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Sequence Evolution and Expression Regulation of
Stress-Responsive Genes in Natural Populations of Wild
Tomato
Iris Fischer*¤a, Kim A. Steige¤b, Wolfgang Stephan, Mamadou Mboup¤c

Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany

Abstract

The wild tomato species Solanum chilense and S. peruvianum are a valuable non-model system for studying plant
adaptation since they grow in diverse environments facing many abiotic constraints. Here we investigate the
sequence evolution of regulatory regions of drought and cold responsive genes and their expression regulation. The
coding regions of these genes were previously shown to exhibit signatures of positive selection. Expression profiles
and sequence evolution of regulatory regions of members of the Asr (ABA/water stress/ripening induced) gene family
and the dehydrin gene pLC30-15 were analyzed in wild tomato populations from contrasting environments. For S.
chilense, we found that Asr4 and pLC30-15 appear to respond much faster to drought conditions in accessions from
very dry environments than accessions from more mesic locations. Sequence analysis suggests that the promoter of
Asr2 and the downstream region of pLC30-15 are under positive selection in some local populations of S. chilense.
By investigating gene expression differences at the population level we provide further support of our previous
conclusions that Asr2, Asr4, and pLC30-15 are promising candidates for functional studies of adaptation. Our
analysis also demonstrates the power of the candidate gene approach in evolutionary biology research and highlights
the importance of wild Solanum species as a genetic resource for their cultivated relatives.
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Introduction

Numerous efforts have been made in the last decades to
understand local adaptation. This phenomenon is defined as
the movement of a population towards a phenotype that leads
to the highest fitness in a particular environment [1]. As protein
divergence alone often cannot explain the phenotypic
differences observed between populations/species, gene
expression regulation has been suggested to play a key role for
many cases of adaptation [2-4]. Modulation of gene expression
is crucial for the survival of organisms as environmental
changes require fast and specific responses. Experimental
evolution studies in microorganisms revealed fast expression
divergence between strains of Saccharomyces cerevisiae
(yeast) [5] and Escherichia coli [6] grown in glucose-limited
media. In plants, regulatory changes between domesticated
crop species and their wild relatives as well as their role in

adaptation have been described in Zea mays (maize) [7,8] and
Oryza sativa (rice) [9]. Therefore, one way to investigate local
adaptation is to study the expression and regulation of genes
that provide a higher fitness under stress conditions. Whole
transcriptome analysis has largely been done using
microarrays for investigating expression differences in natural
populations of model species such as Drosophila melanogaster
[10,11], to study host shifts in D. mojavensis [12] or to analyze
invasive plant species such as Ambrosia artemisiifolia
(common ragweed) [13] and Cirsium arvense (Canada thistle)
[14]. Recently, sequencing of whole transcriptomes/exomes
additionally allowed for large-scale gene expression analysis in
different populations or cultivars, e.g. in D. melanogaster [15],
D. mojavensis [16], or Citrullus lanatus (watermelon) [17].
However, expression differences have also been analyzed in
more detail for particular candidate genes, e.g. cold responsive
genes in wild tomato (Solanum sp.) [18] or genes involved in
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root architecture in monkey-flower (Mimulus guttatus) [19].
Another question that remains to be answered is to which
degree regulatory divergence is adaptive [20]. Most analyses
are still focused on the evolution of coding sequences, but
examples attributing adaptation to regulatory changes have
increased over the last few years [2,21,22].

