformis

populations, adaptation of the entire cropping system to control

eyespot on wheat is a sound alternative [13,14]. Furthermore,

growing concerns about the impact of pesticides on the environment

and human health has led to attempts to limit pesticide use [15,16].

Most governments of developed countries have launched national

action plans to reduce pesticide use. For instance, the French

government has set as a goal to reduce pesticide use by 50% by 2018

if possible [17]. The European Union has proposed to encourage

the use of low-pesticide farming as one of its priorities by the

Sustainable Use Directive (SUD) (http://eurlex.europa.eu/

LexUriServ/LexUriServ.do?uri = OJ:L:2009:309:0071:0086:FR:PDF,

accessed November 2012).

In addition, the USA decided to support and develop Integrated

Pest Management (IPM) nationwide in order to reduce pesticide

use [18]. It appears necessary therefore to combine various

methods (cultural, genetic and chemical) in IPM strategies [19] to

control eyespot on wheat. The main cultural practices that can

partly control eyespot through a specific adaptation are: a low host

frequency in the crop sequence, infected stubble management

through adapted tillage, a late sowing date and low sowing rate

[10,20,29] The genetic control of eyespot consists of using resistant

cultivars. There are several known sources of resistance to eyespot,

but only three resistance genes have been described so far [21–23].

IPM strategies, based on these control methods, have to be

developed, adapted and applied to a wide range of physical,

chemical, biological and socio-economic contexts. However, it is

extremely difficult to describe the entirety of the cropping

practices*environment*crop*pest system because of the tremen-

dous number of interactions [24]. Modelling is certainly the best

way to handle such a level of complexity and to help design

sustainable innovative cropping systems less reliant on pesticides.

However, crop models do not deal with injuries caused by pests

[25] and few pest models integrate the effects of cultural practices

because of the difficulty of describing their numerous consequenc-

es on the agroecosystem [26] Thus, different models have been

developed to represent eyespot injuries on wheat [27–29] or the

associated damage [30] Among these, only one model takes into

account the effect of the cropping system (crop succession, tillage,

sowing date, sowing rate, total nitrogen fertiliser and its form) on

injuries caused by eyespot [29]. However, this model does not take

into account soil and climate, along with some cultural practices

that can greatly influence the disease development (e.g. cultivar

choice). There is therefore a need for a model that predicts as

exhaustively as possible the effect of cropping practices on eyespot

on wheat in a given production situation.

In this article, we will define the production situation as the

physical, chemical and biological components, except for the crop,

of a given field (or agroecosystem), its environment, as well as

socio-economic drivers that affect farmers’ decisions (adapted from

[31,32], [33]). In this definition, ‘‘environment’’ refers to climate

and the fraction of the territory that can influence pest dynamics

through dispersal of harmful or beneficial organisms. In a given

production situation, a farmer can design several cropping systems

according to his goals, his perception of the socio-economic

context and his environment, farm features, his knowledge and

cognition. However, it is assumed that a given cropping system in

a given production situation, such as defined above, should lead to

a unique injury profile. In IPSIM, production situations are partly

described by three components: soil, climate, and the biological

environment of the field [33]. In the approach used here, the

farmer’s decision-making process and socio-economic drivers are

not taken into account.

The conceptual bases of IPSIM have been described in detail by

Aubertot and Robin [33]. The generic hierarchical aggregative

modelling framework of IPSIM aims at predicting an injury profile

as a function of cropping practices, soil, and climate and the

biological field environment for any mono-specific crop produc-

tion (arable crop, perennial or protected crops). In order to test

whether this modelling approach could be successfully applied to

represent injuries caused by a single pest, a model, named IPSIM-

Wheat-Eyespot, has been developed according to the conceptual

framework of IPSIM. It aims at predicting the final incidence of

eyespot on wheat as a function of the production situation and

cropping practices. IPSIM-Wheat-Eyespot gathers available

knowledge in the scientific literature (models, experimental results)

and expertise and will help design cropping systems with low risk

of eyespot on wheat and perform diagnoses of commercial wheat

fields. IPSIM-Wheat-Eyespot will be used as a sub-model for

IPSIM-Wheat, a model that will predict the injury profile on

winter wheat (i.e. the distribution of injuries caused by the most

important detrimental pests on wheat [34]). This paper presents

the method used to develop IPSIM-Wheat-Eyespot using the

conceptual modelling framework of IPSIM [33], an evaluation of

its predictive quality and a discussion on the limitations and

benefits of the model.

Materials and Methods

Design of IPSIM-Wheat-Eyespot
1. General Approach. IPSIM-Wheat-Eyespot is based on

the DEX method, and is implemented with the software DEXi

[35]. DEX is a method for qualitative hierarchical multi-attribute

decision modelling and support, based on a breakdown of a

complex decision problem into smaller and less complex sub-

problems, characterised by indicators (or attributes) that are

organised hierarchically into a decision tree. These attributes are

characterised by their name, a description and a scale. DEXi is

generally used to evaluate and analyse decision problems, e.g.

