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Potential benefits of genomic selection  
on genetic gain of small ruminant breeding programs1

F. Shumbusho,*†2 J. Raoul,* J. M. Astruc,* I. Palhiere,† and J. M. Elsen†2

*Institut de l’Elevage, F-31321 Castanet-Tolosan, France; and †INRA, UR631 SAGA, F-31326 Castanet-Tolosan, France

ABSTRACT: In conventional small ruminant breeding 
programs, only pedigree and phenotype records are used 
to make selection decisions but prospects of including 
genomic information are now under consideration. The 
objective of this study was to assess the potential ben-
efits of genomic selection on the genetic gain in French 
sheep and goat breeding designs of today. Traditional 
and genomic scenarios were modeled with determin-
istic methods for 3 breeding programs. The models 
included decisional variables related to male selection 
candidates, progeny testing capacity, and economic 
weights that were optimized to maximize annual genet-
ic gain (AGG) of i) a meat sheep breeding program that 
improved a meat trait of heritability (h2) = 0.30 and a 
maternal trait of h2 = 0.09 and ii) dairy sheep and goat 
breeding programs that improved a milk trait of h2 = 
0.30. Values of ±0.20 of genetic correlation between 
meat and maternal traits were considered to study their 
effects on AGG. The Bulmer effect was accounted for 
and the results presented here are the averages of AGG 
after 10 generations of selection. Results showed that 
current traditional breeding programs provide an AGG 
of 0.095 genetic standard deviation (σa) for meat and 

0.061 σa for maternal trait in meat breed and 0.147 σa 
and 0.120 σa in sheep and goat dairy breeds, respective-
ly. By optimizing decisional variables, the AGG with 
traditional selection methods increased to 0.139 σa for 
meat and 0.096 σa for maternal traits in meat breeding 
programs and to 0.174 σa and 0.183 σa in dairy sheep 
and goat breeding programs, respectively. With a medi-
um-sized reference population (nref) of 2,000 individu-
als, the best genomic scenarios gave an AGG that was 
17.9% greater than with traditional selection methods 
with optimized values of decisional variables for com-
bined meat and maternal traits in meat sheep, 51.7% in 
dairy sheep, and 26.2% in dairy goats. The superiority 
of genomic schemes increased with the size of the ref-
erence population and genomic selection gave the best 
results when nref > 1,000 individuals for dairy breeds 
and nref > 2,000 individuals for meat breed. Genetic 
correlation between meat and maternal traits had a large 
impact on the genetic gain of both traits. Changes in 
AGG due to correlation were greatest for low heritable 
maternal traits. As a general rule, AGG was increased 
both by optimizing selection designs and including 
genomic information.
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INTRODUCTION

Genomic evaluation (Meuwissen et al., 2001) is 
largely being adopted in dairy cattle breeding programs 
(e.g., Hayes et al., 2009; Lund et al., 2011; Boichard et 

al., 2012). By including genomic information, genomic 
breeding values (GBV) can be estimated accurately 
without having to phenotype the candidates. This 
means that it is now possible to select for traits that are 
expensive or difficult to measure, to select candidates 
early in life, to select females on male traits and vice 
versa, and ultimately to increase the annual genetic 
gain (AGG). Simulation studies reported greater AGG 
with genomic selection (GS) compared with traditional 
selection in dairy cattle (e.g., Schaeffer, 2006; Konig 
and Swalve, 2009), beef cattle (Pimentel and Konig, 
2012), and horses (Haberland et al., 2012). Studies 
using genomic information for the genetic evaluation 
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of small ruminants are emerging (Daetwyler et al., 2012; 
Duchemin et al., 2012) and, to our knowledge, there is 
no published work on the impacts of GS on the genetic 
gain of small ruminant breeding programs. In these 
species, specific factors could limit the AGG obtained 
from GS, mainly because of the lack of enough reliable 
phenotypes to accurately predict GBV, the relatively short 
generation interval, and the high genotyping cost per 
animal. However, with developments in genomics and 
the possible reduction of genotyping costs, GS could also 
be profitable in sheep and goat selection programs in the 
near future.

The aim of this study was to model, optimize, 
and compare the AGG of genomic and conventional 
selection scenarios relevant to 3 real small ruminant 
breeding programs. A medium-sized reference 
population of individual animals was assumed for the 
GS schemes of each breed. Factors that might affect the 
accuracy of genomic prediction were not studied, but 
the deterministic formulas described by Daetwyler et al. 
(2008) and Goddard (2009) were used instead.

MATERIALS AND METHODS

Animal Care and Use Committee approval was not 
obtained for this study as no animals were used. 

In this study, breeding programs currently used 
for meat and dairy small ruminants were modeled 
considering their designs and functionalities to assess 
alternative, optimized, traditional, and genomic 
scenarios.

Breeding Schemes

The different elements of small ruminant breeding 
programs are represented in Fig. 1a. This breeding 
scheme is based on the selection scheme used for the 
Mouton Ile de France breed, a meat sheep breeding 
program that consists of multiple stages of selection and 
uses different sources of information. In a first selection 
stage lambs are selected on average EBV of meat and 
maternal traits of their parents, a second stage consists 
of selecting young rams on their meat records, and, in 
a final stage, rams are selected based on the meat and 
maternal records of their progeny. Figure 1b shows a 
more simplified breeding scheme corresponding to other 
small ruminant breeding programs, such as those used 
for dairy sheep and dairy goats. This simple scheme is 
based on the programs currently used for dairy breeds 
such as the Red Faced Manech (RFM) sheep and the 
Alpine goat. In these selection plans, males are at first 
selected on the average EBV of their parents and then 
selected again after progeny testing. In all breeding 
programs, females are first selected based on the average 

EBV of their parents and, in a second phase, on their 
phenotypes. Technical documents for the concerned 
breeding schemes are available on request.

Breeding Schemes Scenarios

To assess the potential impacts of GS and optimization 
in current sheep and goats breeding programs, we mod-
eled, optimized, and compared 9 scenarios for the meat 
sheep breeding program and 3 scenarios for each of the 
dairy sheep and goat breeding programs, with or without 
genomic information. All scenarios are listed in Table 1 
and described hereafter. Table 1 also gives correspond-
ing sources of information on male selection candidates 
and types of selection for each scenario. For all scenar-
ios, young males and females were considered selection 
candidates based on the breeding values of their parents 
(i.e., average EBV of parents) of corresponding traits (i.e., 

Figure 1. Population structure and selection steps of the studied breeding 
schemes. Full lines indicate mating paths and dotted arrows indicate selection 
based on parent averages (PA), own performance (OP), and progeny testing 
(PT). Male selected categories for the meat breeding program (a) are natural 
service (NS) males, test males (Test), and proven males; Eliteb, Elitem, and 
Elite* to refer to best animals for meat, maternal, and both traits, respectively. 
Selected categories for the dairy breeding programs (b) are NS males, Test, and 
proven males; Elite* and Elite to refer to first and second categories on genetic 
level. Female selected categories are dams of sires (DS) and dams of dams 
(DD) for all breeding programs. These candidates are selected each year to 
renew a proportion of the corresponding total male and female reproducers in 
breeding unit (i.e., nNS, Test, nEliteb, nElitem, and nElite* males for the meat 
breeding program; nNS, Test, nElite, and nElite* males for the dairy breeding 
programs and DS and DD females for each breeding program).
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meat and maternal traits for meat sheep breeding program 
and maternal trait for dairy breeding programs).

