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Abstract

Many genes which are associated with root nodule development and activity in the model legume Medicago truncatula
have been described. However information on precise stages of activation of these genes and their corresponding
transcriptional regulators is often lacking. Whether these regulators are shared with other plant developmental programs
also remains an open question. Here detailed microarray analyses have been used to study the transcriptome of root
nodules induced by either wild type or mutant strains of Sinorhizobium meliloti. In this way we have defined eight major
activation patterns in nodules and identified associated potential regulatory genes. We have shown that transcription
reprogramming during consecutive stages of nodule differentiation occurs in four major phases, respectively associated
with (i) early signalling events and/or bacterial infection; plant cell differentiation that is either (ii) independent or (iii)
dependent on bacteroid differentiation; (iv) nitrogen fixation. Differential expression of several genes involved in cytokinin
biosynthesis was observed in early symbiotic nodule zones, suggesting that cytokinin levels are actively controlled in this
region. Taking advantage of databases recently developed for M. truncatula, we identified a small subset of gene expression
regulators that were exclusively or predominantly expressed in nodules, whereas most other regulators were also activated
under other conditions, and notably in response to abiotic or biotic stresses. We found evidence suggesting the activation
of the jasmonate pathway in both wild type and mutant nodules, thus raising questions about the role of jasmonate during
nodule development. Finally, quantitative RT-PCR was used to analyse the expression of a series of nodule regulator and
marker genes at early symbiotic stages in roots and allowed us to distinguish several early stages of gene expression
activation or repression.
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Introduction

The development of plant genomics during the last decade has

led to an impressive accumulation of data on gene identification,

notably through full genome sequencing and gene expression

analyses using a variety of tools. This has led to a more detailed

view on the genetic program(s) associated with complex processes

and the possibility of defining both shared and specific

components of various plant responses and developmental

programs. One of the major challenges now faced by biologists

is the identification of the regulators that orchestrate these

programs, and the definition of the regulatory networks that they

control or participate in.

Transcription factors (TFs) have attracted major interest, given

the central role they play in regulating gene expression. They

correspond to a large fraction of plant genes, representing more

than 5% of the Arabidopsis thaliana genome [1], of which only a very

small proportion has been molecularly or genetically characterized

to date (about 10% in A. thaliana, [2] and less than 1% in legumes

[3]). The considerable progress that has been made in the last few

years in legume genomics, notably by sequencing the genome of

three model species (Lotus japonicus, Glycine max [soybean] and

Medicago truncatula) has allowed a general survey of legume TFs and

their relation to other plant TFs [4]. Despite the fact that

symbiotic nitrogen fixation (SNF) is a signature feature of legumes,

no specific TF families have been assigned to this process so far.

SNF allows legumes to grow efficiently under nitrogen-limiting

conditions, with very important agronomical and environmental

benefits, due to their capacity to establish endosymbioses with soil

bacteria collectively known as rhizobia [5,6]. SNF involves mutual

recognition of both partners through an exchange of molecular

signals. Bacterial molecules responsible for the specific recognition

of the rhizobial partner are called Nod factors (NF). These chito-

lipo-oligosaccharides are able to trigger a number of plant responses

including ion fluxes, calcium spiking, specific gene induction, root

hair deformations and cortical cell divisions. Following the initial

step of plant-bacteria recognition, rhizobial infection of root tissues

occurs via tubular structures of plant origin, called infection threads,
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and is concomitant with inner cortical cell divisions leading to the

formation of the specialised root organ known as the nodule. In

addition to symbiotic NF, rhizobial cell wall-associated or secreted

polysaccharide molecules [7] are also required for successful

infection thread growth as far as the inner root tissues.

The root nodule is essential to provide rhizobia with both a

carbon source and an appropriate cellular environment allowing

the bacterial nitrogenase to fix atmospheric nitrogen. In temperate

legumes, represented by the model legume M. truncatula, the

nodule is a highly structured organ with indeterminate growth

resulting from the activity of an apical meristematic region (also

called zone 1) and the differentiation of both peripheral and

internal tissues. The latter comprise an infection zone 2 where

bacteria are released from infection threads and where coordi-

nated differentiation of both plant and bacterial cells takes place.

This leads to the formation of the zone 3 in which nitrogen

fixation is carried out by terminally differentiated bacteroids. In

several-week-old nodules, the degeneration of both symbionts

initiates in the proximal region of zone 3, resulting in the

formation of the senescence zone 4. Senescence can also be

triggered prematurely by different stresses or defects in plant-

bacteria recognition [8]. Furthermore, nodule and activity are

tightly regulated by the plant and influenced by specific

phytohormones. Thus jasmonic acid, ethylene, salicylic acid and

abscisic acid have been reported to act as negative regulators,

whereas cytokinins and auxins play positive roles in nodule

initiation [5,6,9].

In the past two decades, important progress using genetic and

molecular approaches has been made for the model legumes L.

japonicus and M. truncatula in the identification of legume genes

involved in the initial symbiotic stages associated with NF

perception and transduction. The characterization of these genes

indicates that NF perception involves receptor-like kinases and a

transduction pathway through a specific calcium oscillation

response that precedes early nodulin gene transcription by GRAS

(NSP1 and 2) [10–13], and ERF (ERN1, 2 and 3) [14,15]

transcription factors. In addition, transcriptomic analyses in M.

truncatula have led to the discovery and characterization of a

number of genes preferentially expressed in nodules or in roots

following inoculation with the microsymbiont Sinorhizobium meliloti

[16–22]. Functional characterization of some of these genes,

encoding the Zinc finger MtZPT2 [23], the CCAAT binding

factor MtHAP2.1 [24–25] and the ERF EFD [26] have revealed

important roles for these TFs during rhizobial infection and/or

nodule organogenesis.

Transcriptomics approaches have been used in M. truncatula and L.

japonicus to get a view of the range of genes associated with early or late

stages of nodulation [16–22]. Earlier work has demonstrated that the

simultaneous analysis of the transcriptome of wild type (WT) and

symbiotic mutants is suitable to identify set of genes involved in

specific symbiotic stages. In M. truncatula, the use of one bacterial and

six plant mutants affected in early symbiotic genes allowed the

identification of plant genes involved in early stages of NF signalling

and bacterial infection [27]. More recently, cDNA microarrays

representing 2,366 unigenes were used for an analysis of nodule

development in the M. truncatula R108 line coupled with the

independent analysis of a collection of 15 plant and bacterial mutants

inducing non-functional, Fix2 nodules [28]. This study allowed the

authors to conclude that two stages of gene expression reprogram-

ming take place during nodule formation, the first at the immature

nodule stage and the second when nodules reach maturity.