Terrestrial plants are usually sessile during their life cycle
and drought and cold stress are the major abiotic constraints
they are facing. Both types of stress have adverse effects on
plant growth and crop production [23]. Drought and cold stress
lead to accumulation of the phytohormone abscisic acid (ABA),
and it has been shown that application of ABA mimics stress
conditions [24]. Therefore late embryogenesis abundant (LEA)
proteins, which are induced by ABA and were shown to
accumulate in vegetative organs during dehydration and low
temperature stress [25,26], are good candidates to study
adaptation. The LEA proteins are subdivided into seven groups
based on their amino acid sequences as well as structural and
functional features (e.g. size, hydrophilicity, or glycin content)
[27]. In this study we analyze two types of LEA proteins:
PLC30-15 [28] encoded by a drought and ABA-inducible
dehydrin gene belonging to Group 2, and the ASRs, which
belong to Group 7 [27]. Although the functional role of
dehydrins still remains speculative, some observations suggest
their involvement in abiotic stress tolerance. In Solanum
tuberosum (potato) and S. sogarandinum, dehydrins are
drought induced in apical parts and show an increased
expression level correlated with cold tolerance in tubers and
stems [29]. A previous study of the pLC30-15 dehydrin
revealed that diversifying selection acted on its coding region in
a wild tomato population from a dry environment [30]. The
other genes used in this study are members of the ABA- and
abiotic stress-induced Asr (ABA/water stress/ripening induced)
gene family [31,32]. ASRs have several functions that help the
plant dealing with stress: as monomers with a chaperon
function in the cytoplasm [33] or as homo- and heterodimers
with DREB (drought response element binding) proteins [34,35]
with DNA-binding activity in the nucleus [36]. They also serve
as transcription factors associated with the modulation of sugar
transport activity [37-39]. Previous studies showed that over-
expressed Asr genes in transgenic plants lead to higher
drought and salt tolerance [40-42]. Using semi-quantitative RT-
PCR in cultivated tomato (S. lycopersicum), it was
demonstrated that Asr genes show differences in expression
depending on the gene copy or the organ [43]. Analyzing
different accessions of wild tomato using Northern Blots, it was
shown that Asr1 and Asr4 are up-regulated in leaves of plants
from humid environments after drought stress [44]. Other
studies carried out in wild tomatoes revealed patterns
consistent with local adaptation at Asr genes in populations
that dwell in dry environments [45-47]. These findings make
pLC30-15 and Asr genes interesting candidates for studying
local adaptation at the gene expression level.

To understand their role in local adaptation, plants from their
native environments are required [48]. For model organisms
(e.g. A. thaliana, O. sativa, or Z. mays), an environmental
context is not clear and/or cultivation caused reduced diversity
due to bottlenecks and artificial selection. Investigating non-

model organisms becomes more and more popular, but as they
are mostly lacking sequenced genomes it is reasonable to
study wild relatives of model organisms [49]. This has
successfully been done in relatives of e.g. A. thaliana [50-53],
Helianthus annuus (sunflower) [54,55], O. sativa [56], and S.
lycopersicum [57]. The availability of cultivated tomato genomic
resources, the recent divergence of the Solanum species, and
their clear phenotypic distinction [58] make tomato species a
popular plant system that is frequently used to study evolution
[57,59]. Most Solanum sect. Lycopersicon species are native to
western South America (Ecuador, Peru, and Chile), along the
western and eastern Andean slopes [60]. This study focuses
on two recently diverged wild tomato species that show
differences in their ecological habitats and features: Solanum
chilense and S. peruvianum. S. chilense is distributed from
southern Peru to northern Chile where it inhabits arid plains
and deserts [58]. It is known to be drought tolerant and can
dwell in hyper-arid areas [57,58,61]. Furthermore, it shows a
broad range in elevation from sea level up to 3,500 m and
therefore experiences large temperature gradients during the
year [62]. S. peruvianum is distributed from central Peru to
northern Chile and inhabits a variety of habitats, from coastal
deserts to river valleys [58].

At the level of populations, local adaptation can best be
studied for organisms with restricted migration [63]. Using the
coding sequences, previous population genetic analyses have
provided evidence for local adaptation at Asr2, Asr4, and
pLC30-15 [30,46,47]. Here we sequenced the regulatory
regions of these genes from the same populations we had
analyzed previously [30,47]. Therefore, we could investigate
the evolutionary forces shaping the regulatory regions in direct
comparison with the corresponding coding parts of the genes.
In addition, we could identify conserved cis-acting elements.
We also analyzed the expression pattern of Asr1, Asr2, Asr4,
and pLC30-15 in S. chilense and S. peruvianum accessions
that were sampled in close proximity to the populations used
for the sequence analysis. We were able to determine
differences in gene expression profiles (i.e. intensity and
speed) and differences depending on the type of stress or the
gene investigated.

Materials and Methods

Sequence analysis: Plant material and sequencing
We sequenced the promoter region of Asr2 (pAsr2), Asr4

(pAsr4), pLC30-15 (5’pLC), and also the downstream region of
pLC30-15 (3’pLC). All genes are located on chromosome 4;
genomic locations according to the SOL Genomics Network
(http://solgenomics.net/) are as follows. Asr2:
SL2.40ch04:56141779...56142589; Asr4:
SL2.40ch04:56178656...56180338; pLC30-15:
SL2.40ch04:63550865...63552237). Two populations from
climatically different environments were sampled for each
species (Tacna and Quicacha for S. chilense; Tarapaca and
Canta for S. peruvianum). Five to seven individuals of each
population were analyzed (Table S1 in File S1). A detailed
description of these samples is provided in [47,59,64-66]. The
Tarapaca sample was obtained from the Tomato Genetics
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Resource Center (TGRC) at the UC Davis (accession number
LA2744). The other populations were sampled by T. Städler
and T. Marczewski in May 2004 [66,67]. Relevant permits for
the collection and import of samples from the Peruvian and
Chilean Government were handled by T. Städler and T.
Marczewski (as published in [66,67]) or the TGRC. Solanum
ochranthum (TGRC accession LA2682) was used as outgroup.
DNA extraction, PCR amplification, cloning, and sequencing
were performed as described in [47]. All primers used in this
project can be found in (Tables S2 and S3 in File S1).
Sequence alignments are provided in Files S2-S5. Sequence
data from this article have been deposited in the EMBL/
GenBank Data Libraries under accession numbers HE612885-
HE613033.