[36]. However, the DEX method has been used here in an original

way to model complex agroecosystems. IPSIM-Wheat-Eyespot is

therefore a hierarchical and qualitative multi-criteria model,

allowing the prediction of eyespot injury according to various

factors with sometimes opposite effects. IPSIM-Wheat-Eyespot has

the following features (derived from [37]):

i) Processes are hierarchically organised into a tree of

attributes that constitutes the structure of the model;

ii) Terminal attributes of the tree (i.e. leaves or basic attributes)

are input variables of the model and must be specified by

users; the ‘‘trunk’’ of the tree (i.e. the final aggregated

attribute) is the main model output variable (final eyespot

incidence on wheat); internal nodes are called aggregated

attributes;

iii) All model attributes are qualitative variables (nominal or

ordinal) rather than quantitative variables. They take only

discrete symbolic values, usually represented by words

rather than numbers: e.g. ‘‘ploughing, stubble disking,

rotary harrowing’’ for nominal variables, ‘‘low, medium,

high’’ for ordinal variables;

iv) The aggregation of values up the tree is defined by

aggregating tables for each aggregated attribute based on

‘‘if-then’’ decision rules. These aggregating tables can be

seen as equivalents of parameters for quantitative numerical

IPSIM-Wheat-Eyespot
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models, whereas the tree of attributes can be viewed as the

equivalent of their mathematical structure.

IPSIM-Wheat-Eyespot was designed in 3 steps [37]: (1)

identification and organisation of the attributes, (2) definition of

attribute scales, and (3) definition of aggregating tables.

2. Identification and Organisation of Attributes. IPSIM-

Wheat-Eyespot aims at predicting the incidence of eyespot on

wheat in a given field according to a set of input variables. The

spatial scale addressed is the field and the temporal scale is the

wheat growing season, although some input variables encompass

the crop sequence (up to the pre-preceding crop). IPSIM-Wheat-

Eyespot is a static deterministic model.

The hierarchical structure presented in Figure 1 represents the

breakdown of factors affecting eyespot final incidence into specific

explanatory variables, represented by lower-level attributes. This

figure represents the adaptation to eyespot of the model structure

presented in Figure 2 by Aubertot and Robin [33].

In all, IPSIM-Wheat-Eyespot has 21 attributes, of which 14 are

basic (i.e. input variables) and 7 aggregated. The 14 basic

attributes are presented as the terminal leaves of the tree and

their levels are aggregated into higher levels according to

aggregating tables. They represent input variables of the model.

Some of them (e.g. those representing the interactions at the

territory level) could be omitted since they do not influence the

final output. However, they were kept because these basic

attributes will be necessary for the modelling of the whole injury

profile on wheat. The aggregated attributes are internal nodes.

They represent state variables or the output variable of IPSIM-

Wheat-Eyespot. They are determined by lower-level basic

attributes [38]. The output of IPSIM-Wheat-Eyespot is represent-

ed by the attribute ‘‘Final eyespot incidence’’ (eyespot incidence at

the ‘‘milky grain’’, stage 7: development of fruit on BBCH scale

[39]) which is determined by three main factors: cropping

practices, soil and climate and the biological environment of the

considered field. This is reflected by the hierarchical structure of

the model, which consists of three sub-trees of attributes (Figure 1)

split into one main part and two smaller ones. The main sub-tree,

‘‘Effect of cropping practices’’, illustrates the complexity of the

effects of cropping practices and the need to consider a

combination of practices in order to evaluate the final eyespot

incidence. It uses indicators based on tactical (with a short time-

frame) or strategic decisions (with a longer time-frame [40]). These

decisions can affect the agroecosystem at several stages.

i) Eyespot is considered as a highly endocyclic disease (as

defined in [33]). Upstream, some cropping practices affect

the quantity of the endo-inoculum (initial pathogen

population present in the field). Crop sequence and tillage

determine the vertical distribution of infected stubble and

have proven to be of major importance for eyespot control

[41–45]. Nevertheless, the effects of tillage on the disease

are controversial in the literature. According to several

authors [1,41,46–50], minimum tillage is highly favourable

to eyespot development in the presence of preceding host-

crop residues in the top layer, whereas ploughing

significantly reduces its incidence by burying host-crop

residues. These results conflict with those that show that

eyespot was more severe after soil inversion than after non-

inversion under moist, cool conditions [44–47,51–55]. The

possible explanation of this apparent contradiction is that

non-inversion is more favourable to antagonistic micro-

organisms than ploughing (the microbiological activity is

higher at the soil surface than in the top 20 cm soil layer

and the weather in some experiments, such as those in Italy,

was probably too dry for antagonistic biota to flourish on

crop debris and thus to control eyespot [1].

ii) Action by escape consists of shifting periods of highest crop

susceptibility away from the main periods of pathogen

contamination. This is achieved by altering the wheat

sowing date. In the case of eyespot, ‘‘escape strategies’’

cannot really be considered. However, early sowing

increases the probability of autumn contamination through

primary infection, due to the longer time available for

eyespot to develop and to affect stems [42].

iii) During the crop cycle, some cropping practices can

mitigate infection through crop status by increasing crop

competitiveness and/or by creating less favourable condi-

tions for pest development. Low plant density can limit

pathogen development through several mechanisms, such

Figure 1. Hierarchical structure of IPSIM-Wheat-Eyespot (screenshot of the DEXi software). Bolded and non-bold terms represent
aggregated and basic attributes, respectively.
doi:10.1371/journal.pone.0075829.g001

IPSIM-Wheat-Eyespot
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as restricting the contact between plant organs and

infectious propagules and lowering the humidity within

the canopy. This results in a control of soil-borne diseases

like eyespot by low plant density and/or a high shoot

number per plant [20]. In addition, low densities increase

distances between plants, which limits secondary pathogen

cycles, and leads to a drier microclimate. Excessive use of

nitrogen fertilisers produces lush crops and favours eyespot

through direct and indirect effects [56,57]. However, in the

case of eyespot, nitrogen availability in the soil seems to be

a minor factor for the development of the disease

[10,20,29].