Here we present a large scale approach that aimed at identifying

nodule-associated genes, and more specifically putative regulators

of gene expression. By combining gene expression analyses using

70-mer oligonucleotide 16.4 K microarrays for both wild type

symbionts and nodulation defective symbiotic mutants, we were

able to identify and classify more than 3,400 differentially

regulated genes and associated regulators. This has led us to

define four distinct stages of transcription reprogramming

throughout nodulation. In addition, a fifth set of genes are

expressed during several stages or in different tissues and two final

subsets of genes are associated with either senescence or stress/

defence responses. We also used tools recently developed for data

mining in M. truncatula to obtain complementary information on

the expression pattern of these regulators in non-symbiotic

conditions, as well as mid-scale quantitative RT-PCR analyses to

investigate how expression in nodules relates to expression in roots.

Results and Discussion

WT and mutant strains of Sinorhizobium meliloti to
analyse nodules at different developmental stages

To gain a broad view on the transcriptional changes occurring

during nodule development, the M. truncatula transcriptome at

different nodulation stages was analysed using Mt16kOLI1Plus

microarrays, which carry 16,470 M. truncatula probes [29,30]. We

compared a series of seven nodule samples from M. truncatula A17,

following inoculation with WT or three mutant strains of

Sinorhizobium meliloti impaired in symbiotic properties (Table 1).

The nodule samples induced by WT S. meliloti strain 2011 were

harvested either at an immature stage before the differentiation of

the nitrogen-fixing zone 3 (4 dpi: WT4) or after the onset of

nitrogen fixation (10 and 14 dpi: WT10 and WT14; Table 1 and

Figure 1A). An additional sample, termed NN (for Nitrate-treated

Table 1. Seven Medicago truncatula nodule samples to examine different nodule developmental stages.

Nodule sample Nodule formation Nodule infection Nodule differentiation N-fixation Nodule senescence

WT4 + + 2 2 2

WT10 + + + + 2

WT14 + + + + 2

NN + + + 2 +

exoA + 2 2 2 +

bacA + + 2 2 +

fixJ + + + 2 +

Wild type (WT) nodules were induced by WT Sinorhizobium meliloti and harvested at 4, 10, 14 (WT4, 10 and 14) and 16 dpi (NN). NN nodules were treated for two days
with 10 mM NH4NO3. exoA, bacA and fixJ nodules were induced by the indicated mutant strain of S. meliloti and harvested at 10 dpi.
doi:10.1371/journal.pone.0016463.t001
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Figure 1. Transcriptome analysis of root nodules induced by wild-type and mutant strains of Sinorhizobium meliloti. A, B, C: 50 mm
sections of representative 10-day-old nodules analysed in the experiment, respectively induced by wild-type (A), exoA (B) and bacA (C) S. meliloti
strains containing a hemA:lacZ reporter; the blue color indicates the presence of bacteria revealed by beta-galactosidase activity. Bars = 100 mm.
D: number of differentially regulated genes, in comparison to non-inoculated nitrogen-starved roots (adjusted Pval#0.05 ratio $1.5), with white and
grey columns representing and down- and up- regulated genes respectively. E: fraction of genes found to be up-regulated only in this nodule sample.
WT4, 10, 14, NN correspond to nodules induced by wild-type S. meliloti 2011 at 4, 10, 14 and 16 days post-inoculation; NN nodules were treated for 2
days with 10 mM NH4NO3 before harvesting.
doi:10.1371/journal.pone.0016463.g001
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Nodules), was harvested at 16 dpi 2 days after the addition of

10 mM NH4NO3 in order to study the situation where nitrogen

fixation has been turned off [31]. Three other nodule samples,

harvested at 10 dpi, corresponded to nodules defective in different

stages of development. These were obtained after inoculation with

respective mutant strains of S. meliloti: exoA is defective in bacterial

infection [32], bacA is affected in bacteroid differentiation [33] and

fixJ is impaired in nitrogen fixation [34] (see Table 1).

These seven nodule samples were compared to control samples

comprising nitrogen-starved non-inoculated roots, grown under

identical conditions (raw data available at ArrayExpress, accession

number E-TABM-688). A threshold ratio of 1.5 with an adjusted

P-value #0.05% was chosen to define genes as differentially

regulated by comparison with control roots. This minimum ratio

of 1.5 was based on our previous characterization of genes like

MtbHLH1, which had induction ratios of below 2.0 on microarrays

(1.79 at 4 dpi for MtbHLH1; Table S1) but which were clearly

induced during nodulation according to quantitative RT-PCR

([19]) and promoter:GUS fusion analyses (data not shown).

A total of 3,437 gene probes were scored as differentially

regulated (complete list provided in Table S1), corresponding to

about 20% of the microarray gene probes. The largest number of

differentially regulated genes was found for the fixJ and nitrogen–

fixing nodules (WT10, WT14), whilst the smallest number

corresponded to NH4NO3-treated NN nodules (Figure 1D). To

evaluate the internal consistency of these results, we determined

the fraction of genes up-regulated in several conditions vs. a single

condition (Figure 1E); we also performed a hierarchical clustering

analysis (Figure 2) and two by two comparisons (Table S2). All

three methods indicated a very high overall consistency, with the

WT10 and WT14 samples showing the closest profiles, as

expected. Gene expression in the exoA nodules was the most

different, with several gene probes showing opposite regulation as

compared to the other samples (Table S2).

An examination of the expression pattern of the leghemoglobin

gene family revealed major increases for individual genes

comparing immature to N-fixing nodules, with intermediate levels

in nodules induced by mutant strains of Rhizobium, and decreased

expression following ammonium nitrate addition (Figure 3) as

previously shown [31]. The expression of three other marker genes

was consistent with previously described results [27] in fixJ and

bacA nodules: MtCAM1 (MT007325) and MtN31 (MT007417) are

transcribed in fixJ but not in bacA nodules, whereas MtLEC4

(MT007335) is expressed in both conditions. However, in contrast

to the data reported in [27] we found that MtLEC4 was expressed

in exoA nodules. This can be explained by the fact that (i) isolated

nodules instead of nodulated roots were analysed (ii) samples were

harvested at an earlier time point than in [27], which is

particularly important for exoA nodules that arrest growth several

days after inoculation.