Nucleotide diversity analysis, neutrality tests, and
haplotype diversity

We measured nucleotide diversity using Watterson’s θw and
Tajima’s π implemented in the DnaSP v5 software [68]. θw is
based on the number of segregating sites [69], and π on the
average number of pairwise nucleotide differences among
sequences in a sample [70]. We tested for deviations from the
standard neutral model using Tajima’s D statistic and Fu & Li’s
D in DnaSP. A significantly negative value of Tajima’s D
indicates an excess of rare variants as expected under
directional selection or population size expansion [71]. A
significantly positive Tajima’s D value indicates an excess of
intermediate-frequency variants as expected under balancing
selection or in structured populations [71]. The same is true for
Fu and Li’s D statistics [72]. Fay & Wu’s H was also calculated.
A negative Fay and Wu’s H indicates an over-representation of
high-frequency derived polymorphisms, which is expected
under positive selection [73]. A positive Fay and Wu’s H
indicates an over-representation of intermediate-frequency
derived polymorphisms, which is the case if balancing selection
was acting [73]. The haplotype test of Depaulis & Veuille [74]
was used to assess haplotype diversity (Hd). All neutrality tests
were performed using the option Number of Segregating Sites
in DnaSP.

Motif search in non-coding regions
Motifs in the promoter region were searched using the

program PlantCARE [75]. This program contains a database of
cis-acting regulatory elements and allows for in silico analysis
of promoter sequences. We limited our search to stress- and
hormone-related motifs in conserved regions to provide more
information on the kind of stresses that might trigger a
response of those genes. We do not describe general
transcription factor binding sites like the TATA box.

Gene expression analysis: Plant material, cultivation
and replication

Due to restrictions by the Peruvian government only leaf
material was sampled from populations used in the previous
sequence analyses [30,47,59,66,67] and the promoter
sequence analysis in this work. To perform the gene
expression experiments, seeds of six accessions in close
proximity to those previously sampled populations were

obtained from the TGRC (Table 1). We tested five populations
for drought stress and six populations for cold stress (Table 1).
As these wild tomato species are outcrossing, we performed
cuttings to obtain genetically identical replicates. Tomato seeds
of the motherplants were treated with 2.7% NaOCl for 20
minutes to foster germination, and then kept on moistened filter
paper at room temperature in the dark until they germinated.
The tomato seedlings were then transferred to soil and put into
the climate chamber at 22°C with a 16h/8h day/night cycle and
70% humidity. The motherplants were grown until they could
provide material for 20-25 cuttings (approximately three
months). The cuttings were treated with the Neudofix rooting
enhancer (Neudorff, Emmerthal, Germany) and transferred to
pots containing soil and vermiculite on top (to ensure nutrition
and ventilation). The cuttings were grown for five weeks under
the same conditions as the motherplants until they grew roots
and three fresh leaves. The Asr genes and pLC30-15 were
also sequenced in the motherplants to determine their
haplotypes as described above. The experiment was designed
as follows. Gene expression was measured at five time points
after drought and cold stresses for five and six populations,
respectively (Table 1). For each population, three biological
and three technical replicates were used (for all time points).

Stress treatment, RNA extraction and cDNA synthesis
Drought stress was applied by removing the tomato plants

from the pots, carefully rinsing and drying their roots and
transferring them into a climate chamber at 22°C (according to
[43]). For the cold stress, the plants were transferred to a
climate chamber at 4°C. Leaves were immediately frozen in
liquid nitrogen at five timepoints: unstressed plants, one hour,
three hours, six hours, and 24 hours after stress application.
Total RNA was isolated using the RNeasy Plant Mini Kit
(Qiagen GmbH, Hilden, Germany). DNA was removed using an
on-column DNaseI digestion protocol. The RNA integrity was
assessed by gel electrophoresis. A NanoDrop 1000
Spectrophotometer (Peqlab, Erlangen, Germany) was used to
quantify the RNA and to assess its quality. Only samples with
A260/A280 and A260/A230 values between 1.9 and 2.1 were used
for further experiments. cDNA was synthesized from 1 µg total
RNA using SuperScriptIII reverse transcriptase and RNase
inhibitor RNaseOUT (both from Invitrogen, Carlsbad, CA, USA)
using oligo(dT20) primers. The cDNA was treated with RNaseH
(New England Biolabs, Ipswich, MA, USA) to remove
remaining RNA.