Meat Breeding Program: Two-Trait Selection

Selection was performed for meat and maternal traits.
Scenario Class-PT-Culling. This scenario reflects 

the conventional breeding program. Therefore, after 
selection on average EBV of meat and maternal traits 
of parents, young males were selected based on their 
meat records and the final selection step performed with 
independent culling methods on both meat and maternal 
records of the progeny. This method is commonly used 
in French meat breeding programs involving selection 
on meat and maternal traits because data for the meat 
trait are recorded at an earlier stage for the progeny. 
Indeed, when trait records become available at different 
ages or when there are differences in the costs of 
records, then use of independent culling levels may give 
greater aggregate economic return than index selection 
(Ducrocq and Colleau, 1989). This scenario was used as 
a reference for the meat breeding program.

Scenario Class-PT-Index. This scenario used the 
same sources of information as Class-PT-culling, but 
the selection step after progeny testing was performed 
using an index combining progeny records for both meat 
and maternal traits to form a single selection criterion. 
This scenario was used to study the effect of adopting a 
combined selection index in current breeding programs.

Scenario Class-Young. The scenario assumes the 
conventional breeding program without progeny testing. 
After a selection on average EBV of parents for both 
traits, young males were selected based on their meat 
value. Among the selected males, the top best were 
qualified as elite males and used for AI mating; the 
others were qualified as natural service (NS) males. 
This scenario was used to study the effect of lowering 
generation interval and selection accuracy.

Genomic Selection. This was a pure genomic 
selection scenario. Young male selection candidates were 
genotyped and best reproducers selected on their GBV of 
meat and maternal traits at an early age. This scenario was 
similar to the “turbo scheme” proposed for use in dairy 

Table 1. Summary of breeding schemes simulated scenarios
Scenario1 Available information on males Selection stage and modalities2

Meat breed3

Class-PT-culling Meat phenotype on young males
Meat and maternal progeny test records

First on meat phenotype 
Second on independent culling levels on both traits

Class-PT-index Meat phenotype on young males
Meat and maternal progeny test records

First on meat phenotype 
Second on index of both traits

Class-young Meat phenotype on young males 1stage selection, on meat phenotype 
GS Genotypes on young males 1 stage selection, on index of both traits
GS-pheno Genotypes on young males

Meat phenotype on young males
1 stage selection , on index of both traits

GS-PT-culling Genotypes on young males
Meat and maternal progeny test records

First on index of both traits
Second on independent culling levels on both traits

GS -PT-index Genotypes on young males
Meat and maternal progeny test records

First on index of both traits
Second on index of both traits

GS-pheno-PT-culling Genotypes on young males
Meat phenotype on young males

Meat and maternal progeny test records

First on index of both traits
Second on independent culling levels on both traits

GS -pheno-PT-index Genotypes on young males
Meat phenotype on young males

Meat and maternal progeny test records

First on index of both traits
Second on index of both traits

Dairy breeds4

Class-PT-index Progeny test records 1 stage selection, on index
GS-PT-index Genotypes on young males

Progeny test records
First on index

Second on index
GS Genotypes on young males 1 stage selection, on index
1Class-PT-culling: phenotypic selection and progeny testing with independent culling level selection, Class-PT-index: phenotypic selection and progeny 

testing with index selection, Class-young: phenotypic selection without progeny testing, GS: pure genomic selection, GS-pheno: combined genomic and a 
meat phenotype selection, GS-PT-culling: genomic selection and progeny testing with independent culling level selection, GS-PT-index: genomic selection and 
progeny testing with index selection, GS-pheno-PT-culling: combined genomic and a meat phenotype selection and progeny testing with independent culling 
level selection, and GS-pheno-PT-index: combined genomic and a meat phenotype selection and progeny testing with index selection.

2Selection stages listed here were after a selection based on parents breeding values of corresponding traits. This selection was taken into account in the 
proportions contributed by each parent category. 

3For the meat breed, selection targeted to improve meat and maternal values. 
4For the dairy breeds, selection targeted to improve a maternal trait.
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cattle (Buch et al., 2012) to quantify the effect of reducing 
the generation interval and use of genomic information.

Scenario GS-Pheno. Young male selection 
candidates were genotyped and phenotyped for the meat 
trait. Indeed, in meat sheep breeding programs a meat 
phenotype can be recorded before reproduction age. This 
scenario is therefore similar to the GS scenario with an 
additional meat phenotype. This scenario was aimed at 
assessing the usefulness of the genomic selection strategy 
for both traits when a meat phenotype is available from 
an early age.

Scenario GS-PT-Culling. This scenario consisted of 2 
stages of selection and included GS as a preselection step. 
Young males were genotyped and selected on their GBV for 
progeny testing (as for the GS scenario). Then, indepen-
dent culling level methods were used to select proven rams 
(elites) based on progeny test results.

Scenario GS-PT-Index. This scenario also used 
the GS scenario procedures as a preselection step. After 
progeny testing, elite rams were selected using a single 
index that combined meat and maternal records of their 
progeny.

Scenario GS-pheno-PT-Culling. Combined 
GBV of both traits and a meat phenotype were used 
to preselect rams (GS-pheno scenario) for progeny 
testing. After progeny testing, elite rams were selected 
by independent culling levels for both trait values. This 
scenario is similar to GS-PT-culling with an additional 
meat phenotype in the preselection step and to Class-
PT-culling with additional genomic information in the 
preselection step.

Scenario GS-pheno-PT-Index. This scenario used 
same sources of information as GS-pheno-PT-culling, but 
elite rams were selected using index that combine meat and 
maternal progeny records.

For all scenarios that included genomic information, 
the number of genotyped males was either equal to the 
current number of male selection candidates (i.e., 300 
individuals as given in Table 2) or optimized with a 
maximum limit of 500 individuals.

Dairy Breeding Programs: Single-Trait Selection

Conventional breeding programs for RFM dairy 
sheep and Alpine dairy goat breeds were modeled, 
optimized, and compared with alternative genomic 
breeding programs.

Scenario Class-PT-Index. For each breed, this 
scenario was the reference and models the design and 
functionalities of the schemes currently in use. After the 
selection on average EBV of maternal trait of parents, 
males are progeny tested and elite males selected on 
maternal values of their progeny.

Scenario GS-PT-Index. In this scenario genomic 
information was used to preselect candidates for progeny 
testing. After a selection on average EBV of a maternal 
trait of parents, males were genotyped and selected on 
their GBV for progeny testing. Elite males were then 
selected based on maternal values of their daughters. 
This scenario was similar to Class-PT-index in terms of 
generation interval.