Eight major activation patterns identified amongst
nodule-associated genes

Our analyses allowed us to identify distinct expression profiles

that could be classified into different groups or sub groups

(Table 2). To assess the robustness of this classification, we

compared our results to data from the M. truncatula gene atlas

(MtGEA) [20] (http://mtgea.noble.org/v2/). These data include

five conditions shared with this study (non inoculated roots, 4, 10,

14 and 16 dpi WT nodules) and come from independent samples

generated in our laboratory but analysed with a different tool

(Affymetrix chips). The expression pattern of 352 probes was

examined and found qualitatively similar in 84% of the cases

(Table S1). A substantial fraction (31%) of the 55 gene probes

Figure 2. Hierarchical analysis of genes differentially regulated
in Medicago truncatula nodules as compared to nitrogen-
starved roots. These genes were identified by a comparison of non-
inoculated roots and isolated nodule samples using Mt16KPlus
microarrays The hierarchical analysis was carried out with Pearson
correlation and average linkage. The green and pink colors indicate
down- and up-regulated genes respectively, following the color scale
shown on the left (with fold ratios indicated as log2 values).
doi:10.1371/journal.pone.0016463.g002

Figure 3. Expression of the leghemoglobin gene family in
nodule samples (MapMan representation). Gene expression was
analysed with Mt16KPlus microarrays, by comparison to nitrogen-
starved uninoculated roots. Each square represents a different gene
probe. Up-regulated genes are represented as red squares, following
the color scale shown on the right (with fold ratios indicated as log2
values). WT4, 10, 14, NN correspond to nodules induced by wild-type S.
meliloti 2011 at 4, 10, 14 and 16 days post-inoculation; NN nodules were
treated for 2 days with 10 mM NH4NO3 before harvesting. exoA, bacA
and fixJ correspond to nodules induced by indicated mutant strains of
S. meliloti at 10 days post-inoculation.
doi:10.1371/journal.pone.0016463.g003
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showing inconsistent patterns were scored as differentially

expressed in only one of the nodule samples examined by 16KPlus

microarrays. We therefore conclude that our classification is

reliable, particularly when based on genes scored as differentially

expressed in more than one condition.

We distinguished two major classes of repressed (1) and up-

regulated genes (2); the latter was sub-divided into different groups

according to gene expression patterns at different times and/or in

defective nodules, as summarized in Table 2 and Figure 4, and

described in more detail as follows.

(1) 1387 gene probes were found to be down-regulated in

nodules (‘‘repressed’’ class). They include the MtBGLU1 repressed

marker gene [27], as well as a series of genes potentially involved

in stress responses (e.g. from the phenylpropanoid/flavonoid/

phytoalexin pathways), as recently reported [28]. This class

notably contains members of a variety of multigene families (e.g.

encoding putative transporters, cell wall proteins, enzymes,

transcription factors, cytoskeleton proteins, signalling proteins,

disease resistance proteins…), for which other members were

found to be induced in nodules (see examples in Table S3). This

clearly supports the notion of nodule-preferential paralogous genes

that was previously suggested from a more limited data set [18].

Eight main classes (2.1 to 2.8) were identified among up-

regulated genes, in addition to the minor 2.9 to 2.11 classes

(Table 2 and Figure 4).

(2.1) Genes of this first class (also termed ‘‘zone 1–2’’, 110

probes) were found maximally expressed in 4 dpi immature

nodules and were not expressed in exoA nodules. Their expression

is thus predicted to require the presence of a persistent

meristematic zone 1 and/or an infection zone 2. Indeed zones 1

and 2 are smaller than zone 3 in mature nodules and absent from

exoA nodules at 10 dpi. This conclusion is supported by the

previously determined transcript localisation of nine of these genes

(MtENOD11, MtENOD40, MtN1, MtN6, MtAnn1, EFD, MtRR4,

DAS12) using either reporter gene fusions or in situ hybridization

Table 2. Definition of distinct expression classes amongst genes differentially regulated in Medicago truncatula nodules.

class
designation class or (sub)group description

number
of probes

regulators
of gene
expression

fraction of
up-regulated
genes

fraction of
activated
regulators

1 down-regulated in nodules 1387 97

2.1 zone1-2 strongest expression in immature nodules
and no expression in exoA nodules

110 5 5% 3%

2.2 bacA maximal expression in bacA nodules 87 6

2.3 fixJ maximal expression in fixJ nodules 124 5

2.4 diff1 non induced in 4 dpi nodules, induced in 10 dpi and older nodules
including bacA nodules

347 27 17% 14%

diff2 non induced in 4 dpi nodules, induced in 10 dpi and older nodules
but not bacA nodules

188 12 9% 6%

2.5 fix+ mostly expressed in N-fixing nodules and expression
decreased by nitrate addition

159 12 8% 6%

2.6 all* expressed in most samples (not considering NN) but exoA nodules 95 5

all expressed in most samples (not considering NN) 172 26

2.7 NN maximal expression in ammonium nitrate-treated nodules (16 dpi) 75 8 4% 4%

2.8 exo1 maximal (but not exclusive) expression in exoA nodules 334 62 16% 32%

exo2 up-regulation exclusively in exoA nodules 153 10 7% 5%

minor
categories

2.9 N4 maximal expression in 4 dpi nodules and expression in exoA nodules 10 0 0% 0%

2.10 fix+_NN maximal expression in mature nodules, not affected
by ammonium nitrate-addition

14 1 1% 1%

2.11 wt nodules expression only in wild-type Rhizobium-induced nodules 3 0 0% 0%

unclear unclear pattern 179 13 9% 7%

doi:10.1371/journal.pone.0016463.t002

Figure 4. Graphical representation of the major expression
classes identified in Medicago truncatula nodules. The classes were
defined from the genes scored as differentially regulated in Medicago
truncatula nodules as compared to nitrogen-starved uninoculated
roots. Color code: blue = down-regulated in nodules; black = weak
induction; brown = maximal induction; grey = not considered for pattern
definition.
doi:10.1371/journal.pone.0016463.g004
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analyses [24,26,35–41]. The ‘‘zone 1–2’’ genes may be involved in

various processes, such as meristem activity, NF signalling,

Rhizobium infection or cell differentiation. This class includes two

genes encoding LOG-like proteins, potentially involved in

cytokinin biosynthesis [42,43] (MT005792 and MT010556; see

Table S1 for correspondences with MtGEA affymetrix IDs) and a

gene encoding a zeatin-O-glycosyltranferase (MT009525, termed

MtZOG1), thought to convert active cytokinins into inactive forms

[44]. This is interesting in view of the documented role of

cytokinin in nodule initiation and strongly suggests that the levels

of active cytokinins are actively controlled in the nodule apex.

The remaining classes were all found to be maximally expressed

in 10 dpi or older nodules:

(2.2) The genes of this class (also termed ‘‘bacA’’, 87 gene

probes) were maximally expressed in bacA nodules, indicating that

bacteroid differentiation is not required for their activation. This

group comprised two categories of genes. The first one

corresponds to genes that were also well expressed in 4 dpi WT

nodules, with some of them previously shown be transcribed in the

apical nodule region. We hypothesise that their transcripts

accumulate in bacA nodules because the nitrogen-fixing zone 3

does not differentiate, thus leading to an enlargement of the zone

1–2. We believe this is the reason why the MtHAP2.1 [24],

MtENOD12 [45] and MtMMPL1 [37] nodulin genes were found in

this class. This was also the case for the genes encoding DAS18,

DAS25 and DNF1 signal peptidases, which are required for

targeting NCR/CCP nodule cysteine-rich proteins [46,47] to

bacteroids and essential for symbiosome development [40].