Use of disease-resistant cultivars provides an economic,

environmentally friendly and effective strategy to control

disease. However, not all resistant cultivars have been

assessed in integrated cropping systems [58] and cultivars

do not share the same susceptibilities to different diseases

[59]. Eyespot resistance is generally not complete and its

expression depends widely on environmental factors [22].

iv) Lastly, a fall-back solution (use of fungicide) can be used

when alternative practices are not sufficient. However,

several studies have provided evidence for reduced

susceptibility to fungicides in populations of O. yallundae

and O. acuformis [60]. For the sake of simplicity, resistance to

fungicide in pathogen populations was not taken into

account in IPSIM-Wheat-Eyespot.

The two other sub-trees describe the biological environment of

the considered field, as well as soil and climate. These sub-trees are

not affected by cropping practices. Among these factors, climate is

the main factor affecting eyespot development [9,43].

3. Definition of the Attribute Scales. The second step in

the design of a DEXi model is the choice of ordinal or nominal

scales for basic and aggregated indicators. Sets of discrete values

were defined for all attributes of the model and described by

symbolic value scales defined by words. These values were defined

according to the knowledge available in the international literature

and some expertise when needed. IPSIM-Wheat-Eyespot uses at

most a three-grade value scale (i.e. ‘‘Unfavourable’’, ‘‘Favour-

able’’, ‘‘Very favourable’’) for the aggregated and basic attributes.

This scale refers to the disease. The value ‘‘Favourable’’ means

that the attribute is favourable to the development of the disease

and therefore potentially detrimental to the crop.

Some values for basic indicators can be specified using

quantitative values that are then translated into qualitative values.

For instance, the translation into qualitative values of the sowing

date, sowing density or N rate is performed using experimental

references or expertise. This translation takes into account the

regional context. For example, a sowing date classified as ‘‘Early’’

in the south of France might be classified as ‘‘Normal’’ in northern

France. This classification actually depends on the sowing date

distribution in the considered region.

Other attributes are directly qualitatively estimated. For

instance, the indicators ‘‘inversion tillage or non-inversion tillage’’

or ‘‘preceding and pre-preceding crop’’ are nominal variables and

directly monitored as such in experiments [61,62]. The level of

cultivar resistance has been described using the official list

provided by the French National Seed Station (Groupe d’Etude

et de contrôle des Variétés et des Semences; http://cat.geves.info/

Page/ListeNationale; accessed November 2012) and published by

Arvalis-Institut du végétal (http://www.arvalisinfos.fr/_plugins/

WMS_BO_Gallery/page/getElementStream.html?id = 13504&

prop = file; accessed November 2012). In this list, cultivars are

rated for their susceptibility to eyespot on a 0–9 scale, from very

susceptible to resistant.

For the climate attribute, a three-value scale (‘‘Unfavourable’’;

‘‘Favourable’’; ‘‘Very favourable’’) was defined using climatic

models [27,43] and data from the INRA Climatik database.

All the scales in Figure 2 are ordered from values detrimental to

the crop (i.e. favourable to the disease) on the left-hand side to

values beneficial to the crop on the right-hand side (i.e.

unfavourable to the disease). In the DEXi software, this difference

is clearly visible because, by convention, values beneficial to the

user are coloured in green, detrimental in red, and neutral in

black. The scales for the ‘‘tillage after preceding crop’’ and ‘‘tillage

after pre-preceding crop’’ attributes appear in black since their

effects on the disease cannot be defined independently from the

crop sequence.

Initial input attribute values (either quantitative or qualitative)

are translated into qualitative appreciation, according to two to

Figure 2. Attribute scales of IPSIM-Wheat-Eyespot (screenshot of the DEXi software). All the scales are ordered from values detrimental to
the crop (i.e. favourable to eyespot) on the left-hand side to values beneficial to the crop on the right-hand side (i.e. unfavourable to eyespot). In the
DEXi software, this difference is clearly visible because, by convention, values beneficial to the user are coloured in green, detrimental in red, and
neutral in black.
doi:10.1371/journal.pone.0075829.g002

IPSIM-Wheat-Eyespot
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three scales defined on the basis of available information in the

literature, models or expertise. Sometimes, a two-value scale is

enough to represent the value of an indicator (e.g. chemical

control was applied or not; or the soil has either been ploughed or

not after the preceding harvest). However, other attributes usually

need a three-value scale to describe the diversity of cropping

practices or environment (e.g. the sowing rate attribute requires

three grades to describe farmers’ practices: the sowing rate can be

low, normal or high).

4. Definition of Aggregating Tables. The third step in the

design of a DEXi model is the choice of aggregating tables

determining the aggregation of attributes in the tree and their

interactions. For each aggregated attribute in the model, a set of

‘‘if-then’’ rules define the value of the considered attribute as a

function of the values of its immediate descendants in the model.