Genomic Selection. This was a pure genomic 
scheme. After the selection on average EBV of maternal 
trait of parents, males were genotyped and selected on 
the basis of their GBV. Progeny testing was avoided.

In all genomic scenarios, it was assumed that 500 
male Alpine goat and 1,000 RFM sheep selection 
candidates were genotyped per year. These numbers 
were set in an effort to remain close to the current 
availability of male selection candidates and capacity of 
each breeding program.

Parameter Assumptions

Population parameters and variables used in the 
model are provided in Table 2. Equations describing 
relationships among parameters, decision variables, and 
internal variables of the model and constraints on internal 
variables are also given in Appendix 1. These equations 
describe different elements of the selection process. 
For meat breeding programs, the genetic response was 
predicted for 2 traits: i) a maternal trait (prolificacy) of 
heritability (h2) = 0.09 and repeatability (rep) = 0.12 and 
ii) a meat trait (ADG) of h2 = 0.30. Three levels of genetic 
correlations (ρmb) between the 2 traits were examined: 
ρmb = 0.20, 0.00, or –0.20. In the real practice of this meat 
breeding program it is considered there is no correlation 
between meat and maternal traits. However, small genetic 
correlations between litter size and weaning weight in 
Merino sheep have been reported (Safari et al., 2007). So 
in this study we wanted to explore possible effects that 
small values of genetic correlation can have on AGG. 
To reduce the number of combinations, the phenotypic 
correlation was set equal to the genetic correlation. In 
dairy breeding programs, a milk trait of h2 = 0.30 and rep 
= 0.50 was studied. Decisional variables were optimized 
for fair comparisons between the various alternative 
schemes, but also, results are provided with AI limited 
to its current level of use in breeding units. Indeed, the 
use of AI in breeding programs for small ruminants is 
still limited by many factors, such as its cost and use of 
fresh semen in sheep. Because any optimal AI-related 
parameters described in this study might not easily be 
adopted in practice, we also compared scenarios where 
other decisional variables were optimized but AI restricted.
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Genetic Selection Model

Deterministic methods were used to describe selection 
and predict genetic response. Selected males and females 
were divided into groups based on their sex s (s = 1 for 
males and s = 2 for females), category j (3 to 5 categories 
for males, depending on selection schemes scenario and 
2 categories for females) of different genetic levels, and 
age class l (up to 3 classes for males and up to 4 or 6 for 
females, depending on breeds) at selection. Each year, 
different male categories were qualified depending on 
the selection modalities adopted. For scenarios in which 
selection was carried out using independent culling 
methods, 5 male categories were considered: Elite*, 

Elitem, and Eliteb (to refer to the best males on both 
traits, maternal traits, and meat traits, respectively), Test 
(males in progeny testing), and NS (natural service males, 
which are the last category in genetic level), as shown in 
Fig. 1a. When selection after progeny testing was index 
based, Elite* and Elite (respectively, to refer to the first 
and second category on genetic level basis), Test (males 
in progeny testing), and NS (natural service males) parent 
groups were qualified after selection (Fig. 1b). In scenarios 
without progeny testing, only 3 categories were included 
(Elite*, Elite, and NS) after each selection cycle. Females 
were divided into dams of sires (DS) and dams of dams 
(DD; to refer to first and second categories in genetic 

Table 2. Parameters of the breeding programs studied

 
Parameter

 
Name

Value
Mouton Ile de France RFM1 Alpine

Demographic
No. of recorded females F 14,000 70,000 90,000
Percent of females qualified to be dams of male replacements pF 70% 70% 50%
Age of females when first progeny are born ageF 2.5 2.5 2.5
Age of proven sires when first progeny are born ageAI 3.5 3.0 3.0
Age of NS2 sires when first progeny are born ageNS 1.0 1.0 1.0
Age of test sires when progeny are born ageT 1.0 1.0 1.0
Time units males are kept in service tm 3 3 3
Time units females are kept in service tf 6 4 4
Maximum number of AI doses per proven sire in breeding unit AImax 350 350 700
Effective population size Ne 200 200 200
Base reference population size nref 2,000 2,000 2,000
Genotyped males per year Mg 3003 1,000 500
Survival rate at maturity surL 0.7 0.75 0.7
Stayability of females surF 0.9 0.9 0.9
Stayability of males surM 0.8 0.8 0.8
Fertility with AI ferAI 0.6 0.6 0.6
Fertility with NS ferNS 0.9 0.9 0.9
Prolificacy pr 1.4 1.4 1.8
Sex ratio sr 0.5 0.5 0.5

Genetic
Heritability of meat trait h2 0.3 – –
Heritability of maternal trait h2 0.09 0.3 0.3
Repeatability of maternal trait rep 0.12 0.5 0.5
Genetic SD σa 1 1 1
Correlation between the 2 traits ρmb 0.2 or 0.0 or –0.2 – –

Decisional variable4

Male selection candidates Ms 300 – –
Males to be progeny tested/year Test 20 150 40
No. of progeny/test sire5 nT 20 30 80
Total elite sires in breeding unit nElite ~40 ~110 ~60
Natural service sires in breeding unit nNS ~300 ~300 ~1,500
Quantity of AI as % of recorded females pAI ~35% ~47% ~40%
Economic weights between traits w 0.5 – –
1RFM = Red Faced Manech.
2NS = Natural Service.
3The number of genotyped males of Mouton Ile de France breed was always equal to male selection candidates (Ms).
4Decisional variables were optimized to guarantee a fair comparison of alternative selection scenarios.
5Only 1 record was considered per paternal half-sib.
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level, respectively). These subdivisions were considered 
to reflect the genetic heterogeneity currently observed for 
reproducers in breeding units. To emulate current practice, 
males were selected considering a single selection cycle 
per generation whereas females were reclassified every 
year on the basis of their EBV, a unique truncation point 
being used across a multiple normal distribution of female 
genetic levels for different age classes.

The genetic superiority of a selected male category 
at each selection stage was calculated as

11 1 jljl jl IH ai rµ = σ ,

in which 1 jli  is the selection intensity, 
1 jlIHr  is the 

correlation between index (I) and breeding goal (H) for 
the selection of males belonging to category j and age 
class l, and aσ is the standard deviation of the breeding 
values. Within a given category, all males were assumed 
to have the same age at selection. Therefore, l was 
always 1 for selected males.

Selection Intensity

Selection intensities were obtained for males after each 
selection stage via integration of a truncated univariate (for 
single trait or index) standard normal distribution:

( ) ( ) ( )1/22
1 1 1exp 0.5 / 2 / 1/j j ji T q = − π  , with 

( ) 2

1

1/2 0.5
1 1/ 2

j

x
j T

q e dx
∞ − = π ∫ ,

in which T1j is the single trait or index threshold above 
which category j males were kept. For 2-trait independent 
culling selection, a standard bivariate normal distribution 
(SBN) was used:

( )
1 1

1 1SBN , , /
m j b j

j bm jT T
i x y dxdy q

∞ ∞ = ρ  ∫ ∫ , with 

( )
1 1

1 ,
m j b j

j T T
q f x y dxdy

¥ ¥
= ò ò ,

in which Tb1j and Tm1j are truncation points of the joint 
distribution of meat (b) and maternal (m) genetic values, 
q1j is the proportion selected, and ρbm is the correlation 
between meat and maternal traits. Functions C05ADF and 
D01AMF of the NAG (Numerical Algorithms Group Ltd., 
Oxford, UK) library were used for accurate numerical 
integration of normal distributions. The selection intensity 
of any subsequent selection events was calculated based 
on the proportion selected at that stage and taking into 
account the reduction in genetic variance due to previous 
selection steps.