Thirteen NCR genes were found to be transcriptionally activated

prior to the onset of bacteroid differentiation (2 genes from class

2.1, 2 from 2.2 and 9 from 2.6). Considering the importance of

NCR genes in bacteroid differentiation [48], these NCR genes are

very good candidates for triggering the initial steps of this process.

One of these (NCR247, class 2.1) has been shown to possess

antimicrobial activity [48].

The second category of ‘‘bacA’’ genes was poorly expressed in

WT nodules and, similarly to the (2.3) class (termed ‘‘fixJ’’, 124

gene probes), maximally expressed in bacA as well as fixJ nodules.

Many of these genes (e.g. encoding chitinases, ripening protein-like

proteins and cysteine proteases) are likely to be associated with

senescence and consistent with previous studies of nodule

senescence [22,49–51]. Some of these genes were also expressed

in exoA or nitrate-treated (NN) nodules (i.e. situations of

accelerated senescence), or to a lower extent in WT14 nodules,

probably reflecting the initiation of senescence.

(2.4) The largest class of up-regulated genes (termed ‘‘diff’’, 535

probes) was maximally expressed in fixJ and mature WT nodules,

but not or weakly expressed in WT4 nodules. We therefore believe

that these genes are likely to be associated with the differentiation

process giving rise to the nitrogen-fixation zone 3 (not yet present

at 4 dpi). A subset of 347 genes (‘‘diff1’’ subgroup) was already

activated in bacA nodules, in contrast to the remaining 188 genes

(‘‘diff2’’ subgroup). This suggest that the ‘‘diff2’’ genes, that

include the MtN31 (NCR158) and MtCAM1 marker genes [27], are

associated with a later stage of plant cell differentiation

accompanying bacteroid differentiation. The NCR/CCP gene

family represented a large part of the 2.4 class, with 78 and 64

genes respectively in the diff1 and diff2 subgroups, representing

altogether ,85% of the 168 NCR genes detected on the 16K Plus

arrays (Table S1). In addition to the NCR/CCP gene family, the

inhibition of the cytokinin signalling pathway via the type A

response regulator MtRR4 has recently been proposed to

contribute to the triggering of plant and/or bacterial cell

differentiation [26]. We found here that a gene putatively

encoding a cytokinin oxidase (MtCKX1, MT008230), which

catalyses the irreversible degradation of cytokinins [43], belongs

to the ‘‘diff1’’ group. We then showed by in situ hybridisation that

MtCKX1 transcripts are localised between the apical nodule zone 2

and the beginning of zone 3 (Figure 5). This observation is

consistent with the hypothesis that differentiation of tissues

underlying the nodule meristem requires decreasing cytokinin

activity [26]. This could be achieved by complementary pathways

involving three genes expressed in the nodule zone 2: MtRR4

(inhibition of the signalling pathway), MtZOG1 (cytokinin conju-

gation) and MtCKX1 (cytokinin degradation).

(2.5) Genes of the ‘‘fix+’’ group (159 probes) were clearly

associated with the nitrogen fixation process, since they were only

expressed in mature wild-type nodules and were down-regulated

by NH4NO3 addition. As anticipated, this class was found to

comprise genes involved in the nitrogen assimilation pathway (e.g.

glutamine synthase, glutamate synthase, asparagine synthase,

aspartate aminotransferase) [52]. Surprisingly, we also found that

DMI1 (MT011705), well known for its key role in NF signalling

[53,54], belonged to this class. This raises intriguing questions

regarding the possible involvement in late symbiotic stages of

genes identified and characterized so far only for their early

Figure 5. Localisation by in situ hybridisation of MtCKX1
cytokinin oxidase transcripts in Medicago truncatula nodule.
Use of antisense (A) or sense (B) digoxygenin-labelled RNA probes:
hybridization signals were detected only with the antisense probe, in
the zone 2 and upper zone 3, and appeared brownish on these methyl
green-stained nodule sections. (I), (II) and (III) indicate the nodule zone
1, 2 and 3 respectively. Bar = 50 mm.
doi:10.1371/journal.pone.0016463.g005
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symbiotic roles. Similar questions are raised by the expression

patterns of MtSYMREM1 and NIN (see below).

(2.6) Genes of this class (also termed ‘‘all’’, 267 gene probes)

were expressed in most nodule samples. It is likely that some of

these genes are expressed in tissues for which the relative

abundance remains similar irrespective of the nodule develop-

mental stage or age. Thus ENOD2 is expressed in the nodule

parenchyma at the basis and periphery of the nodule [55], while

MtTubb1, a b-tubulin gene, has been shown by promoter:GUS

fusion analysis to be expressed in most nodules tissues [50]. Some

genes may also be expressed in different nodule tissues, like the

remorin gene MtSYMREM1, found to be associated both with the

infection process and with symbiosomes [56], or NIN, shown by in

situ hybridization to be expressed in a region extending from zone

1 to the distal region of zone 3 in pea nodules [57]. A rather large

number of genes (172) were also expressed in empty exoA nodules

at 10 dpi, indicating that they can be expressed independently of

bacterial infection. This could be anticipated for genes contribut-

ing to nodule organogenesis such as MtNIN, but was unexpected

for genes like MtSYMREM1, the lectin gene MtLEC4 or a small

subset of six NCR genes (see Table S1). Different roles may

therefore have to be envisaged for such genes or gene families.

(2.7) Genes of the ‘‘NN’’ (for Nitrate-treated Nodules) class (75

probes) were maximally expressed following NH4NO3 addition

and comprised genes potentially involved in NH4NO3 assimilation

(e.g. two glutamate dehydrogenase genes: MT000848 and

MT015442) or remobilisation processes (e.g. a beta amylase and

five heat-shock protein genes). This group also included a non

symbiotic haemoglobin-like gene (MT000284), in contrast to the

down-regulation of all the other leghemoglobin genes (Table S1

and Figure 2). This is a good example of mutually exclusive

expression patterns within gene families. A few genes (termed

‘‘fix+_NN’’ in Table 2) were well expressed both in N-fixing

nodules and NN nodules, such as two asparagine synthase genes,

and may therefore be involved in the assimilation or transport of

nitrogen, whether resulting from symbiotic fixation or nitrogen

uptake.