The rules that correspond to a single aggregated attribute are

gathered together and conveniently represented in tabular form.

In this way, each table defines a mapping of all value combinations

of lower-level attributes into the values of the aggregate attribute.

Figure 3 shows decision rules that correspond to the ‘‘mitigation

through crop status’’ aggregated attribute and define the value of

this attribute for the 18 possible combinations of the three cultivar

choices, the 2 levels of fertilisation and the 3 sowing densities. For

example, if the cultivar is quite resistant, the level of N fertilisation

balanced and the sowing rate low, then the ‘‘mitigation through

crop status’’ attribute will be unfavourable to eyespot (the final

incidence will decrease). However, even if the sowing rate and the

N application rate are both high, the ‘‘mitigation through crop

status’’ attribute during wheat growth will control eyespot

significantly because the ‘‘cultivar choice’’ attribute is much more

influential than the two other attributes (Figure 3).

The aggregating tables of IPSIM-Wheat-Eyespot have been

established using knowledge available in the international litera-

ture and summarised in Table 1, and expert knowledge when

needed. All aggregating tables of the model are presented in

figures S1, S2, S3, S4, S5, S6.

5. Attribute Weights. The influence of each basic and

aggregated attribute on the value of the output variable can be

characterised with weights. The higher the weight, the more

important the attribute. Table 2 summarises the weights of each of

the 19 attributes of the model, providing an overview of the

model’s structure. IPSIM-Wheat Eyespot has 3 levels of aggrega-

tion (Figure 1), the third one being the leaves (i.e. the model input

basic attributes). The ‘‘local’’ and ‘‘global’’ weights are normalised

in two different ways. ‘‘Local’’ weights are given to each

aggregated attribute separately so that the sum of weights of its

immediate descendants in the hierarchy equals 100%. The

‘‘global’’ weights are calculated at a given level of aggregation

and express the influence of each attribute at that aggregation

level. They are obtained by multiplying the local weight of a given

attribute at a given level of aggregation, by local weighting of its

ascendants. For instance, the value of the ‘‘soil and climate’’

attribute is completely defined by the ‘‘Climate’’ attribute (100%,

local weight), but this attribute only contributes 53% to the

definition of the value of ‘‘Eyespot incidence’’ (global weight at the

second level of aggregation). Local and global weights are identical

at the first level of aggregation, since in this case there is only one

level of aggregation. Global weights of basic attributes are shown

in bold in Table 2 in order to ease their identification, since they

are distributed among the second and third levels of aggregation of

IPSIM-Wheat-Eyespot. The sum of global weights at the third

level is only 76%. This is because some basic attributes are directly

embedded in the model at the second level of aggregation. The

sum of global basic attribute weights is logically equal to 100%.

Table 2 can be seen as an equivalent of a sensitivity analysis that

would aim at identifying the most influential input (and state)

variables of a quantitative model.

6. Simulations with DEXi. The qualitative final attribute

value (final incidence of eyespot) is calculated by DEXi. The

Figure 3. Aggregating table for the ‘‘Mitigation through crop status’’ aggregated attribute (screenshot of the DEXi software).
Aggregation rules for the 18 possible combinations of the 3 cultivar choices, the 2 levels of fertilisation and the 3 sowing rates.
doi:10.1371/journal.pone.0075829.g003

IPSIM-Wheat-Eyespot
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calculation consists in computing all aggregated attribute values

according to: (i) the structure of the tree; (ii) a set of input variables

(basic attribute values) defining a simulation unit; and (iii) the

aggregating tables for the aggregation of attributes. An example of

output results obtained for two simulation units is provided in

Figure 4 (input basic attributes and calculated aggregated attribute

values for the simulation of two systems: an organic and a high-

input one).

Table 1. Available knowledge in the scientific literature describing the effects of cropping practices and the production situation
on the incidence of eyespot on wheat.

Factor
Direction
of the effect

Intensity of
the effect Impact on eyespot development References

Tillage +/2 ++ Contradictory results. For some authors, reduced soil tillage
decreased eyespot infection. For others, eyespot was often
more severe after ploughing than after non-inversion tillage.

[1,11,41,42,44–55]

Preceding and
pre-preceding crop

+ ++ Preceding and pre-preceding host crops are known to favour
eyespot. However, the interaction between tillage and the crop
sequence has to be taken into account.

[9,10,29,41–42,55,61,62]

Sowing date + ++ Eyespot has always been reported to be more severe in
early sown crops.

[10,20,27,29,42,55]

N fertilisation rate + + High nitrogen availability generally favoured the disease.
However these results were questioned.

[9,10,20,29,56,57]

Sowing rate + + Prevalence was increased by high plant density and/or
low shoot number per plant.

[20,29]

Cultivar choice + +++ The use of varieties with resistance could obviate the
need for fungicide.

[10,21,22,42,58,59]

Cultivar mixture 0 0 No significant difference was found between the disease
level in mixtures and the mean of disease level of the
mixture components in pure stands.

[70–72]

Climate + ++ Eyespot strongly depends on climate. Infections require
periods of at least 15 h with Tu between 4uC and 13uC
and HR.80% (from October to April).