Females were evaluated on their own phenotypes and 
selected after the optimal rule selection scheme proposed 
by Bichard et al. (1973) and Elsen and Mocquot (1976). 

With this method, animals are selected with a unique 
truncation point across multinormal distributions of their 
breeding values. This method maximizes the genetic 
superiority of selected parents, considering that animals 
of younger age classes are genetically superior to older 
animals but known with a lower precision. The average 
superiority of each female category (i.e., DS or DD) was 
calculated as

22 2 2 2jljl jl jl IH jl
l

i rµ = γ σ∑ ,

in which the summation includes all age classes l, γ2jl 
is the contribution of age class l, i2jl and 

2 jlIHr  are the 
selection intensity and accuracy for the selection of 
females of category j and age class l, and 2 jlσ  is the 
genetic standard deviation of the corresponding female 
category, corrected for genetic reduction due to previous 
selection on age class.

Selection Accuracy

The correlation between I and H (rIH) was calculated 
using selection index methods including either phenotypic 
or genomic information or both. The methodology 
described by Dekkers (2007) that combines phenotypic 
and genomic information via selection index theory was 
used. With this method, genomic information is included 
as a trait with a heritability of 1 (i.e., the repeatability of 
SNP information) and genetic correlation to the selection 
criterion is determined by its prediction accuracy (rGBV). 
Genomic prediction accuracies were calculated using the 
formula described by Daetwyler et al., (2008).

rGBV = {nref × [h2/(nref × h2 + Me)]}1/2, 

in which Me = 2NeL/log(4NeL) is the number of effective 
genome segments (Goddard, 2009), which depends on the 
effective population size of the considered population (Ne) 
and the genome length in morgans (L), nref is the number 
of animals forming the reference population, and h2 is the 
heritability of the trait. The use of h2 in the above formula 
means that genotyped animals in the reference population 
also had their own phenotypes.

The breeding goal was H = (BVb, BVm)w when ap-
plying an index selection on 2 traits, in which BVb and 
BVm are the breeding values of meat and maternal traits, 
respectively, and w is a vector of weights. It must be 
emphasized that these weights were not the economic 
weights classically defined in the selection index theory 
but technical weights to be optimized to maximize the 
overall (on 2 traits) genetic progress created by the se-
lection scheme. Indeed, in this situation with 2 traits, the 
objective function was a linear combination of the genet-
ic progress of both traits weighted by economic weights 
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(α). This objective function depended on a number of 
decisional variables to be optimized to give a maximum 
overall genetic gain. Depending on the selection scheme 
and available information sources (Table 1), the index, l, 
included genomic values, phenotypes, or both sources of 
information for male selection candidates. Females were 
evaluated on their own repeated phenotypes.

Following standard selection index procedures, 
genetic and genomic parameters for individual selection 
candidates or their progeny were used to set up matrices 
P, G, and C. Matrix P was the variances and covariances 
matrix between all components of the selection index for 
the given scenario (e.g., I = (Pb, GBVb, GBVm)b for the 
GS-pheno scenario), G was the matrix of variances and 
covariances between these components of the selection 
index and the additive genetic values for the traits in the 
breeding goal, and matrix C contained genetic variances 
and covariances between all traits in the breeding goal. 
When the type of information in the index was only 
phenotypes, elements of P and G were calculated as a 
function of phenotypic and genetic parameters of the 
traits, as described by Hazel (1943). When information 
sources in the index included GBV, elements of P and G 
matrices were computed as described by Dekkers (2007). 
Then, the vector b of index coefficients, the variance of 
the breeding goal, 2

Hσ  = w′Cw, the variance of the index, 
2
Iσ  = b′Gw, and the selection accuracy of each trait, rI,BV 

= cov(BV, I/σBVσI), were calculated for each scenario.
The AGG of all 4 selection paths p (MM, MF, FM, 

and FF for males to males, males to females, females 
to males, and females to females, respectively) for each 
trait was then calculated as

AGG = ΣpΣjcsjlpμsjl/ΣpΣjcsjlpLsjl, 

in which summations included selection paths p and 
selected category j, csjlp is the fraction contributed by 
animal category j of sex s and age class l to selection path 
p, and μsjl and Lsjl are corresponding genetic superiority 
and average age, respectively.

Accounting for Variance Reduction

Selection reduces genetic variance and thus 
reduces genetic gain in subsequent generations due 
to the “Bulmer effect” (Bulmer, 1971). To account for 
this variance reduction and consequences on genetic 
response, the AGG was predicted, as proposed by Pryce 
et al., (2010), by averaging the genetic response over 10 
generations corrected for variance reduction after each 
cycle of selection. In generation t, the variance of a 
selected category (sjl) was calculated as

( )2* 2 2
, , 1 jlsjl t sjl t IHr Kσ = σ − , 

in which 2
,sjl tσ  is the genetic variance before selection and 

2*
,sjl tσ  after selection of group sjl in generation t, 2

jlIHr  is the 
selection accuracy, and K is a variance reduction factor. 
The above formula of Bulmer (1971) was extended to 
the different selection modalities used in the breeding 
programs studied here. Because candidate groups within 
each sex have different genetic levels, the variance of 
selected parents contributing to each selection path (p) 
was calculated accounting for the variability of both 
means and variances of categories contributing to the 
corresponding path:

2

2* 2* 2
, ,p t sjlp sjl t sjlp sjl sjlp sjl

jl jl jl
c c c

 
σ = σ + µ − µ 

 
∑ ∑ ∑ ,

in which summation is over selected category j and age l 
contributing to pth selection path, 2*

,p tσ  is the variance of 
selected parents of pth path, csjlp is the contribution of 
category sjl to that pth selection path, and 2*

,sjl tσ  and μsjl are, 
as defined previously, the variance and genetic superiority 
of the selected group sjl, in generation t, respectively. 
Hence, the genetic variances in newborns of the subsequent 
generation are the assembled genetic variances of selected 
parents and Mendelian-sampling variance:

( ) ( )2 2* 2* 2
1, 1 , , / 4 / 2t MM t FM t a+

 σ = σ + σ + σ   and 

( ) ( )2 2* 2* 2
2, 1 , , / 4 / 2t MF t FF t a+

 σ = σ + σ + σ  , 

in which 2
1, 1t+σ  and 2

2, 1t+σ  are the variances of male 
and female progenies, respectively, and 2 / 2aσ  is the 
Mendelian-sampling variance, which is estimated 
to be equal to one-half of the genetic variance of the 
unselected population.

