. Who, Tuberculosis Control, 2011.

D. E. Minnikin, L. Kremer, L. G. Dover, and G. S. Besra, The methyl-branched fortifications of Mycobacterium tuberculosis, Chem. Biol, vol.9, pp.545-553, 2002.

O. Neyrolles and C. Guilhot, Tuberculosis (Edinb.), vol.91, pp.187-195, 2011.

N. Garton, H. Christensen, D. Minnikin, R. Adegbola, and M. Barer, Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum, Microbiology, vol.148, pp.2951-2958, 2002.

J. C. Bakala-n'goma, M. Schue, F. Carriere, A. Geerlof, and S. Canaan, Evidence for the cytotoxic effects of Mycobacterium tuberculosis phospholipase C towards macrophages, Biochim. Biophys. Acta, vol.1801, pp.1305-1313, 2010.

K. Côtes, R. Dhouib, I. Douchet, H. Chahinian, A. Caro et al., Characterization of an exported monoglyceride lipase from Mycobacterium tuberculosis possibly involved in the metabolism of host cell membrane lipids, Biochem. J, vol.408, pp.417-427, 2007.

O. Neyrolles, R. Hernandez-pando, F. Pietri-rouxel, P. Fornes, L. Tailleux et al., Is adipose tissue a place for Mycobacterium tuberculosis persistence?, PLoS ONE, vol.1, p.43, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00130276

M. Schué, D. Maurin, R. Dhouib, J. C. N'goma, V. Delorme et al., Two cutinase-like proteins secreted by Mycobacterium

, Horizontal continuous lines represent the mean values of the response, whereas dotted lines represent the cut-off values defined in the study. BCG þ BD, BCG-vaccinated blood donors (n ¼ 50), TB, active TB patients (n ¼ 105). (C) Immunoreactivity of recombinant LipC with sera from TB patients (HIV þ TB þ and HIV À TB þ , each n ¼ 6) and control subjects (PPD À , PPD þ , HIV þ TB À , each n ¼ 6). Relative immunoreactivity was calculated using the, Immunoserological response to recombinant lipolytic enzymes in TB patients and healthy individuals. (A and B)

, Journal homepage : www.elsevier.com/locate/biochi tuberculosis show very different lipolytic activities reflecting their physiological function, Version définitive du manuscrit publiée dans / Final version of the manuscript published in : Biochimie (2013), vol.95, pp.1893-1903, 2010.

J. Daniel, H. Maamar, C. Deb, T. D. Sirakova, and P. E. Kolattukudy, Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages, PLoS Pathog, vol.7, p.1002093, 2011.

R. Dhouib, A. Ducret, P. Hubert, F. Carriere, S. Dukan et al., Watching intracellular lipolysis in mycobacteria using time lapse fluorescence microscopy, Biochim. Biophys. Acta, vol.1811, pp.234-241, 2011.

E. J. Munoz-elias and J. D. Mckinney, Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence, Nat. Med, vol.11, pp.638-644, 2005.

P. Peyron, J. Vaubourgeix, Y. Poquet, F. Levillain, C. Botanch et al., Foamy macrophages from tuberculous patients' granulomas constitute a nutrientrich reservoir for M. tuberculosis persistence, PLoS Pathog, vol.4, p.1000204, 2008.

K. L. Low, P. S. Rao, G. Shui, A. K. Bendt, K. Pethe et al., Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis bacillus CalmetteeGuerin, J. Bacteriol, vol.191, pp.5037-5043, 2009.

M. Wältermann and A. Steinbüchel, Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots, J. Bacteriol, vol.187, pp.3607-3619, 2005.

J. Daniel, C. Deb, V. S. Dubey, T. D. Sirakova, B. Abomoelak et al., Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture, J. Bacteriol, vol.186, pp.5017-5030, 2004.

C. Deb, J. Daniel, T. D. Sirakova, B. Abomoelak, V. S. Dubey et al., A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis, J. Biol. Chem, vol.281, pp.3866-3875, 2006.

J. D. Mckinney, K. Honer-zu-bentrup, E. J. Munoz-elias, A. Miczak, B. Chen et al., Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase, Nature, vol.406, pp.735-738, 2000.