[9,27,28,29,43]

Cropping practices and climate can be favourable (+), unfavourable (2) or neutral (0) to the development of eyespot. The intensity of the considered factor is
summarised with 4 classes: 0, no effect; +, slight; ++, significant; +++, crucial.
doi:10.1371/journal.pone.0075829.t001

Table 2. Respective weights of the attributes of IPSIM-Wheat-eyespot.

Attributes defining the final incidence of eyespot Local level 1 Local level 2 Local level 3 Global level 1 Global level 2 Global level 3

1 Effects of cropping practices 47 47

1.1 Primary inoculum management 21 10

1.1.1 Preceding crop 40 4

1.1.2 Pre-preceding crop 12 1

1.1.3 Tillage after the preceding crop 40 4

1.1.4 Tillage after pre-preceding crop 8 1

1.2 Escape: effects of sowing date 9 4

1.3 Mitigation through crop status 26 12

1.3.1 Cultivar choice 100 12

1.3.2 Level of N fertilisation 0 0

1.3.3 Sowing rate 0 0

1.4 Chemical control 44 21

2 Effects of soil and climate 53 53

2.1 Soil 0 0

2.2 Climate 100 53

2.2.1 Autumn/winter 29 15

2.2.2 Spring 71 38

3 Interactions with the rest of the territory 0 0

The ‘‘local’’ and ‘‘global’’ weights are calculated for each aggregated attribute separately and are distributed in 3 levels of aggregation. Bold and non-bold terms
represent basic attributes and aggregated terms, respectively.
doi:10.1371/journal.pone.0075829.t002
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Evaluation of the Predictive Quality of IPSIM-Wheat-
Eyespot

1. Description of the Dataset Used. Data representative of

a wide range of climate patterns, soils and cropping practices are

needed to assess the predictive quality of the model. A large

dataset was therefore developed to assess the predictive quality of

IPSIM-Wheat-Eyespot. A national survey was conducted to

identify relevant data from various research and development

institutes. The required datasets had to provide information for

input attributes of IPSIM-Wheat-Eyespot (description of cropping

practices, soil and climate) and its output (eyespot incidence at the

‘‘milky grain’’, stage 7: development of fruit on BBCH scale [39]).

The dataset obtained is summarised in Table 3. It comprises

results from multifactorial trials from 1980 to 1994 in 7 contrasting

regions in France, which were set up to analyse the effects of

various cropping practices on foot and root winter wheat diseases

on different soils and with differing climate patterns. Various

cultivars were combined with different crop sequences, conven-

tional and reduced tillage, low or high plant densities, early or late

sowing dates, low or high N fertilisation, in various areas of

production where eyespot epidemics are observed. Most of these

trials were specific studies on foot diseases [20,41,61,62], so the

experimental conditions were suited to ensure the presence of

eyespot (i.e. infected wheat present in the crop sequence and only

susceptible cultivars). Other data originated from a regional

agronomic diagnosis [63] performed in cereal fields from 1987 to

1994 in 19 French regions to analyse the effects of cultural

practices on the incidence and severity of foot and root disease

complexes [64]. In this survey, data were collected on 894 cereal

fields in a wide range of production situations.

For some situations, the pre-preceding crop (3 possible types of

crop in the model: ‘‘host’’, ‘‘non-host’’ and ‘‘risk amplifying’’) and

the associated tillage after the harvest of this crop (2 possible values

in the model) were not observed. Instead of ignoring these precious

data, simulations were performed for the 3*2 possibilities and only

cases for which the 6 simulations led to similar output values were

kept for evaluating the model. In all, 526 site-years were used for

the evaluation of the model and they represented a large number

of combinations of cropping practices and production situations

(19 French regions over 9 years).

The data presented in Table 3 were transformed into qualitative

values and used as input basic attributes to feed IPSIM-Wheat-

Eyespot.

2. Evaluation of the Predictive Quality of IPSIM-Wheat-

Eyespot. The evaluation consisted in comparing simulated and

observed values. Since the model predicts classes of incidence,

observed incidences at wheat stage 7 were transformed into

observed incidence classes using the same discretisation as the

model (i.e. 0–20%, 20–40%, 40–60%, 60–80%, 80–100%).

However, one might want to predict incidences rather than

classes of incidence. In order to test the predictive quality of

IPSIM-Wheat-Eyespot for incidences, its output main variable was

transformed into a numerical value by replacing the predicted

incidence class by the centre of the class. The model was therefore

evaluated in two ways: first, on its ability to predict incidence

classes, and second on its ability to predict eyespot incidences.

For incidence classes, the deviation of the model was

characterised by calculating the number of classes of difference

between observed and simulated classes. The distribution of

simulated classes was displayed according to observed incidence

classes. This information was summarised by a multinomial

distribution in 9 difference classes (from 24 to +4) since the model

has 5 incidence classes. The proportion of situations for which the

model correctly predicted the observed incidence class was taken

as an indicator of the quality of prediction of the model. In

addition, a non-parametric Wilcoxon test was performed to test

Figure 4. Example of 2 simulations carried out with IPSIM-Wheat-Eyespot (screenshot of the DEXi software).
doi:10.1371/journal.pone.0075829.g004
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whether the distribution of errors was zero-centred (in that case,

the model can be considered unbiased).