(2.8) This last class corresponds to genes maximally (‘‘exo1’’

subgroup, 334 genes) or exclusively (‘‘exo2’’ subgroup, 153 genes)

expressed in exoA nodules. Many of these genes are involved in

secondary metabolism, and notably in flavonoid and phenylpro-

panoid pathways (see a MapMan representation in Figure 6). This

class includes 14 out of the 20 genes most strongly induced by an

elicitor (invertase) in M. truncatula suspension cells [58]. Substantial

differences between exoA and WT nodules were also found

amongst the so-called ‘‘biotic stress’’ genes (MapMan classifica-

tion). These include genes for a variety of proteins involved in

resistance to pathogens: NBS-LRR proteins [59] (with 24

differentially affected genes), RAR1 (MT003202), an important

component of the resistance specified by NBS-LRR proteins [60],

homologues of the EDS1 (MT007863) and PAD4 proteins

(MT007233) which function together in plant immunity [61],

disease resistance response proteins, polygalacturonase inhibitor

proteins (five probes), and a NADPH oxidase (MT014380). This

class also comprises two genes playing a key role in jasmonic acid

biosynthesis [62] encoding allene oxide synthase and cyclase

respectively (MT005924 and MT000081). These observations

support and extend previous studies suggesting an important role

for Rhizobium surface polysaccharides in limiting plant defence

reactions [28,63–65]. However, the activation, albeit at a lower

level, of a substantial fraction of defence-like genes in WT nodules

(‘‘exo1’’ subgroup) raises interesting questions regarding their role

during normal nodule development, discussed below in the section

on regulator genes.

The most recent transcriptomic analysis of the nodulation

programme in M. truncatula [28] has identified five activation

profiles from a time course study of nodule development, with

symbiotic mutants being analysed independently. Here we have

combined data for both normal and defective nodulation, which

has led us to define eight major activation patterns. A comparison

of these two studies reveals the following information.

Our 2.1 (‘‘zone 1–2’’) class corresponds essentially to profiles 4

and 5 described in [28], i.e. genes maximally expressed in

immature nodules. The remaining three profiles (profiles 6 to 8)

were described in [28] as representing genes expressed in mature

nodules. We examined a set of 100 up-regulated genes from

profiles 6–8 shared in both studies (using the LEGoo portal to find

the correspondence between MtGI7 TC [28] and Mt16KPlus

oligonucleotide identifiers). We found that there was an overall

good consistency between both studies, with Profile 6 genes found

in many cases in earlier expression classes (2.1 and 2.2) than Profile

7 and 8 genes (mostly found in 2.4). However the fact that we

integrated data from defective nodules allowed to distinguish more

expression patterns than in [28].

It has been proposed in [28] that nodulation essentially involves

two phases of gene expression reprogramming. The results from our

study allowed us to further identify four major phases of activation/

reprogramming related to: (i) the early nodule symbiotic zones 1 and

2 (class 2.1 and part of 2.2) and potentially involved in early NF

signalling and/or bacterial infection; nodule zone 3 differentiation,

either (ii) preceding (‘‘diff1’’ genes) or (iii) dependent upon bacteroid

differentiation (‘‘diff2’’ genes); (iv) nitrogen fixation (‘‘fix+’’ genes). In

addition to these four specific phases, we identified a fifth set of

genes expressed either during several stages or in several tissues

(class 2.6 ‘‘All’’), as well as two subsets associated with senescence

(part of class 2.2 ‘‘bacA’’, 2.3 ‘‘fixJ’’, 2.7 ‘‘NN’’ and 2.8 ‘‘exo’’) or

plant stress/defence responses (Class 2.8).

Identification and specificity of regulatory genes
associated with the different nodule expression patterns

Having identified distinct patterns of gene expression in

nodules, we were interested in the associated regulators of gene

Figure 6. Expression pattern of secondary metabolism genes in
wild type and S. meliloti exoA-induced nodules. Nodules were
harvested at 4 (WT4) or 10 (WT10, exoA) days post inoculation and gene
expression was analysed using Mt16KPlus microarrays, by comparison
to nitrogen-starved uninoculated roots. Each square represents a
different gene probe (MapMan representation).
doi:10.1371/journal.pone.0016463.g006
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expression, and notably TFs. We identified 192 genes up-regulated

in nodules (Table S4) that belong to 35 gene families encoding

putative TFs and proteins involved in post-transcriptional

regulation, chromatin remodelling or protein degradation

(Table 3). Seven TF families were highly represented, with

between 9 and 24 gene probes each. The representation of five of

these (Myb, bHLH, C2H2, NAM/NAC, HB = homeobox fami-

lies) correlated with the known size of the gene family in M.

truncatula [4], whereas members of the ERF and WRKY families

were several-fold over-represented.

We examined the distribution of these 192 regulatory genes

within the expression classes that we have defined (Table 2, 3 and

S1) as well as other expression data available in the MtGEA (V2,

July 2009 release; 64 experiments, 156 Affymetrix gene chips) and

LEGoo databases (October 2009 release; data from 42 publica-

tions on M. truncatula, based upon various transcriptomic tools

including three generations of microarrays). Data mining revealed

that only six regulators (MT000013, MT003698, MT006389,

MT007392, MT009598, MT015410) were also up-regulated

during the arbuscular mycorrhizal symbiosis [29,66,67]. These

were distributed between six TF families and four regulation

classes (‘‘bacA’’, ‘‘diff2’’, ‘‘fix+’’ and ‘‘NN’’) and all of them were

also expressed in non symbiotic conditions.

A small number of regulatory genes were predicted to be

expressed preferentially in the nodule apical region, with five

‘‘zone 1–2’’ genes and six ‘‘bacA’’ genes including MtHAP2.1 [24].

Table 3. Thirty-five classes of gene expression regulators detected as up-regulated in Medicago truncatula nodules.

protein
family

regulated
process

induced
genes

regulation
classes

major regulation
classes

basic helix-loop-helix (bHLH) transcription 13 6 2.8: exo1 (6)

bZIP transcription 7 4 2.4: diff1/2 (4)

CCAAT-binding TF transcription 5 4

CCR4-NOT transcription 3 3 2.4: diff1/2 (2)

DNA-binding protein-like transcription 3 3

ERF/AP2 transcription 24 7 2.6: all (9), 2.5: exo1/2 (9)

G2-like transcription 1 1

GRAS transcription 6 3 2.8: exo1 (4)

HB transcription 9 5 2.4: diff (5)

HSF transcription 2 2

KH post-transcriptional 1 1

LIM domain-containing protein transcription 1 1

LOB domain protein transcription 1 1

MADS box transcription 1 1

TFIIS transcription 1 1

Myb transcription 18 9 2.4: diff1/2 (4), 2.8: exo1/2 (4)

no apical meristem (NAM) transcription 12 6 2.4: diff1/2 (4)

ovate protein family transcription 1 1

RWP-RK domain protein transcription 1 1

S1FA transcription 1 1

SAR DNA-binding protein transcription 1 1

TFIIS containing protein transcription 1 1

WRKY transcription 24 1 2.8: exo1/2 (20)

Zinc finger (Ran-binding) nuclear protein import 1 1

Zinc finger, AN1-like protein degradation 4 4

Zinc finger, B-box type transcription 3 2

Zinc finger, C2H2 type transcription 10 5 2.8: exo1 (4)