Quantitative real-time PCR
Primers for the quantitative real-time PCR (in the following

referred to as qPCR) were designed using NetPrimer (http://
www.primierbiosoft.com/netprimer) and PrimerBLAST (http://
www.ncbi.nlm.nih.gov). As Asr3 and Asr5 cannot be
distinguished in their coding region [47] they were excluded
from this study. qPCR was carried out using iQ SYBR green on
a CFX thermocycler (both BioRad, Hercules, CA, USA).
Expression of the target genes was normalized by two
constitutively expressed reference genes: CT189 coding for a
40S ribosomal protein [65] and TIP4I which was shown to be a
very stable reference gene in tomato [76]. As the efficiency was
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close to 100% for all runs we applied the 2-ΔΔCq method [77] to
derive the relative expression quantity from the measured Cq-
values. Quality control, reference gene stability, transformation
to relative quantity, and normalization was carried out using the
program qbasePLUS [78]. We performed the qPCR for one gene
with all populations and timepoints in one run to rule out inter-
run variation. To make the results between the different genes
comparable, we performed an inter-run calibration in qbasePLUS.
As this left us with more than one “true” timepoint 0 (=
unstressed plants) for each gene we chose to display the
results relative to the average of the whole run. We used the
two-sample Wilcoxon (Mann-Whitney-U) test to determine
whether differences in relative expression between stressed
and unstressed plants were significant [79]. Importantly, we
only compare timepoints within populations to make inferences
on the time of gene up-regulation and the peak of expression.
As we observe differences in relative expression between the
populations at timepoint 0, we do not make comparisons
between populations at the same timepoint as this could be
misleading.

Results

Incomplete selective sweep in Asr2 promoter region in
the Quicacha population

We sequenced ~1,500 bp upstream of Asr2, Asr4, pLC30-15
as this region should contain most cis-regulatory regions (i.e.
transcription factor binding sites). Additionally, we sequenced
the downstream region of pLC30-15 (~2,300 bp) to determine
how far the signature of positive selection at this gene found by
[30] extends. However, we cannot rule out other cis- or trans-
regulatory regions. We wanted to investigate the evolutionary
forces acting on regulatory regions of genes involved in stress
response. pAsr2 shows a low nucleotide diversity, especially at
Quicacha, compared to the Asr2 coding region (Table 2, Figure
S1a in File S1). Haplotype diversity is also very low in the
Quicacha population (Table 3) and Tajima’s D and Fu and Li’s
D are significantly negative (Table 4, Figure S1b in File S1).
Indeed, we found only two pAsr2 haplotypes at Quicacha that
were rather similar to each other, where the minor allele
occurred only once (Figure S3 in File S1). This indicates that
positive directional selection has been acting in this population
at pAsr2, causing an incomplete selective sweep [66,80].

The evolution of the Asr4 and the pLC30-15 regulatory
regions

Compared to the Asr4 coding region, where evidence for
local adaptation has been shown in a population from a dry
environment [47], nucleotide diversity is higher upstream of the
gene (Table 2). Additionally, the low haplotype diversity
observed at Asr4 in the Quicacha population increases at
pAsr4 to almost 1 (Table 3), and no deviation from neutrality
can be observed (Table 4). This indicates that the forces acting
on the Asr4 gene (directional selection) are weaker in the
promoter region. The relatively low level of haplotype diversity
detected at pLC30-15 in Quicacha can also be found at 5’pLC
(Table 3, Figure S4 in File S1). Additionally, Fay and Wu’s H
becomes very negative in both Quicacha and Tacna (Table 4),
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Table 2. Nucleotide diversity of pAsr2, pAsr4, 5’pLC, 3’pLC,
and their corresponding genes.

π pAsr2 Asr2a pAsr4 Asr4a 5' pLC pLCb 3' pLC
Quicacha 0.004 0.016 0.022 0.009 0.030 0.014 0.023
Tacna 0.015 0.020 0.026 0.015 0.028 0.012 0.016
Canta 0.016 0.020 0.032 0.019 0.044 0.016 0.027
Tarapaca 0.015 0.022 0.031 0.021 0.043 0.012 0.022
θW        
Quicacha 0.006 0.014 0.021 0.011 0.026 0.010 0.023
Tacna 0.013 0.022 0.026 0.022 0.034 0.013 0.017
Canta 0.020 0.020 0.035 0.021 0.044 0.016 0.031
Tarapaca 0.018 0.021 0.030 0.020 0.041 0.012 0.023

a. From [47]
b. From [30]
doi: 10.1371/journal.pone.0078182.t002

Table 3. Haplotype diversity of pAsr2, pAsr4, 5’pLC, 3’pLC,
and their corresponding genes.