Optimization

The objective function to be maximized was the 
total genetic gain for a considered selection criterion. It 
was laid out as

Maximizing AGGtot(x) = αb.AGGb(x) + 
αm.AGGm(x), subject to xl ≤ x ≤ xu constraints

in which x is a vector of decision variables (initial values 
given in Table 2), xl and xu are the lower and upper limits 
of constraints, respectively, and αb and αm are the weights 
given to the genetic progress of meat and maternal traits, 
respectively, in the overall genetic gain. AGGtot is the 
total annual genetic gain, and AGGb and AGGm are the 
annual genetic gains for the meat and maternal traits, 
respectively. Vector [αb, αm] was first given values [1, 
1] and then varied to assess the stability of the function 
in different scenarios. In single-trait situations, such 
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as found in dairy breeds, AGGtot(x) = AGG(x) without 
α weight. The E05JBF subroutine of the NAG library 
was used to maximize the above function. It is designed 
to find a global minimum or maximum of an arbitrary 
function, subject to simple bound constraints using a 
multilevel coordinate search method.

RESULTS

Predicted Genetic Gain in Current and Optimized 
Schemes

The expected AGG in current and optimized 
conventional and genomic breeding programs is given 
in Table 3 for meat breed and in Table 4 for dairy breeds. 
All results presented in this paper are the averages 
of 10 generations of selection taking into account the 
Bulmer effects on genetic progress. In the GS scenarios, 
a medium-sized reference population (nref = 2,000) of 
genotyped and phenotyped individuals and Ne = 200 
were used to calculate the rGBV. A fair comparison of GS 
and classic selection scenarios must be based on same 
optimal conditions. As the current use of decisional 
variables of the studied breeding programs may not be 
optimal, comparisons were performed with currently 
used and optimized decisional variables.

Meat Breeding Program

In its current form, the breeding program for the meat 
breed “Mouton Ile de France” is expected to give an annual 
genetic gain of 0.095 genetic standard deviation (σa) for 
the meat trait and 0.061 σa for the maternal trait. These 
results are very low compared with the dairy breeding 
programs modeled in this study or to the gains commonly 
predicted in dairy cattle. Indeed, as previously mentioned, 
breeding programs for small ruminants, especially meat 
sheep, involve inherent factors that limit genetic gains 
(e.g., few animals per breeding unit, limited use of AI, 
low capacity of progeny testing) and also have less than 
optimal designs. As explained above, these designs should 

be optimized to guarantee a fair comparison of alternative 
schemes. Table 3 shows that optimizing designs (current 
to optimized) significantly increased genetic gain in all 
scenarios for both meat and maternal traits. The greatest 
increase was observed in the reference scenario, Class-
PT-culling, where the genetic gain was increased by 
57.4% for the meat trait and 46.3% for the maternal trait. 
Optimization of design led to an improvement of genetic 

Table 3. Annual genetic gain for meat (AGGb) and 
maternal (AGGm) traits for different scenarios of the 
meat breeding program

Selection scheme 
scenario1

Current2 Optimized_AI3 Optimized4

AGGb AGGm AGGb AGGm AGGb AGGm
Class-PT-culling5 0.095 0.061 0.121 0.087 0.139 0.096
Class-PT-index 0.112 0.072 0.126 0.094 0.143 0.108
Class-young 0.113 0.046 0.135 0.047 0.140 0.043
GS 0.115 0.091 0.143 0.102 0.151 0.097
GS-pheno 0.146 0.093 0.169 0.098 0.173 0.095
GS-PT-culling 0.102 0.084 0.117 0.089 0.141 0.096
GS-PT-index 0.113 0.095 0.131 0.115 0.146 0.123
GS-pheno-PT-culling 0.108 0.097 0.126 0.102 0.130 0.120
GS-pheno-PT-index 0.121 0.093 0.139 0.119 0.151 0.126

1Class-PT-culling: phenotypic selection and progeny testing with 
independent culling level selection, Class-PT-index: phenotypic selection 
and progeny testing with index selection, Class-young: phenotypic selection 
without progeny testing, GS: pure genomic selection, GS-pheno: combined 
genomic and a meat phenotype selection, GS-PT-culling: genomic selection 
and progeny testing with independent culling level selection, GS-PT-index: 
genomic selection and progeny testing with index selection, GS-pheno-PT-
culling: combined genomic and a meat phenotype selection and progeny 
testing with independent culling level selection, and GS-pheno-PT-index: 
combined genomic and a meat phenotype selection and progeny testing with 
index selection.

2Decisional variables are those used in current breeding programs except 
for genomic information

3Decisional variables were optimized but AI was limited to its current level 
of use in the breeding unit. Optimized_AI: the use of AI is not optimized.

4No restriction on AI.
5The Class-PT-culling was used as a reference scenario. There was no 

genetic correlation between meat and maternal traits. For genomic scenarios, 
the rGBV was calculated using Ne = 200, a genome size of 27 Morgan, and 
nref = 2,000. Ne = effective population size; rGBV = the genomic prediction 
accuracy; nref = reference population size.

Table 4. Annual genetic gain for different scenarios of the Red Faced Manech (RFM) sheep and Alpine goat breeding programs

Selection scheme 
scenario1

RFM Alpine
Current2 Optimized_AI3 Optimized4 Current2 Optimized_AI3 Optimized4

Class-PT-index 0.147 0.167 0.174 0.120 0.173 0.183
GS-PT-index 0.205 0.217 0.221 0.176 0.193 0.216
GS 0.248 0.254 0.264 0.207 0.223 0.231

1 Class-PT-index: phenotypic selection based on progeny tests records and with index selection, GS-PT-index: genomic selection and progeny testing with 
index selection and GS: pure genomic selection.

2Decisional variables were those used in current breeding programs except for genomic information.
3Decisional variables were optimized but the AI was limited to its current level of use in the breeding unit. Optimized_AI: the use of AI is not optimized.
4No restriction on AI. The genomic prediction accuracy (rGBV) was calculated based on Ne = 200, nref = 2,000, and a genome size of 27 Morgan for RFM 

and 30 Morgan for Alpine. Ne = effective population size; nref =reference population size.
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gain in all meat-breeding scenarios of over 20% for the 
meat trait and 14% for the maternal trait, except in 2 
scenarios where the increase for the maternal trait was 
of less than 7% (i.e., GS and GS-pheno scenarios). It is 
also important to note that similar trends were observed 
by optimizing designs without modifying the rate of AI 
[Current to Optimized_AI (all decisional variables are 
optimized except the number of doses of AI); Table 3]. 
This suggests that genetic gain can be improved without 
increasing the amount of AI used in a breeding unit [i.e., 
by optimizing parameters such as the number of male 
selection candidates, male progeny tested, progeny group 
size, elite males, and technical weights of the selection 
index (wb, wm)].