Zinc finger, CCCH-type post-transcriptional reg. 7 6

Zinc finger, CCHC-type unclear 1 1

Zinc finger, DHHC type unclear 1 1

Zinc finger, Dof-type transcription 1 1

Zinc finger, FYVE/PHD-type unclear 1 1

Zinc finger, GRF-type unclear 1 1

Zinc finger, RING-type protein degradation 23 6 none

Zinc finger, TAZ-type chromatin remodeling 2 2

The number of induced genes is indicated as well as the number of corresponding regulation classes. Figures in parentheses indicate the number of genes.
doi:10.1371/journal.pone.0016463.t003
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Four of these were found to be nodule-specific (based on current

MtGEA data) or nodule-preferential (Table 4). Two new CCATT-

binding factors were identified, with one ‘‘zone 1–2’’ MtHAP5

(MT007765) also expressed in other organs (notably seeds), and

one other ‘‘bacA’’ MtHAP2 (termed MtHAP2.2, MT016112)

expressed at a lower level in nodules and a much higher level in

roots compared with MtHAP2.1. By looking for co-expressed genes

using the MtGEA data (Pearson correlation coefficient $0.8) we

identified three additional candidate regulatory genes with a

similar expression pattern (Table 4 and Table S5), although none

of these are nodule-specific. One of these genes encodes a WRKY

TF, described to be down-regulated by the pathogenic signal

methyl jasmonate [68,69].

The ‘‘diff’’ class included significantly more candidate regula-

tory genes (39 genes belonging to 16 regulator families), encoding

notably five homeodomain proteins and a member of the plant-

specific ovate protein family, described to interact with homeo-

domain proteins [70], which is also strongly expressed in other

organs. Interestingly, a third HAP2 gene (MtHAP2.3; MT005075),

maximally expressed in seeds, was found in the ‘‘diff1’’ subgroup.

Two genes that are highly nodule-preferential, encoding a zinc

finger C2H2-type protein (MT002933) and a NAM TF

Table 4. Regulators of gene expression mostly or preferentially detected in Medicago truncatula nodules.

16KPLus ID affy ID source name, regulator family class

maximum
induction
ratio (arrays)

maximum
induction
ratio (Affy)

MT010767* Mtr.14503.1.S1_at* 16KPLus MtN20, Zinc finger, GRF type zone1-2 7.4 (N4) 644 (N4)

MT009625 Mtr.38198.1.S1_at 16KPLus Zinc finger, RING-type zone1-2 1.6 (N4) 1.7 (N4)

MT003118 Mtr.41581.1.S1_at 16KPLus EFD, ERF/AP2 zone1-2 4.4 (N4) 54.3 (N4)

MT003118 Mtr.27549.1.S1_at MtGEA WRKY zone1-2 like 16 (N4)

Mtr.39406.1.S1_at MtGEA AP2/EREBP zone1-2 like 25 (N4)

Mtr.14760.1.S1_at MtGEA basic helix-loop-helix (bHLH) zone1-2 like 41 (N4)

MT008842* Mtr.43750.1.S1_at* 16KPLus MtHAP2.1, CCAAT-binding
transcription factor

bacA 4.5 (N4) 453 (N4)

MT013353 Mtr.19842.1.S1_at 16KPLus GRAS fixJ 1.9 (fixJ) 4.7 (NN)

MT002933* Mtr.38404.1.S1_at* 16KPLus Zinc finger, C2H2 type diff1 4.0 (N10) 170 (N10)

MT002627 Mtr.43742.1.S1_at 16KPLus bZIP diff1 2.9 (bacA) 4.2 (N10)

MT007902 Mtr.19536.1.S1_at 16KPLus no apical meristem (NAM) diff1 2.5 (N10) 4.6 (N10)

MT016328 Mtr.41968.1.S1_at 16KPLus no apical meristem (NAM) diff1 2.1 (N10) 32 (N10)

MT014036 Mtr.37567.1.S1_at 16KPLus Homedomain protein diff1 2.0 (N10) 5.6 (N10)

Mtr.23988.1.S1_at MtGEA basic helix-loop-helix (bHLH) diff-like 37 (N10)

Mtr.9532.1.S1_at MtGEA no apical meristem (NAM) diff-like 8.1 (N10)

Mtr.31954.1.S1_at* MtGEA GRAS diff-like 25 (N10)

Mtr.31955.1.S1_at* MtGEA GRAS diff-like 36 (N10)

MT016186* Mtr.28107.1.S1_at* 16KPLus cAMP response element
binding prot.

fix+ or fix+_NN 1.6 (N10) 3.5 (N10)

MT007392 Mtr.43099.1.S1_at 16KPLus Myb fix+ 1.7 (N14) 1.8 (N10)

MT011890 Mtr.9880.1.S1_at 16KPLus Zinc finger, DHHC type fix+ 1.6 (N10) 4.7 (N10)

Mtr.20585.1.S1_at MtGEA Homeodomain protein fix+-like 2.3 (N14)

MT010803* Mtr.7232.1.S1_at* 16KPLus MtC00553, unclear all 15.6 (bacA) 236 (N14)

MT016467* Mtr.28094.1.S1_at* 16KPLus MtNIN, RWP-RK
domain-containing protein

all 4.0 (bacA) 98 (N14)

MT001831 Mtr.43700.1.S1_at 16KPLus Homeodomain protein all 2.8 (N10) 13.2 (N10)

MT002843 Mtr.9513.1.S1_at 16KPLus Myb all 2.1 (N10) 10.8 (N10)

MT012710 Mtr.10993.1.S1_at 16KPLus basic helix-loop-helix (bHLH) all 1.9 (fixJ) 3.7 (N4)

MT001831 Mtr.43700.1.S1_at 16KPLus Homeodomain protein all 2.8 (N10) 13.2 (N10)

MT009243 Mtr.10987.1.S1_at 16KPLus ERF/AP2 all 2.2 (bacA) 2.8 (N14)

Mtr.18387.1.S1_at MtGEA Zinc finger, C2H2 type all-like 117 (N10)

MT010468 Mtr.985.1.S1_at 16KPLus ERF/AP2 unclear 1.5 (N10) 2.9 (N4)

MT015410 Mtr.12441.1.S1_at 16KPLus basic helix-loop-helix (bHLH) NN 1.5 (NN) 2.2 (NN)

MT016119 Mtr.44189.1.S1_at 16KPLus Homeodomain protein unclear 1.7 (N10) 2.6 (N10)

Are indicated the observed ratios between the level of expression in nodules and nitrogen-starved non-inoculated roots, as determined by Affymetrix chips or 16KPlus
microarrays. The gene probes identified from the M. truncatula gene atlas were found by searching genes that were co-expressed with nodulation-specific gene probes
(as described in Table S5). The expression pattern of these genes was classified using the gene atlas data i.e. without mutant nodules. Parentheses in the ‘‘ratio’’ columns
indicate the condition of maximum expression. Asterisks indicate genes the expression of which appeared to be nodule-‘‘specific’’ or highly preferential.
doi:10.1371/journal.pone.0016463.t004
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(MT016328) (Table 4), are likely to be of particular interest for

studying nodule differentiation due to their putatively specialized

functions in this process. Using the MtGEA data we were also able

to identify two new GRAS TFs that are co-expressed with the

‘‘diff’’ genes and also up-regulated (six and nine-fold respectively)

during the endomycorrhizal symbiosis (Mtr.31954.1.S1_at,

Mtr.31955.1.S1_at, Table 4).