Hd pAsr2 Asr2a pAsr4 Asr4a 5' pLC pLCb 3' pLC
Quicacha 0.286 0.800 0.933 0.600 0.667 0.711 0.889
Tacna 0.933 0.978 0.982 0.982 1.000 0.978 0.982
Canta 0.945 0.933 1.000 0.956 1.000 0.978 0.972
Tarapaca 0.964 0.956 0.905 0.933 0.889 0.822 0.889

a. From [47]
b. From [30]
doi: 10.1371/journal.pone.0078182.t003

Table 4. Results of the neutrality tests for pAsr2, pAsr4,
5’pLC, 3’pLC, and their corresponding genes.

Tajima's D pAsr2c Asr2a pAsr4 Asr4a 5' pLC pLCb 3' pLC
Quicacha -1.688* 0.602 0.356 -0.511 0.887 2.342* 0.022
Tacna 1.122 -0.372 0.078 -1.429 -0.811 -0.358 -0.499
Canta -0.936 -0.121 -0.432 -0.548 0.008 -0.339 -0.700
Tarapaca -0.783 0.356 0.170 0.029 0.137 0.010 -0.144
Fu and Li's D        
Quicacha -1.791** -0.121 0.883 0.382 1.853** 1.587** -0.432
Tacna 0.661 0.031 -0.230 -2.326* -1.220 -0.384 0.281
Canta -1.423 -0.590 -1.179 -0.982 -0.916 -0.673 -1.497
Tarapaca -0.784 0.225 -0.214 -0.223 0.180 0.119 -0.401
Fay and Wu's H        
Quicacha NA -0.927 -3.556 -8.709 -9.190 -1.067 -2.667
Tacna NA 5.626 3.200 -5.127 -7.727 1.511 -28.673
Canta NA 0.444 3.778 1.867 7.911 0.978 8.806
Tarapaca NA 0.000 5.143 0.889 -3.167 2.311 1.511

a. From [47]
b. From [30]
c. No outgroup available. Fu and Li’s D* without outgroup was calculated instead.
NA Not applicable
* P<0.05, ** P<0.01 (significant results are in bold)
doi: 10.1371/journal.pone.0078182.t004

indicating positive (diversifying) selection. Nucleotide diversity
is generally higher at 3’pLC than at the pLC30-15 gene except
in the Tacna population (Table 2, Figure S2a in File S1). In
addition, Fay and Wu’s H becomes extremely negative at the
downstream region of the pLC30-15 gene, indicating positive
selection (Table 4, Figure S2b in File S1).

Different types of motifs in the regulatory regions of
Asr2, Asr4 and pLC30-15

We analyzed the regulatory regions of Asr2, Asr4, and
pLC30-15 in silico to identify cis-acting elements (short motifs
of 4-10 bases). Here we describe only those motifs related to
hormone and stress response, and motifs that lie in conserved
regions (i.e. without polymorphism) in the alignment of all
sequences of both species (see Table S4 in File S1 for
additional information of the described motifs). At pAsr2 we
detected a motif conserved in both species involved in salicylic
acid responsiveness (TCA-element). We also discovered one
motif conserved in S. chilense involved in ethylene (ERE). This
motif (conserved in S. peruvianum) as well as an abscisic acid
responsive element (ABRE) was also found at pAsr4. In
addition, pAsr4 contains a conserved auxin responsive element
(Aux-RR-core). At 5’pLC we found five conserved ABRE motifs
and a motif involved in methyl jasmonate responsiveness
(CGTCA-motif); at 3’pLC conserved ABRE and CGTCA-motifs
were detected as well as an AuxRR-core.

Conserved stress-related regulatory elements at pAsr2 are
involved in anaerobic induction (ARE), drought responsiveness
(MBS), and general stress and defense response (TC-rich
repeats). At pAsr4 a conserved stress related motif is ARE. TC-
rich repeats and MBS motifs are conserved at 5’pLC and
3’pLC. 3’pLC also contains motifs involved in low-temperature
responsiveness (LTR) and heat stress responsiveness (HSE).