The comparison of the genetic gains obtained with 
different scenarios using optimized parameters showed 
that including genomic information generally provided 
greater overall AGG. The combined genetic gain in both 
traits (AGGb + AGGm) was greater by approximately 14% 
for GS-pheno and GS-PT-index and 17% for GS-pheno-
PT-index as compared with the reference scenario (Class-
PT-culling). The increase was, however, of less than 7% 
for the other scenarios. Similar trends were observed when 
comparing scenarios with limited AI, but the superiority of 
genomic schemes was slightly greater. For individual traits, 
increases were of up to 24.4% for the meat trait (Class-
PT-culling vs. GS-pheno) and 31.2% for the maternal trait 
(Class-PT-culling vs. GS-pheno-PT-index). However, the 
genetic gains were slightly reduced for the maternal trait 
with the “GS-pheno” scenario and for the meat trait with 
the “GS-pheno-PT-culling” scenario. When the size of 
the reference population was over 2,000 individuals, the 
trait and combined genetic gain of all genomic scenarios 
were superior to conventional scenarios (Fig. 2). Using the 
same information sources, the combined genetic gain was 
greater when index selection methods were used than with 
independent culling level methods.

Dairy Breeding Programs

Results for the 2 dairy breeding programs are 
shown in Table 4. The selection plan for the RFM sheep 
breed as it is designed and used today is expected to 
give a predicted annual genetic gain of 0.147 σa (for 
a milk trait of h2 = 0.30 and a repeatability of 0.50). 
Comparisons based on optimized schemes showed that 
the genetic gain was significantly increased by including 
genomewide information: up to 26.9% for the GS-PT-
index scenario where genomic information was used to 
preselect candidates for progeny testing and 51.7% for 
the pure GS scenario where selection of elite rams was 
exclusively based on genomic information and progeny 
testing avoided. The results for the breeding program of 
“Alpine” dairy goats showed a similar trend, with use 

of genomic information increasing the genetic gain by 
18.6% for the GS-PT-index scheme and 26.2% for the 
pure GS scheme (Table 4). Trends were similar when 
scenarios were compared with limited AI. Optimizing 
the designs increased the genetic gain for all scenarios 
and both breeds. The increase was greatest for the 
conventional scenario where AGG increased by 18.4% 
for RFM sheep and by 52.5% for Alpine goats (i.e., from 
0.147 σa to 0.174 σa for RFM sheep and from 0.120 σa 
to 0.183 σa for Alpine goats). These theoretical results 
are relatively close to the realized genetic gains in these 
breeding programs. In the RFM breeding program, the 
AGG of milk yield was calculated at 4.33 kg/yr, which 
is equivalent to 0.173 σa (Astruc et al., 2002). In the 
Alpine breeding program, the AGG of milk yield was 
reported to be 8.63 kg/yr, which is equivalent to 0.122 
σa (Montaldo and Manfredi, 2002).

Figure 2. Effect of reference population size on the annual genetic gain 
(AGG) of the meat breeding program. (a) Gains on meat trait and (b) gains 
on maternal trait. Different lines indicate different scenarios at the optimized 
variables: GS = pure genomic selection, GS-pheno = combined genomic 
and a meat phenotype selection, GS-PT-index = genomic selection and 
progeny testing, and Class-PT-culling = conventional selection. For genomic 
scenarios, the genomic prediction accuracy (rGBV) was calculated considering 
Ne = 200 and a genome size of 27 Morgan.
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Effect of Reference Population Size

The effects of reference population size on the annual 
genetic gain of the meat and dairy breeding programs are 
presented in Fig. 2 and 3, respectively. As expected, the 
results show that the genetic response increases with the 
size of the reference population in all scenarios in which 
genomic information was included. In all breeds, the 
change in genetic gain obtained by increasing the size 
of the reference population was substantially larger for 
the scenario where selection depended only on genomic 
information (i.e., the GS scenario). In all scenarios 
increasing the reference population size resulted in a 
diminishing return increase of genetic gain; this was 
particularly the case for scenarios using both phenotypic 
and genomic information (e.g., GS-pheno, GS-PT-
index scenarios). At the reference population size of 
1,000 individuals in dairy and 2,000 individuals in meat 
breeding programs, genomic scenarios outperformed 
conventional scenarios.

Effects of Correlation between Meat and Maternal 
Traits

The results presented in Table 5 show that genetic 
correlations between traits greatly impact the genetic 
gain for all scenarios. For both traits the AGG changed 
consistently along with the genetic correlation, being the 
most strongly impacted maternal traits. This is usually 
due to correlated response that could be greater for a 
trait with less informative information sources (e.g., low 
heritability and/or less information included in index). 
When comparing the relative gain of different scenarios 
(Table 5) to that of the reference, a high sensitivity to 
correlations was found for all scenarios. A negative 
genetic correlation had the largest effect on the scenarios 
ranking, being the most affected the scenario in which 
an early meat phenotype was combined with genomic 
information was the most affected (GS-pheno).

Effects of Economic Weights on Genetic Gain

To test the stability of the results against economic 
weights, we analyzed the effect of economic weights in 
the objective function on the total genetic gain of the 
Mouton Ile de France breed. Results in Table 6 show 
that changes to these weighting parameters affected 
the total genetic gain but that the rank and relative 
differences between alternative breeding programs were 
not significantly changed.

DISCUSSION

The objective of this study was to predict the 
potential benefits of genomic selection on the genetic 
gain that can be expected in breeding programs for 
small ruminants. Selection targeted to improve 2 traits 
in meat sheep breed and a single trait in both dairy 
sheep and goat breeds. Comparisons of alternative 
conventional and genomic selection strategies were 
based on the AGG. For genomic schemes, a medium-
sized reference population was considered to calculate 
genomic prediction accuracies. The effects of reference 
population size on the genetic gain were also evaluated. 
All selection scenarios were optimized to ensure 
comparisons were fair.

The Selection Model

The model was developed to be flexible to include 
the various components of the selection strategies as 
observed in actual small ruminant breeding programs. It 
took into account overlapping generations and included 
single- and 2-stage selections for males and selection of 
females across age classes with a unique truncation point 
across multinormal distributions of their breeding values. 

Figure 3. Effect of reference population size on the annual genetic gain 
(AGG) of dairy breeding programs. (a) Red Faced Manech (RFM) sheep 
breeding program and (b) Alpine breeding program. Different lines indicate 
different scenarios: Class-PT-index = conventional selection, GS-PT-index = 
genomic selection and progeny testing, and GS = pure genomic selection. 
Genomic prediction accuracy, rGBV, was calculated using Ne = 200 and a 
genome size of 27 Morgan for RFM and 30 Morgan for Alpine breeds. 
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Therefore, genetic variance changes after each selection 
step and generation, and this affects genetic response. 
In all conventional and genomic scenarios, the Bulmer 
effect was accounted for to avoid incorrect ranking of 
selection strategies. Indeed, selection intensities and 
accuracies varied among scenarios and the Bulmer 
effect was estimated as a function of selection accuracy 
and intensity (Bulmer, 1971). The GBV prediction 
accuracies (rGBV) used here were calculated as suggested 
by Daetwyler et al. (2008) and Goddard (2009). Using 
these methods, rGBV is greatest when Ne and genome 
size are small and the reference population size is big. 
Published studies on genetic diversity in sheep (Huby 
et al., 2003; Palhiere et al., 2008; Garcia-Gamez et al., 
2012) and goat (Araújo et al., 2006; Ribeiro et al., 2012) 
breeds have shown that small ruminant populations are 
heterogeneous and display high effective population 
sizes compared with most selected cattle breeds. This 
is positive for the long term selection response but, with 
the methods used here, negatively affects the genomic 
prediction accuracies. Also, these methods (Daetwyler 
et al., 2008; Goddard, 2009) assume the reference and 
validation populations are not closely related, which 
could underestimate the genomic prediction accuracy. 
Indeed, genomic evaluation studies have shown that 
GBV are more accurate when selection candidates are 
closely related to the reference population (Habier et al., 
2007, 2010).