Amongst the 12 identified ‘‘fix+’’ regulators, only one

(MT016186), although weakly expressed, seems to have a

nodulation-specific expression pattern while two are nodule-

preferential (Table 4), but with a modest activation ratio. This

suggests that the regulators accompanying the symbiotic N-

fixation process are for a large part shared with other metabolic

pathways or plant processes. Similarly, the addition of ammonium

nitrate to mature nodules (‘‘NN’’ genes) did not lead to activation

of nodule-specific regulators. The presence of two MYB TFs

(MT005520, MT002428), previously reported to be up-regulated

by N satiety in M. truncatula split-roots [71], suggest a direct link

with the ammonium nitrate treatment. These TFs may also

contribute to regulating the remobilisation processes accompany-

ing the arrest of nitrogen fixation and the redirection of

metabolites from nodules to the rest of the plant.

The ‘‘all’’ class (32 regulator genes from 15 families) comprised

two nodulation-specific regulators (Table 4) including MtNIN, well

known to play an essential role in nodule initiation [57,72,73].

This class also contained a second MtHAP5 gene (MT000406),

expressed in many other organs (shoots, flowers, seeds…) and

conditions. It thus appears that several MtHAP2 and MtHAP5

genes have different expression patterns in nodules, potentially

leading to various combinations of oligomeric CCATT-binding

complexes. It will now be interesting to investigate whether such

complexes may have different roles at different stages of nodule

development (or in different tissues).

This global survey of nodule-associated regulators thus allowed

us to identify 32 genes specifically or maximally expressed during

nodulation, including nine genes indirectly identified from the

MtGEA. Thus only a small percentage of the regulator genes

found by 16KPlus microarrays were either nodule-‘‘specific’’ or

nodule-preferential, suggesting that most nodule-associated regu-

lators have been recruited from other genetic programs. Many

nodule regulators are also expressed in either roots or seeds, as well

as in response to plant pathogens or pathogenic signals and in

response to salt stress (22% and 18% shared regulators

respectively, based on LEGoo data, Table S6). However, the

‘‘zone1-2’’, the ‘‘diff’’ and the ‘‘fix+’’ classes shared very few

regulators with either pathogen or salt stress responses (2 out of 57

regulator genes in total), in contrast to the ‘‘exo’’ class

(approximately 65% of shared regulators). This is consistent with

the fact that the ‘‘zone1-2’’ and ‘‘diff’’ genes are much more

nodulation specific.

The ‘‘exo’’ class contained the largest number of candidate

regulator genes (a total of 72 from 19 regulator families), but none

were nodulation-specific. These included most of the nodule-

associated WRKYs (21 out of 24 probes), a family of TFs often

involved in stress responses [74]. LEGoo interrogation revealed

that 44% and 30% of the ‘‘exo1’’ and ‘‘exo2’’ regulators

respectively were up-regulated in response to pathogens/patho-

genic signals (see Table S6 and Figure S1 for an example). It has

been shown that different subsets of M. truncatula TFs are induced

following treatment either with yeast elicitor (a pathogen mimic) or

methyl jasmonate (a wound/necrotrophic pathogen signal) [68].

We found that both subsets of TF were induced in the ‘‘exo1’’

class, with seven members from five TF families and notably the

most strongly activated TFs for each subset (a WRKY TF:

MT006670 and a bHLH TF: MT009684, induced respectively

600-fold by yeast elicitor and 240-fold by methyl jasmonate [68]).

We also found a possible ortholog of the best characterized TF in

jasmonate signalling, AtMYC2 (MT009684 bHLH), also reported

in a previous study to be induced during nodulation [68]. Several

other typical markers of the jasmonate pathway were activated in

both WT and defective nodules: a jasmonate ZIM-domain (JAZ-

like) protein (MT002288) and four of the TFs most strongly

induced by jasmonate (one HD-ZIP: MT008226; two WRKY:

MT015782, MT014097; one AP2/ERF: MT004784) (Table S6).

Jasmonates are a family of oxylipins that regulate plant

responses to environmental and developmental cues [75,76] and

for which positive and negative effects have been reported in

relation to root endosymbioses [77]. Jasmonate has been shown to

inhibit the NF signalling pathway in M. truncatula roots [78] and

proposed on the basis of indirect evidence (induction of

lipoxygenase genes) to be involved in nodule senescence [22].

The fact that jasmonate appears to be produced in normal

nodules, even at an immature stage (4 dpi) suggests that this plant

hormone may have a wider role than suspected so far. Jasmonate

has been proposed to mediate salt stress responses in the M.

truncatula root apex [79], which may explain, at least in part, why

numerous salt-induced genes and regulators are common to root

nodulation. Characterizing mutants affected in the production or

perception/signalling of jasmonate would be very useful to clarify

its role(s) during nodulation, which may of course differ depending

upon the developmental stage and tissue.

While it is well established that there is an inhibition of defence

reactions in the root during initial interactions with Rhizobium, our

data raise the question of a possible (re)activation of defence or

stress responses during nodule development. This is more

pronounced in non-infected exoA nodules and it can be considered

that ‘‘exo2’’ genes which are activated in only these aberrant

nodules are not informative about WT nodules. However ‘‘exo1’’

genes are also expressed in WT nodules, including at 4 dpi, i.e a

stage when nodules are actively developing. Reactivation of gene

expression for several defence genes at 72 hpi, following an initial

down-regulation during the first 48 h, has already been reported

[17], and includes one WRKY gene (BG582680) that belongs to

the ‘‘exo1’’ group (MT01497). However, we cannot exclude the

possibility that the nodule harvesting process may be sufficient in

itself to induce stress-associated genes (see e.g. [80]). Considering

the homology between NF receptors and receptors involved in

defence-related perception of chitin oligomers [81], or between

NCR peptides and antimicrobial cysteine-rich peptides [48], it is

also conceivable that certain ‘‘exo1’’ regulators have been

recruited from defence pathways and contribute either to nodule

development or the control of rhizobia.

Identification of different patterns of symbiotic gene
activation in roots

Following the identification of different gene expression patterns

and regulators in nodules, we decided to further analyse the

expression of certain regulator and nodulation marker genes

during early symbiotic stages in roots. For this, we carried out

quantitative RT-PCR, a highly sensitive and inexpensive method

convenient for analysing multiple samples.