Expression patterns of Asr1 and Asr2
We analyzed the expression patterns of Asr1, Asr2, Asr4,

and pLC30-15 in different populations using a time-course
experiment after exposing wild tomato plants to cold and
drought stress. In general, all genes appear to be more
strongly induced in S. chilense than in S. peruvianum and
respond more strongly to water deficit than to cold stress
(Figures 1-4). After application of drought stress, Asr1 is
induced after 1-3h in all S. chilense and S. peruvianum
accessions (Figure 1a+b). After cold stress, Asr1 is induced
after 1-6h but at a relatively low level in all S. chilense and S.
peruvianum accessions (Figure 1c+d).

Relative Asr2 expression is generally quite low compared to
the other genes studied here. When applying drought stress to
S. chilense populations, Asr2 is significantly up-regulated after
1h in Tacna and 6h in Quicacha (Figure 2a). In S. peruvianum,
we observe slightly different Asr2 expression patterns in
accessions from the same environment: transcription is
induced after 1h in one Tarapaca accession (LA2744) and only
after 24h in the other Tarapaca accession (LA2745) and Canta
(Figure 2b). After application of cold stress in S. chilense, Asr2
is significantly up-regulated after 1h in Quicacha and the Tacna
accession from a high altitude (LA1969; 3,250m) or after 3h in
the Tacna accession from a lower altitude (LA1967; Figure 2c).

Expression Regulation in Wild Tomatoes

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e78182



In S. peruvianum, LA2745 shows the highest and fastest (1h)
induction of Asr2 (Figure 2d). LA2744 and the Canta accession
are induced more slowly (3h and 24h, respectively; Figure 2d).

Faster induction of Asr4 transcription in a population
from a dry environment

In the Quicacha accession of S. chilense, Asr4 is drought
induced after 3h and very highly expressed after 24h (Figure
3a). In the Tacna accession from a very dry environment, on
the other hand, Asr4 is already significantly up-regulated after
1h and has its expression peak after 3h (Figure 3a). Based on
DNA sequence variation data this population was found to
undergo local adaptation and to exhibit signatures of positive
selection at the Asr4 locus [47]. The Tacna accession used in
the expression experiments is homozygous for the favored
predominant haplotype described in [47]. In S. peruvianum, the
two Tarapaca accessions (both from a similar environment)
differ in their expression patterns. In the accession LA2745,

Asr4 is drought induced after 1h and reaches its maximal
expression level after 6h (Figure 3b). LA2744, on the other
hand, shows a constant increase of Asr4 transcripts until
timepoint 24h (Figure 3b). The Canta accession displays a
significant over-expression of Asr4 after 6h and 24h (Figure
3b).

Asr4 induction after cold stress is much lower. All S. chilense
accessions show a fast induction (1h) of Asr4 transcripts
(Figure 3c). However, the transcript level seems to be higher in
the Tacna accession from a high altitude (LA1969) compared
to the one from a lower altitude (LA1967; <1,000m) and the
accession from Quicacha. In S. peruvianum, Asr4 induction is
much slower: after 3h in Canta and 6h in Tarapaca (Figure 3d).

High expression levels of pLC30-15 after drought
stress

After application of drought stress, pLC30-15 is induced fast
(after 1h in all accessions) and reaches its peak of transcription

Figure 1.  Gene expression of Asr1 after application of drought and cold stress.  Expression is displayed relative to the
average of the whole qPCR run in unstressed plants, 1h, 3h, 6h, and 24h after stress application. (A) The following accessions of S.
chilense were measured after drought stress (red bars): LA1938 (QUI) from a dry environment and LA1967 (TAC) from a hyperarid
area. (C) The following accessions of S. chilense were measured after cold stress (blue bars): LA1938 (QUI) from a dry
environment and LA1967 (TAC1) from a hyperarid area and LA1969 (TAC2) from a very dry environment and high altitude. The
following accessions of S. peruvianum were measured after (B) drought (red bars) and (D) cold stress (blue bars): LA2744 (TAR1)
and LA2745 (TAR2) from a dry environment and LA3636 (CAN) from a humid environment. Vertical lines at bar charts indicate the
standard error, asterisks above bar charts indicate significant over-expression compared to the unstressed control (*P<0.05;
**P<0.01), arrows above bar charts indicate significant over-expression (P<0.01) compared to the previous timepoint – meaning the
transcript level is increasing.
doi: 10.1371/journal.pone.0078182.g001
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after 3-6h – except for the Quicacha and Canta accessions
where the expression level increases until 24h (Figure 4a,b).
Transcript levels appear to be higher in S. chilense than in S.
peruvianum after drought stress, but to a lesser degree than for
the Asr genes (Figure 4a,b). After cold stress, pLC30-15 has a
lower transcript level in both species (Figure 4c,d). pLC30-15 is
significantly up-regulated after 1h in all S. chilense accessions
and expression keeps increasing until 24h (Figure 4c). In S.
peruvianum, we can again observe differences in expression in
accessions from the same environment: pLC30-15 is induced
after 1h in LA2744 but no induction can be detected in
accession LA2745 (both Tarapaca – Figure 4d). In Canta,
pLC30-15 is induced after 3h and increases until 24h (Figure
4d).