K. L. Low, G. Shui, K. Natter, W. K. Yeo, S. D. Kohlwein et al., Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis bacillus Calm-etteeGuerin, J. Biol. Chem, vol.285, pp.21662-21670, 2010.

K. A. Mattos, H. Avila, L. S. Rodrigues, V. G. Oliveira, E. N. Sarno et al., Lipid droplet formation in leprosy: toll-like receptor-regulated organelles involved in eicosanoid formation and Mycobacterium leprae pathogenesis, J. Leukoc. Biol, vol.87, pp.371-384, 2010.

P. R. Wheeler and C. Ratledge, Use of carbon sources for lipid biosynthesis in Mycobacterium leprae: a comparison with other pathogenic mycobacteria, J. Gen. Microbiol, vol.134, pp.2111-2121, 1988.

N. M. Parrish, J. D. Dick, and W. R. Bishai, Mechanisms of latency in Mycobacterium tuberculosis, Trends Microbiol, vol.6, pp.107-112, 1998.

K. A. Mattos, F. A. Lara, V. G. Oliveira, L. S. Rodrigues, H. Avila et al., Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes, Cell Microbiol, vol.13, pp.259-273, 2011.

L. Kremer, C. De-chastellier, G. Dobson, K. J. Gibson, P. Bifani et al., Identification and structural characterization of an unusual mycobacterial monomeromycolyl-diacylglycerol, Mol. Microbiol, vol.57, pp.1113-1126, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00079063

S. Talati and P. R. Mahadevan, Lipase activity in Mycobacterium leprae-an indicator of metabolic function, Indian J. Lepr, vol.58, pp.367-372, 1986.

J. E. Hawkins and W. Steenken, Lipase activity of mycobacteria, Am. Rev. Respir. Dis, vol.87, pp.585-588, 1963.

A. Andrejew and J. Desbordes, Hydrolysis of Fatty Acids Esters by Mycobacterium phlei, vol.117, pp.486-500, 1969.

G. Singh, D. Jadeja, and J. Kaur, Lipid hydrolizing enzymes in virulence: Mycobacterium tuberculosis as a model system, Crit. Rev. Microbiol, vol.36, pp.259-269, 2010.

A. Aloulou and F. Carriere, Gastric lipase: an extremophilic interfacial enzyme with medical applications, Cell Mol. Life Sci, vol.65, pp.851-854, 2008.

B. Fielding, Tracing the fate of dietary fatty acids: metabolic studies of postprandial lipaemia in human subjects, Proc. Nutr. Soc, vol.70, pp.342-350, 2011.

A. D. Quiroga and R. Lehner, Liver triacylglycerol lipases, Biochim. Biophys. Acta, 2011.

B. Brust, M. Lecoufle, E. Tuaillon, L. Dedieu, S. Canaan et al., Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis, PLoS ONE, vol.6, p.25078, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02649423

G. Shen, K. Singh, D. Chandra, C. Serveau-avesque, D. Maurin et al., LipC (Rv0220) is an immunogenic cell surface esterase of Mycobacterium tuberculosis, Infect. Immun, vol.80, pp.243-253, 2012.

S. T. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher et al., Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.393, pp.537-544, 1998.

D. L. Ollis, E. Cheah, M. Cygler, B. Dijkstra, F. Frolow et al., The a/b hydrolase fold, Protein Eng, vol.5, pp.197-211, 1992.

K. C. Mishra, C. De-chastellier, Y. Narayana, P. Bifani, A. K. Brown et al., Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY, vol.76, pp.127-140, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00202869

E. R. Shanahan, R. Pinto, J. A. Triccas, W. J. Britton, and N. P. West, Cutinase-like protein-6 of Mycobacterium tuberculosis is recognised in tuberculosis patients and protects mice against pulmonary infection as a single and fusion protein vaccine, Vaccine, vol.28, pp.1341-1346, 2010.

M. H. Daleke, A. Cascioferro, K. De-punder, R. Ummels, A. M. Abdallah et al., Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via the ESX-5 pathway, J. Biol. Chem, vol.286, 2011.

D. Bottai, M. D. Luca, L. Majlessi, W. Frigui, R. Simeone et al., Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation, Mol. Microbiol, 2012.