The optimization procedures used here maximized 
the AGG by optimizing, within certain limits, the number 
of young male selection candidates, tested males, progeny 
group size, use of AI, numbers of selected males (elites 
and NS), and relative weights in the breeding goal. 

The results obtained here confirm the need to optimize 
designs; as compared with the expected level for current 
practices, AGG was greatly increased for all scenarios 
by optimization. The greatest increases were recorded 
for conventional selection methods, where AGG was 
increased by 50.6% in meat sheep, 18.4% in dairy sheep, 
and 52.5% in dairy goats. Indeed, in meat sheep the increase 
of AGG obtained by optimization was nearly equivalent to 
the increase that the use of genomic information can offer 
with current decisional variables. Our results highlight i) 

Table 5. Annual genetic gain for meat (AGGb) and maternal (AGGm) traits and relative gain (RG) on combined traits 
(%) compared with the reference scheme (Class-PT-culling) for genetic correlations(ρmp) = 0.0 or –0.2 or 0.2) and 
different breeding scenarios

Selection scheme 
scenario1

ρmb = – 0.20 ρmb = 0.00 ρmb = 0.20
AGGb AGGm RG (%) AGGb AGGm RG (%) AGGb AGGm RG (%)

Class-PT-culling 0.106 0.066 100 0.121 0.087 100 0.137 0.102 100
Class-PT-index 0.118 0.052 99 0.126 0.094 106 0.149 0.106 107
Class-young 0.124 0.019 83 0.135 0.047 88 0.149 0.072 92
GS 0.123 0.045 98 0.143 0.102 118 0.176 0.139 132
GS-pheno 0.113 0.025 80 0.169 0.098 128 0.203 0.221 177
GS-PT-culling 0.095 0.056 88 0.117 0.089 99 0.143 0.111 106
GS-PT-index 0.107 0.088 113 0.131 0.115 118 0.155 0.138 123
GS-pheno-PT-culling 0.089 0.057 85 0.126 0.102 110 0.15 0.168 133
GS-pheno-PT-index 0.114 0.094 121 0.139 0.119 124 0.162 0.139 126

1Scenarios were compared with optimized decisional variables, but limited AI. The genomic prediction accuracy (rGBV) was calculated considering effective 
population size (Ne) = 200, a genome size of 27 Morgan, and reference population size (nref) = 2,000. Class-PT-culling: phenotypic selection and progeny testing 
with independent culling level selection, Class-PT-index: phenotypic selection and progeny testing with index selection, Class-young: phenotypic selection 
without progeny testing, GS: pure genomic selection, GS-pheno: combined genomic and a meat phenotype selection, GS-PT-culling: genomic selection and 
progeny testing with independent culling level selection, GS-PT-index: genomic selection and progeny testing with index selection, GS-pheno-PT-culling: 
combined genomic and a meat phenotype selection and progeny testing with independent culling level selection, and GS-pheno-PT-index: combined genomic 
and a meat phenotype selection and progeny testing with index selection.

Table 6. Sensitivity of the objective function to economic 
weights of meat and maternal traits in the overall genetic gain

Selection scheme 
scenario1

Superiority to reference (%)
αm/αb2 = 1.5/0.5 αm/αb = 1/1 αm/αb = 0.5/1.5

GS-PT-culling –10.63 –0.96 2.00
Class-PT-culling3 0.00 0.00 0.00
Class-PT-index –3.38 5.77 6.00
GS-pheno-PT-culling 5.31 9.62 9.00
GS 8.21 17.79 15.00
GS-PT-index 13.53 18.27 19.50
GS-pheno-PT-index 16.91 24.04 21.00
GS-pheno 17.39 28.37 27.50

1GS-PT-culling: genomic selection and progeny testing with independent 
culling level selection, Class-PT-culling: phenotypic selection and progeny 
testing with independent culling level selection, Class-PT-index: phenotypic 
selection and progeny testing with index selection, GS-pheno-PT-culling: 
combined genomic and a meat phenotype selection and progeny testing 
with independent culling level selection, GS: pure genomic selection, GS-
PT-index: genomic selection and progeny testing with index selection, GS-
pheno-PT-index: combined genomic and a meat phenotype selection and 
progeny testing with index selection, and GS-pheno: combined genomic and 
a meat phenotype selection.

2The αb and αm are economic weights of meat and maternal traits, 
respectively, considered in the objective function.

3The reference scenario with which the relative change was compared.
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the suboptimality of current breeding programs and ii) 
the importance of using meat phenotypes recorded at an 
early age in the selection criteria. In principle, the model 
developed herein could be extended to include selection 
in finite populations, rate of inbreeding, and the economic 
aspects of breeding strategies.

Genetic Gain

In the meat breeding program, where 2 traits were 
improved, genomic information increased AGG by 1 to 
17.9% depending on the scenario. Genomic scenarios 
were most efficient when a meat phenotype was combined 
with genomic information to select or preselect elite sires, 
except when selection was performed using independent 
culling levels. When optimized designs were compared, 
the purely GS was only 5.5% superior to conventional 
selection. This demonstrates the importance of a 
phenotype, in situations where it is recorded at an early 
age and when the reference population is small (nref 
= 2,000). Our results are consistent with the decreased 
performance of independent culling methods compared 
with index (Hazel and Lush, 1942). For all scenarios 
of the meat breeding program, genomic superiority 
was less than that reported in dairy cattle studies (e.g., 
Schaeffer, 2006; Konig and Swalve, 2009; Pryce et al., 
2010) mainly due to some limitations in population 
parameters such as few individuals in breeding units, 
low use of AI, and small progeny testing capacity, which 
negatively affect selection intensity and accuracy.

In dairy sheep and goat breeding programs, when 
parameters were optimized, the benefits of including 
genomic information reached 51.7% for dairy sheep 
and 26.2% for dairy goats. The superiority of genomic 
schemes was mainly due to low generation interval 
and use of genomic information to preselect progeny 
test males, a step that is not available in conventional 
selection. The increase in AGG was greatest when 
progeny testing was eliminated, which means the 
benefits of short generation interval are greater than the 
losses in low accuracy. This is in line with the results 
reported for dairy cattle where progeny testing was 
eliminated (e.g., Schaeffer, 2006; Konig and Swalve, 
2009; Pryce et al., 2010; Egger-Danner et al., 2012). 
The 51.7% increase in AGG for RFM sheep was close 
to the genomic benefits reported in these dairy cattle 
studies but not as high as results reported by Schaeffer 
(2006). Indeed, unlike in our study, Schaeffer (2006) 
considered genomic information in the female to male 
selection path, greater reduction in generation interval, 
and greater genomic accuracy. The rGBV corresponding 
to nref = 2,000 used here was relatively small compared 
with that used in dairy cattle genomic evaluation studies, 
either by simulation (Meuwissen et al., 2001) or with 

real data (VanRaden et al., 2009). It could, however, be 
realistic in small ruminants (Duchemin et al., 2012).