Discussion

We analyzed the regulatory regions of stress-responsive
genes in wild tomato populations from different environments
and compared them to their corresponding coding regions,
which were previously studied [30,47]. Our most salient
observations are as follows. Sequence analyses suggest that
the Asr2 promoter region and the downstream region of
pLC15-30 in S. chilense populations from dry environments
have been under positive selection. The gene expression
experiments suggest that, in general, the genes show a higher
induction in S. chilense than in S. peruvianum and respond

more strongly to water deficit than to cold stress. In particular,
we found that pLC30-15 and Asr4 are highly drought induced in
the S. chilense population from Tacna (a very dry
environment). As these genes also exhibit signatures of
positive selection in the coding region [30,47] they may
therefore be of potential interest for further functional studies of
adaptation. Since we did not perform statistical analysis
between populations, however, these observed trends are
suggestive and further experiments are needed to verify them.
In the following, we discuss these findings in more detail.

Sequence variation of regulatory regions of stress-
responsive genes

Studying cis-regulatory elements has been of great interest
over the last years as it has been suggested that phenotypic
changes also result from variation in these regions rather than
in coding regions [2,81,82]. A relatively straightforward way to
investigate this is to first analyze sequence variation and
search for specific motifs in promoter regions [83]. When
analyzing the Asr2 promoter region, it is quite remarkable how
low nucleotide diversity is especially in the Quicacha
population. The observed polymorphism pattern suggests that
a (incomplete) selective sweep eliminated nucleotide diversity
at pAsr2 and increased the frequency of one favored
haplotype. This may indicate an important function of this
region. Similarly, the downstream region of pLC30-15 shows
low nucleotide diversity and patterns consistent with positive

Figure 2.  Gene expression of Asr2 after application of drought and cold stress.  (for explanation see Figure 1).
doi: 10.1371/journal.pone.0078182.g002
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selection in the Tacna population, which may also be
functionally significant. Unlike pAsr2 and 3’pLC, pAsr4 and
5’pLC are more polymorphic than their corresponding coding
regions. The patterns consistent with local adaptation at Asr4 in
the Tacna population described before [47] disappear at pAsr4
and neutrality tests show no deviation from a standard neutral
scenario. Also, the haplotype structure observed in Quicacha
[47] is not present at pAsr4. This shows that the evidence for
local adaptation described before is limited to the Asr4 coding
regions. On the other hand, the haplotype structure and
patterns of positive selection at the pLC30-15 locus described
in [30] in Quicacha remain at 5’pLC, suggesting that the acting
selective forces are not limited to the gene.

Although we found evidence for positive selection in the
coding regions of Asr2, Asr4 and pLC30-15 and also in some
of their regulatory regions, it is difficult to establish a
relationship between the sequence evolution of the genes and
their expression profiles. Except for the possible effects of
trans-regulatory elements, reasons for this may be that more
samples from different environments, larger sample sizes and
more genes need to be investigated. Nonetheless, our
approach may prove useful as an initial step towards
determining whether these genes are involved in the
adaptation of wild tomatoes to abiotic factors such as drought
and cold. Indeed, an encouraging sign might be that our motif
scan analysis shows conservative regulatory elements that are
involved in drought, cold, heat stress and general stress

responses at pAsr2, 5’pLC and 3’pLC. Further evidence about
the possible relationship between sequence and gene
expression variation is discussed below, after reviewing the
results from related studies.

Environment-specific gene expression regulation of
stress-responsive genes and its possible relationship
to sequence variation

Asr genes have already been described to be induced by
desiccation in several plant species, e.g. Solanum chacoense
(wild potato) [84], Pinus taeda (loblolly pine) [85], Lilium
longifolium (lily) [86], Ginkgo biloba [87], and O. sativa [88], but
also by cold in S. tuberosum [89]. Asr genes have been shown
to be very variable in their expression kinetics. They show
differences in organ-specific expression [43,85] and different
patterns depending on the gene copy [44,88] and applied
stress [87,89]. Philippe et al. [88] even demonstrate differential
expression patterns of rice Asr genes depending on the
cultivar. Such variability in gene expression between
accessions was also described for cold-responsive genes in
wild tomato [18]. Similarly, although they share the same
environment, the S. peruvianum accessions from Tarapaca
(LA2744 and LA2745) seem to show different expression
patterns for Asr2, Asr4 and pLC30-15. Therefore, differences in
gene expression may not necessarily be adaptive. It has been
demonstrated that stress-related genes have a more variable

Figure 3.  Gene expression of Asr4 after application of drought and cold stress.  (for explanation see Figure 1).
doi: 10.1371/journal.pone.0078182.g003
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expression than housekeeping genes [90,91] and a higher
expression divergence of duplicated genes in A. thaliana [92].
In tomato, we detected different expression patterns between
populations from similar environments only if the genes were in
general lowly expressed. This is in accordance with the
findings of Carey et al. [93], who found that transcriptional
noise decreases as the expression level increases.