J. Zeng, L. Zhang, Y. Li, Y. Wang, M. Wang et al., Over-producing soluble protein complex and validating proteineprotein interaction through a new bacterial co-expression system, Protein Expr. Purif, vol.69, pp.47-53, 2010.

R. Dhouib, F. Laval, F. Carriere, M. Daffe, and S. Canaan, A monoacylglycerol lipase from Mycobacterium smegmatis involved in bacterial cell interaction, J. Bacteriol, vol.192, pp.4776-4785, 2010.

G. Xu, H. Jia, Y. Li, X. Liu, M. Li et al., Hemolytic phospholipase Rv0183 of Mycobacterium tuberculosis induces inflammatory response and apoptosis in alveolar macrophage RAW264.7 cells, Can. J. Microbiol, vol.56, pp.916-924, 2010.

N. P. West, F. M. Chow, E. J. Randall, J. Wu, J. Chen et al., Cutinase-like proteins of Mycobacterium tuberculosis: characterization of their variable enzymatic functions and active site identification, FASEB J, vol.23, pp.1694-1704, 2009.

P. K. Crellin, J. P. Vivian, J. Scoble, F. M. Chow, N. P. West et al., Tetrahydrolipstatin inhibition, functional analyses, and three-dimensional structure of a lipase essential for mycobacterial viability, J. Biol. Chem, vol.285, pp.30050-30060, 2010.

X. Meniche, C. Labarre, C. De-sousa-d'auria, E. Huc, F. Laval et al., Identification of a stress-induced factor of Corynebacterineae that is involved in the regulation of the outer membrane lipid composition, J. Bacteriol, vol.191, pp.7323-7332, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00529742

S. K. Parker, R. M. Barkley, J. G. Rino, and M. L. Vasil, Mycobacterium tuberculosis Rv3802c encodes a phospholipase/thioesterase and is inhibited by the antimycobacterial agent tetrahydrolipstatin, PLoS ONE, vol.4, p.4281, 2009.

R. A. Fratti, J. Chua, I. Vergne, and V. Deretic, Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.5437-5442, 2003.

K. Johansen, R. Gill, and M. Vasil, Biochemical and molecular analysis of phospholipase C and phospholipase D activity in mycobacteria, Infect. Immun, vol.64, pp.3259-3266, 1996.

D. H. Schmiel and V. L. Miller, Bacterial phospholipases and pathogenesis, Microbes Infect, vol.1, pp.1103-1112, 1999.

T. Matsui, C. R. Carneiro, and S. C. Leao, Evidence for the expression of native Mycobacterium tuberculosis phospholipase C: recognition by immune sera and detection of promoter activity, Braz. J. Med. Biol. Res, vol.33, pp.1275-1282, 2000.

C. Raynaud, C. Guilhot, J. Rauzier, Y. Bordat, V. Pelicic et al., Phospholipases C are involved in the virulence of Mycobacterium tuberculosis, vol.45, pp.203-217, 2002.

S. V. Gordon, R. Brosch, A. Billault, T. Garnier, K. Eiglmeier et al., Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays, Mol. Microbiol, vol.32, pp.643-655, 1999.

C. H. King, S. Mundayoor, J. T. Crawford, and T. M. Shinnick, Expression of contactdependent cytolytic activity by Mycobacterium tuberculosis and isolation of the genomic locus that encodes the activity, Infect. Immun, vol.61, pp.2708-2712, 1993.

S. Kunnath-velayudhan and M. L. Gennaro, Immunodiagnosis of tuberculosis: a dynamic view of biomarker discovery, Clin. Microbiol. Rev, vol.24, pp.792-805, 2011.

K. R. Steingart, N. Dendukuri, M. Henry, I. Schiller, P. Nahid et al., Performance of purified antigens for serodiagnosis of pulmonary tuberculosis: a meta-analysis, Clin. Vaccine Immunol, vol.16, pp.260-276, 2009.

M. Srinivas, S. Rajakumari, Y. Narayana, B. Joshi, V. M. Katoch et al., Functional characterization of the phospholipase C activity of Rv3487c and its localization on the cell wall of Mycobacterium tuberculosis, J. Biosci, vol.33, pp.221-230, 2008.