For incidences, the predictive quality of IPSIM-Wheat-Eyespot

was characterised using three common statistical criteria [65]: bias

(Equation 1), Root Mean Square Error of Prediction (RMSEP,

Equation 2), and efficiency (Equation 3).

Bias~
1

n

Xi~n

i~1

Y obs
i {Y sim

i

� �
ð1Þ

where n is the total number of considered situations, Yi
obs the

observed value for situation i, and Yi
sim is the corresponding value

simulated by the model. The bias measures the average difference

between observed and simulated values. If the model underesti-

mates the considered variable, the bias is positive. Conversely, if

the model overestimates the variable, the bias is negative.

RMSEP~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xi~n

i~1

Y obs
i {Y sim

i

� �2

vuut ð2Þ

RMSEP quantifies the prediction error when the model param-

eters have not been estimated using the observations Yi
obs used in

the calculation of this criterion.

EF~1{

Pi~n

i~1

Y obs
i {Y sim

i

� �2

Pi~n

i~1

Y obs
i { �YY

� �2
ð3Þ

Where �YY is the mean of observed data. Nash and Sutcliffe [66]

defined the efficiency as a normalised statistic that determines the

relative magnitude of the residual variance (‘‘noise’’) compared

with the measured data variance (‘‘information’’). The efficiency

defines the ability of a model to predict the value of a variable.

The efficiency can range from –‘ to 1. If the model perfectly

predicts the observations, the efficiency is maximum and is equal

to 1. Efficiency values lower than 0 indicate that the mean

observed value is a better predictor than the simulated values,

which indicate a poor predictive quality of the model. Values

between 0 and 1 are generally viewed as acceptable levels of

performance. The closer the model efficiency is to 1, the better is

the fit between observed and simulated data [65].

Results

Evaluation of the Quality of Prediction for Final Incidence
Classes

The high number of observed site-years in the dataset (526)

permitted a reliable evaluation of the predictive quality of IPSIM-

Wheat-Eyespot. Residuals were distributed around 0 (Figure 5),

indicating that the predicted values were close to observations.

Nearly half (47.1%) of the simulated classes encompassed the

observed values and 80.4% had at most a difference of one class

only. In addition, there are nearly as many negative as positive

differences of exactly one class. The Wilcoxon test performed over

the 9 class differences (from 24 to +4) proved that the model was

significantly biased (simulated final incidence classes lower than

observations, p,1.0 10210). Figure 6 illustrates the distribution of

class differences between observed and predicted final eyespot

incidences. The overall predictive quality of IPSIM-Wheat-

Eyespot was judged fair, even if slightly biased. The predictive
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Figure 5. Evaluation of the predictive quality of IPSIM-Wheat-Eyespot. Residuals distribution: number of classes of difference between
observed and simulated final eyespot classes (0–20%, 20–40%, 40–60%, 60–80%, 80–100%; 526 fields, over 9 years and 19 French regions).
doi:10.1371/journal.pone.0075829.g005

Figure 6. Evaluation of the predictive quality of IPSIM-Wheat-Eyespot Distribution of class differences between observed and predicted
final eyespot incidences. (526 fields, over 9 years and 19 French regions).
doi:10.1371/journal.pone.0075829.g006
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quality was good for the lowest class (52% of all the observations in

the dataset): 80% of the observed values between 0 and 20% were

correctly simulated. The model underestimated final incidences

for observations higher than 20%.

Evaluation of the Quality of Prediction for Final Incidence
Values

For these 526 output values, the overall predictive quality of the

model was correct. The model’s predictive quality was good as its

efficiency value was correct: 0.51. The Root Mean Square Error of

Prediction error was quite high, 24%. The bias was positive

(5.0%), so the model slightly underestimated final eyespot

incidences.

Discussion

Interests and Limitations of IPSIM-Wheat-Eyespot
Several studies have been conducted to analyse the effects of

cropping practices on the development of eyespot on wheat

[10,29]. However, only one statistical model had been developed

in order to predict the incidence of eyespot as a function of few

cropping practices [29]. IPSIM-Wheat-Eyespot offers new possi-

bilities for the design of innovative cropping systems since it is the

first functional model to encompass simultaneously the effects of

soil, climate and the cropping system and to represent the effects of

interactions among these many factors.

The development of IPSIM-Wheat-Eyespot was made possible

using (1) a schematic representation of the relationships between

cropping practices, the production situation and injuries, (2) the

translation of this conceptual scheme into a simulation model, and

(3) a combination of data from a wide range of production

situations (many regions and years) to test its predictive quality.

1. Conceptual Bases of IPSIM-Wheat-Eyespot. The con-

ceptual scheme of IPSIM-Wheat-Eyespot is innovative because i) it

encompasses a temporal scale longer than the cropping season

(effect of the crop sequence in interaction with tillage over two

years); ii) the main cropping practices that can affect the disease

are represented; iii) interactions between practices as well as

interactions between practices and climate are taken into account.

As compared to the conceptual scheme of IPSIM [33], the spatial

scale considered was limited to the field because of the lack of

interactions at larger scales. In addition, the conceptual scheme of

IPSIM-Wheat-Eyespot does not take into account socio-economic

drivers, farmer’s goals and cognition since it does not aim at

simulating decisions. However, this original conceptual model can

help design innovative cropping systems less susceptible to eyespot.