When rGBV was increased via the increase of 
individuals in the reference population, genomic 
superiority clearly increased in all scenarios. Also, the 
importance of phenotypic information and preselection 
for progeny testing decreased when the size of the 
reference population increased.

The genetic gain for meat and maternal traits was very 
sensitive to their genetic correlation, especially for the 
maternal trait. This could be due to disparity in heritabilies 
between the 2 traits. Indeed, a study on the efficiency of 
genomic selection on net merit (Togashi et al., 2011) 
reported that the efficiency was affected by heritability, 
correlations, and genetic variance ratio between traits. 
This could be the reason why the choice of best scenario 
was affected when the maternal trait had very low 
heritability compared with the meat trait in the present 
study. Whether selection is conventional or genomic, our 
results show the importance of having accurate genetic 
parameter estimates for multitrait selection.

In this study, only male selection candidates were 
genotyped because we assume, due to the cost of 
genotyping and the value of reproducers, that the first 
attempts to use genomic selection in small ruminants 
will prioritize males. Indeed, a recent study describing 
a genotyping strategy for genomic selection by Henryon 
et al. (2012) found that only genotyping male candidates 
brings most of the benefits expected from genomic 
selection.

To conclude, AGG in all scenarios was increased 
by optimization of decisional variables and including 
genomic information. However, these benefits remain on 
the technical aspects. So further studies should evaluate the 
monetary inputs and outputs of these selection strategies.
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Appendix 1. 

Relationships between parameters and decision 
variables and contributions of each reproduction catego-
ry to male and female progenies. Appendix Table 1 of 
this appendix contains simple equations that associate 
the parameters and decisional variables given in Table 2 
of this article. Appendix Table 2 shows how parent con-
tributions were calculated.
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Appendix Table 1. Relationships among the various parameters and variables used in the model
Dependant variable Name Formulation1

Male replacement rate rm rm = 1/∑tmsurMtm

Female replacement rate rf rf = 1/∑tfsurFtf 
Number of females/male replacement cm cm = 1/(ferAI × pr) × surL × sr 
Number of females/female replacement cf cf = 1/[ferAI × pAI + ferNS × (1 – pAI)] × pr × surL × sr 
Number of proven sires/year Elite Elite = nElite × rm 
Number of NS2 sires/year NS NS = nNS × rm 
Number of females to replace/year renF renF = F × rf 
Amount of AI used for progeny testing AItest AItest = nT × [Test/(ferAI × pr × surL × sr)] 

Females used for progeny testing  Ftest AItest = Ftest ≤ F × pAI 
AI used for production AIp AIp = (F × pAI) – AItest 
Number of mating females/year repF repF = renF × cf 
Mating dams of males/year DS DS = Ms × cm 
Mating dams of females/year DD DD = repF – DS 
Selected fractions are function of selected over  
available candidates within each selection group

 qx 0 < qx < 1

Proportion of females selected as dams of males qDS qDS = DS/(F × pF)
Proportion of females selected as dams of females qDD qDD = DD/F
Proportion of males progeny tested qTest

 qTest = Test/(Ms × surM)
Proportion of males selected as NS sires qNS

 qNS = nNS/(MS × surM)
Proportion of proven sires qElite qElite = Elite/(Test × surM) 
Progeny testing capacity is limited by females and AI available nT × Test × cf < F × pAI 
Amount of AI per elite sire used in breeding unit,  
depended on AI capacity and was limited by AImax

AIElite AImax ≥ AIElite = (F × pAI – AItest)/nElite 

1tm and tf = time units males and females are kept in service, respectively; surM and surF = stayability of males and females, respectively, in breeding unit; surL = 
survival rate at maturity; ferAI and ferNS = fertility with AI and with natural service, respectively; pr = prolificacy; sr = sex ratio; pAI = quantity of AI as percent of 
recorded females; nElite = total elite sires in breeding unit; nNS = total number of natural service sires in breeding unit; F: number of recorded females; nT = number 
of progeny/test sire; Test = males to be progeny tested/year; Ms = male selection candidates; pF = percent of females qualified to be dams of male replacements; 
AImax = maximum number of AI doses per elite sire in breeding unit.

2NS = Natural Service.

Appendix Table 2. Proportions contributed by each parent category1

Description2 Formulation3

Contribution of each Elite group to male–male selection path cElite,MM = (AIElite × nElite)/(MS × cm); 0 ≤ cElite,MM ≤ 1

Contribution of each Elite group to male–female selection path cElite,MF = (AIElite × nElite)/(renF × cf); 0 ≤ cElite,MF ≤ 1

Contribution of test sires to MM selection path ctest,MM = (Test × nT)/(Ms × cm); 0 ≤ ctest,MM ≤ (1 – cElite,MM)

Contribution of test sires to MF selection path ctest,MF = (Test × nT)/(renF × cf); 0 ≤ ctest,MF ≤ 1

Contribution of NS sires to male progeny cNS,MM = 1 – (cElite,MM + ctest,MM); 0 ≤ cNS,MM ≤ 1

Contribution of NS sires to female progeny cNS,MF = 1 – (cElite,MF + ctest,MF); 0 ≤ cNS,MF ≤ 1

Contribution of DS to female–male selection path cDS,FM = DS/(Ms × cm); 0 ≤ cDS,FM ≤ 1 

Contribution of DS to female–female selection path cDS,FF = DS/(renF × cf); 0 ≤ cDS,FF ≤ 1

Contribution of DD to FM selection path cDD,FM = DD/(renF × cf); 0 ≤ cDD,FM ≤ (1 – cDS,FM)

Contribution of DD to females cDD,FF = DD/(renF × cf); 0 ≤ cDD,FF ≤ (1 – cDS,FF)

Total contribution within selection path 1slp
l

c =å ; summation includes all parent categories contributing to the selection path

1The contribution (cslp) of any selected parents of sex s and genetic level l to a corresponding selection path p depends on their reproductive capacity and is limited by the 
contributions of other parent categories of the same sex but of superior genetic level.

2Elite = best males of genetic level;DS and DD = first and second best female categories on genetic level; MM, MF, FM and FF for males to males, males to females, females 
to males and females to females selection paths, respectively.

3AIElite = amount of AI per elite sire used in breeding unit; nElite = total number of elite sires in breeding unit; Ms = male selection candidates; cm = number of females/male 
replacement; renF = number of females to replace/year; cf = number of females/female replacement; Test = males to be progeny tested/year; nT = number of progeny/test sire.