Although we cannot establish a clear connection between
gene expression variation and patterns of diversity in the
regulatory regions or the coding regions analyzed in previous
studies [30,45-47], we discovered interesting trends. First, we
suggest that the Asr genes and pLC30-15 are more strongly
induced by water deficit than by cold, indicating that they play a
more important role in drought response than in cold response
in wild tomato species. In accordance with the results by Carey
et al. [93] discussed above, the expression patterns of the Asr
genes and pLC30-15 appear to be more noisy after cold stress.
Second, Asr1 seems to show a similar expression pattern after
drought stress in all S. chilense and S. peruvianum
populations, i.e. induction occurs after 1-3h and relative
expression increases until 24h, while the expression level is
lower and more noisy after cold stress. Asr1 homologs have
been shown to be conserved in wild tomato and other plant
species and seem to act as housekeeping genes [44,47]. Our
results suggest a concordant conserved expression pattern,
highlighting the importance of Asr1 for basic functions in the
plants. Third, Asr2 expression appears to be quite low

compared to the other candidate genes. This might indicate
that Asr2 does not play a major role in drought and cold
response, but rather in other stress conditions. Another
possible explanation for the relatively low expression of Asr2 is
that it is predominantly expressed in other organs than leaves.
Indeed, Maskin et al. [43] found Asr2 to be up-regulated in
roots – but not in leaves – of cultivated tomato after drought
stress. As we do not discover a high expression in leaves,
organ-specific expression of Asr2 might also occur in wild
tomato species. However, more tissues should be tested to
validate these findings.

Finally, under water deficit pLC30-15 and Asr4 are more
quickly induced in the accession from Tacna (hyperarid habitat)
than in the other S. chilense accession from Quicacha (less dry
habitat). However, we also observe a down-regulation of Asr4
in the accession from Tacna after 3h. This could explain
previous findings [44], in which Asr4 expression could not be
detected after 24h in drought-stressed wild tomato plants from
a dry environment. Induction and down-regulation are faster in
populations from dry habitats and the transcript was not
sufficiently abundant to be detected. In the Tacna population,
Fischer et al. [47] described a predominant Asr4 haplotype,
which is absent in other S. chilense populations. Interestingly,
the accession tested here is homozygous for this haplotype
which further highlights the abundance of this haplotype in the
Tacna population. In addition, after cold stress Asr4 seems to
be more strongly induced in the Tacna accession from a high

Figure 4.  Gene expression of pLC30-15 after application of drought and cold stress.  (for explanation see Figure 1).
doi: 10.1371/journal.pone.0078182.g004
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altitude compared to the other S. chilense accessions. As for
the other genes studied here, however, Asr4 expression
appears to be in general much lower and therefore tends to be
noisier after cold treatment.

Conclusions

Wild relatives of crop species have many advantages that
make them interesting resources for studying plant evolution.
One of them is that they are sampled from the ecological
context they evolved in. We analyzed the expression variation
of candidate genes in natural wild tomato populations. Such a
rare study gives insights into natural variation in gene
expression and can provide good candidates for improving
plant tolerance to abiotic stresses. We found Asr4 to be an
interesting candidate, in accordance with a previous study [47].
Our observations suggest that both Asr2 and Asr4 as well as
pLC30-15 are induced by abiotic stresses, particularly by
drought. The present study, as well as some others carried out
in wild tomatoes [30,45-47], indicate that a candidate gene
approach is efficient for detecting evidence for local adaptation
to abiotic stresses and that wild tomato species constitute a
valuable genetic resource for genes conferring resistance to
abiotic stress. The genome of cultivated tomato became
recently available [94]. Therefore, the evolution of regulatory
elements can now be analyzed much more comprehensively,
as has been done in Arabidopsis [95]. Finally, our results that
positive selection occurs more often in local S. chilense
populations and gene expression responses appear to be
generally faster and stronger in this species seem to support
the previous conclusions that S. chilense shows more evidence
of local adaptation to drought and temperature stress than S.
peruvianum [30,47,96].
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