The information provided by IPSIM-Wheat-Eyespot should be

combined with other sources of information (references, other

models, or expertise) in order to design new cropping systems,

especially since damage (i.e. crop loss) caused by the disease are not

represented.

2. Hierarchical Tree of Attributes and Aggregating

Tables. The qualitative nature of the DEX method is well

suited to the modelling of complex systems for which no high level

of precision is required. The DEXi software tool [36] offered a

suitable environment for the organisation of available knowledge

and a rapid development of IPSIM-Wheat-Eyespot. The main

breakthrough of the IPSIM platform is to allow the handling of

complexity in a simple way [33]. The work presented in this paper

provides a proof of concept for this innovative modelling approach

in the field of crop protection for a single disease. A major

innovation of this modelling approach is to be able to aggregate

attributes of different natures (e.g. cultivar choice, a nominal

variable and fertilisation rate, a quantitative variable) to describe

the impact of various components of cropping systems and their

interactions on eyespot incidence. IPSIM-Wheat-Eyespot is

actually the first model which can overcome the lack of data on

the relationships between cropping practices and a single pest in a

given production situation to help design strategies to control the

disease. The qualitative DEXi approach may lead to a loss of

precision and sensitivity in the developed model [67]. Increasing

the number of attribute scales at the top of the decision tree could

be a way to improve the sensitivity [68]. However, it results in

more complicated aggregating tables which are consequently more

difficult to define. Due to the tremendous complexity of

interactions between cropping practices and the production

situation, a smaller number of indicator states have been chosen

to keep the representation of the complex underlying mechanisms

as simple as possible. A correct definition of aggregating tables is of

primary importance in DEXi models [68]. The choice of the

nature and the number of qualitative scales is also crucial and will

partly determine the quality of prediction. The choices of both

aggregating tables and qualitative scales of attributes have to be

explicit and traceable. Indeed, the scales and the aggregating

tables used for the attributes of IPSIM-Wheat-Eyespot could not

be determined in a generic way but have been specifically defined

according to experimental results, models available in the

literature and expert knowledge if need be. Unfortunately,

literature to analyse some attributes may not exist, lack certain

features, or controversial. For instance, the impact of soil type on

eyespot incidence is very poorly described in the international

literature and the relationships between tillage and eyespot are

subject to much controversy [43]. For these cases, expert

knowledge had to be used to complete some aggregating tables.

In addition, the model runs using simple ‘‘if–then’’ rules, which are

‘‘shallow’’ in the sense that they only define direct relationships

between conditions and consequences, but do not represent any

‘‘deeper’’ (or mechanistic) biological, physical, chemical processes

[69]. Since the early stages of development of IPSIM-Wheat-

Eyespot, it has been clear that precision was not an objective of the

model. It appears more important to focus on accuracy rather

than precision when modelling such a complex system.

Table 2 reveals the overall behaviour of IPSIM-Wheat-Eyespot.

This is also an additional value of the IPSIM approach: the model

is transparent and can be easily discussed. For instance, it is clear

that the overall effect of fungicide on the disease is low (21%). This

is because fungicide does not always control the disease efficiently

[59]. The main factor influencing the disease is the spring weather

(38%). This is consistent with Matusinsky et al. [43] who showed

that the disease was very dependent on the climatic conditions

during spring.

3. Predictive Quality of IPSIM-Wheat-Eyespot. The

quality of the analysis of the IPSIM-Wheat-Eyespot predictive

quality not only depends on the model itself (hierarchical structure

of attributes and aggregating tables) but also on the diversity of the

data used, which must reflect a wide range of production

situations. These data should represent a variety of soil, climate

and cropping practices, but also of final incidences. The dataset

used in this study satisfied the three former conditions, but did not

fully satisfy the latter. The observed final eyespot incidences were

generally quite low, so the predictive quality of IPSIM-Wheat-

Eyespot could not be extensively evaluated for high levels of

incidence.

The main difference with other models is that IPSIM-Wheat-

Eyespot is based on qualitative variables and not quantitative ones.

The use of qualitative data requires greater attention to the

description of the adopted hypotheses, because qualitative data are

more difficult to interpret objectively [68]. This is particularly the

IPSIM-Wheat-Eyespot
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case for the transformation of quantitative variables that have to

be translated into qualitative input of IPSIM-Wheat-Eyespot (e.g.

sowing density expressed in kg/ha or number of seeds m22 and

translated into ‘‘low’’, ‘‘normal’’ or ‘‘high’’). Thus, IPSIM-Wheat-

Eyespot can be used in 2 ways. On the one hand, some users can

provide directly qualitative basic attributes (i.e. input variables of

the model) if they want to test the performance of some technical

options in given production situation. On the other hand, other

users might want to run the model for real or putative situations

where both the production situation and cropping practices are

characterised with quantitative, qualitative or nominative data. In

this case, an algorithm should be developed in order to rigorously

translate these data into appropriate basic attributes based on

national or international official references (e.g. a given cultivar

will be classified as ‘‘very susceptible to susceptible’’; ‘‘moderately

susceptible’’; or ‘‘resistant’’ according to official national or

international seed classification); regional references (e.g. a given

sowing date will be classified as ‘‘early’’; ‘‘normal’’; ‘‘late’’ as a

function of regional references established by extension services);

knowledge available in the literature (e.g. a given crop will be

classified as ‘‘host’’, ‘‘non-host’’, or ‘‘risk-amplifying crop’’

according to published scientific articles); references produced by

models (e.g. a given weather scenario can be classified as ‘‘very

favourable’’; ‘‘favourable’’; or ‘‘unfavourable’’ according to a

published model).

IPSIM-Wheat-Eyespot proved to fairly represent the variability

of the 526 ‘‘site-years’’ used to test its predictive quality. This

indicates that the model is already operational and can represent

the effects of a wide range of production situations*cropping

practices combinations for eyespot epidemics to help design

cropping systems less susceptible to the disease. This is remarkable

since, unlike most models, no fitting procedure was used.

Prospects
1. Improvements to the Model. Further refinements could

be added in the future. They should keep the balance between: i)

modelling of the effects of cropping practices and the production

situation on eyespot epidemics as accurately as possible, and ii)

keeping the model as simple as possible. In addition to the design

of a model, the approach presented in this article allowed us to

structure the available knowledge in the literature about the effects

of cropping practices and the production situation on eyespot

epidemics (Table 1). Aggregating tables derived from Table 1

could be easily adapted according to future advances in the

knowledge of underlying mechanisms responsible for the disease.

In the same way, the model structure could easily be modified to

integrate new knowledge. For instance, the model does not yet

take into account the effects of cultivar mixtures, whereas some

authors have described a reduction of eyespot by cultivar mixtures

[70–72]. However, this cropping practices is not currently

widespread, data are sparse and there is no consensus in the

literature on this matter.

IPSIM-Wheat-Eyespot requires the provision of qualitative

basic attributes. This is a benefit for the ex-ante design of innovative

cropping systems. However, this requires translating nominative or

quantitative variables used to describe cropping practices and the

production situation into ad hoc qualitative variables. In order to

avoid subjectivity when translating these variables, some reference

values have to be used. Such values were gathered for several

French regions (data not shown) in order to design an algorithm

that translates nominative or quantitative variables describing

cropping practices and the production situation into relevant basic

attributes of the model. This algorithm can be easily adapted to

any location where wheat is grown and eyespot is present,

provided that relevant reference values are available. At last,

aggregating tables could be adjusted to improve IPSIM-Wheat-

Eyespot’s predictive quality using statistical procedures, as done

for parameter estimation for quantitative models.

2. Future Use of the Model. The main breakthrough of the

IPSIM framework, with a simple hierarchical aggregative struc-

ture, is to allow the handling of complexity in a simple way. The

input variables of models developed with IPSIM, such as IPSIM-

Wheat-Eyespot, are easily obtained [33]. IPSIM-Wheat-Eyespot

will help design cropping systems with a lower risk of eyespot on

wheat. In order to do so, simulation plans will be defined to assess

the performance of cropping practices in a given production

situation with regard to the control of the disease. It is obvious that

this simulation work will have to be combined with other sources

of information such as other models, expert knowledge, diagnoses

in commercial fields or experiments to propose innovative

sustainable cropping systems.

The model, along with the interface that translates nominative

and quantitative variables into relevant qualitative input variables

for IPSIM-Wheat-Eyespot (MicrosoftH Office Excel 2003), is now

available upon request. This model can now be used as a

communication, organisation, training and teaching tool for

researchers, extension engineers, advisers, teachers or even

farmers. Appropriation and adaptation of the model by techni-

cians, advisers or farmers could be useful to exchange knowledge

and experience (building up from their technical know-how).

The model presented in this paper only takes into account one

pest among the biocenosis of a wheat field. Nevertheless, it is

necessary to consider the entirety of the major pests when

designing cropping systems because farmers have to manage

combinations of pest populations, leading to injury profiles, which

can in turn lead to quantitative or qualitative damage and

ultimately economic losses. In addition to being a model specific to

a given disease, IPSIM-Wheat-Eyespot can also be seen as the first

sub-model of IPSIM-Wheat, a model that will predict injury

profiles on wheat as a function of cropping practices and the

production situation.

Supporting Information

Figure S1 Aggregating table used for the calculation of
the value of the aggregative attribute ‘‘Final incidence of
Eyespot’’ (screenshot of the DEXi software).

(TIF)

Figure S2 Aggregating table used for the calculation of
the value of the aggregative attribute ‘‘Effects of
cropping practices’’ (screenshot of the DEXi software).

(TIF)

Figure S3 Aggregating table used for the calculation of
the value of the aggregative attribute ‘‘Effects of soil and
climate’’ (screenshot of the DEXi software).

(TIF)

Figure S4 Aggregating table used for the calculation of
the value of the aggregative attribute ‘‘Primary inocu-
lum management: interaction between crop sequence
and tillage’’ (screenshot of the DEXi software).

(TIF)

Figure S5 Aggregating table used for the calculation of
the value of the aggregative attribute ‘‘Mitigation
through crop status’’ (screenshot of the DEXi software).

(TIF)
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Figure S6 Aggregating table used for the calculation of
the value of the aggregative attribute ‘‘Climate’’ (screen-
shot of the DEXi software).
(TIF)
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