To analyse gene expression during early pre-infection stages, we

used NF-treated roots (1028 M NF, 24 h treatment) of the

supernodulating double sunn-skl mutant, previously shown to be

significantly more reactive to NFs as compared to WT M. truncatula

[82]. To study gene expression during the symbiotic association

with Rhizobium, we analysed WT M. truncatula roots harvested at 0,

1, 2 and 3 dpi. Expression analyses (1 and 3 dpi with S. meliloti) in
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symbiotic mutant backgrounds were also included in order to

define groups of genes involved in early pre-infection or later

infection/nodule organogenesis. The nfp mutation (nfp-1 and nfp-2

alleles), defective in all NF-dependent processes [83,84] including

symbiotic gene activation [16] was used as a negative control. The

symbiotic plant or bacterial mutants hcl-1, lin and exoA affected in

downstream infection and nodule organogenesis processes were

also included. hcl-1 (a mutant allele of the putative NF receptor

LYK3), lin (lumpy infection mutant, defective in a host U-box

protein, [85,86]) and S. meliloti exoA mutants all display defective

infection phenotypes. exoA and hcl-1 are blocked at the stage of

infection thread initiation while infection thread progression in

root hairs is limited in the lin mutant. In these three mutants early

NF signalling and cortical cell activation are not seriously modified

[32,86–88]. Nodule primordia are initiated normally in lin and in

response to exoA inoculation, but further nodule development is

impaired in lin, while non-infected exoA nodules stop growing after

several days. Finally, we used efd-1, a deletion mutant of the AP2/

ERF transcription factor EFD, in which infection and nodule

formation are initiated normally, but where impaired negative

feedback regulation leads to higher number of nodules then for

WT plants [26].

We obtained data for a total of 78 genes encoding known

nodulation markers, gene expression regulators and signalling

genes (Table S7). Most of these genes were taken from the

16KPlus data, including members from eleven of the regulation

(sub)groups that we defined earlier. We also included six genes

previously identified with 16 K microarrays as NF-induced [82]

and two genes selected from a set of cDNA sequences generated

from NF-treated purified root hairs (F. de Carvalho-Niebel and A.

Niebel, unpublished data). We first validated our system by

showing that the expression of nine genes in response to NF or S.

meliloti (activation for MtAnn1, MtENOD11, MtENOD40,

MtHAP2.1, MtNIN, MtNIP1, MtN24 and MtTUBB1 and repression

for MtBGLU1) was similar to previously published data [16,19,

38,88–90].

The seven tested genes from the ‘‘repressed’’ nodule class were

either repressed or non-differentially regulated in roots. Two

repression patterns were observed amongst these genes (Table 5,

Table S6, Figure 7). The first one, termed R1, has already been

described for MtBGLU1 [16], for which repression is triggered by

purified NF and dependent on a functional NF signalling pathway

since abolished in the nfp mutant. The second one, termed R2, was

exhibited by LYK3, the expression of which was repressed by

inoculation with S. meliloti but not by treatment with purified NF.

This repression was not observed with exoA, hcl-1, and lin mutants,

strongly suggesting that it is directly linked to the Rhizobium

infection process. From a biological point of view, turning down

the expression of the NF entry receptor by S. meliloti infections may

contribute to controlling new rounds of infections by Rhizobium

and may thus participate in the negative feed back inhibition of

infections and nodulation.

Only a fraction of the genes up-regulated in nodule were found

to be also activated in roots. Many of the genes predicted to be

expressed in nodule zone 1 or 2 were induced in roots, with 9/9

tested ‘‘zone1-2’’ (2.1) genes and 6/13 ‘‘all’’ (2.6) genes. By

contrast, only a small proportion (5/46) of the genes belonging to

the other tested regulation classes (2.2, 2.4, 2.5, 2.7, 2.8) were

found to be up-regulated in roots (Table S7). This is consistent

with the fact that the processes related to symbiotic signalling and

infection occur both in the root and in the nodule zone 1 and/or 2,

in contrast to processes involved in late nodule development or

activity. A few exceptions were observed, with notably the

leghemoglobin gene MtLb1 (‘‘diff2’’ class), induced very early by

NFs albeit at a level about 1000 fold lower as compared to mature

nodules. Early leghemoglobin gene induction has already been

described in Vicia sativa and hypothesised to be linked to increased

respiration of NF-treated root hairs [91].

Four activation patterns could be distinguished in roots (Table 5

and 6, Figure 7), thus defining distinct early developmental stages.

The first two correspond to genes induced by purified NF and

whose activation is dependent on a functional NFP gene. Pattern

A1 genes are HCL (LYK3)-independent and therefore involved in

pre-infection. They include several early nodulin genes shown

before to be expressed during the preinfection stage or induced by

NF, like MtENOD11 [36], MtAnn1 [38], MtENOD40 [39], MtNIN

[73] and MtHAP2.1 [82]. This group also comprised two MYB

TF-encoding genes, one previously found to be NF-induced [82]

and a novel gene from the NF-treated root hair cDNA library.

Other interesting members of this group are several genes

encoding membrane-associated proteins, including MtN21 and

MtN24 (two nodulation specific genes, first described in [90]) and a

new receptor-like kinase gene identified from the root hair library

(highly homologous to AtRLK1). These proteins may play a role at

the plasma membrane level, possibly in relation to the NF

perception/signalling machinery or phytohormone transport.

Pattern A2 corresponds to genes that were not induced in hcl-1

and responded poorly to the exoA mutant, thus suggesting a role in

Table 5. Definition of different activation patterns in Medicago truncatula roots.

Pattern NF WT 1 dpi WT 3 dpi nfp hcl-1 lin exoA efd-1

activated A1 + + +/++ 0 + + + +

activated A2 + + ++ 0 0 + 0 +

activated A3 0 + ++ 0 0 +2 +2 +

activated A4 0 + ++ 0 0 0 0 +/+2

repressed R1 2 2 2 0 2 2 2 2

repressed R2 0 2 2 0 0 0 0 2

repressed R3 2 2 2 2 2 0 0 2

repressed R4 2 2 2 2 2 2 2 2

+, 2 and 0 respectively mean induction, repression and no differential expression as compared to control roots. +2 means a weaker induction than in the wild type
(WT) situations, while ++ indicates the highest level of expression. +/++ indicates that some genes from this class had a + level of expression while others had a ++ level;
similarly +/+2 indicates that some genes had a + level while others had a +2 level. NF stands for response to 1028 M purified Nod factors (24 h treatment), WT for
response to WT S. meliloti. nfp, hcl-1, lin, exoA and efd-1 indicate the tested plant or bacterial mutants.
doi:10.1371/journal.pone.0016463.t005
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early steps of infection thread formation. This pattern was

exhibited by two genes: a GH3 auxin-responsive gene and a gene

homologous to the infection-associated MtN1 gene [41] which is

strongly induced (19-fold) by nitrogen starvation [71], a condition

necessary for successful nodulation. These two genes represent

potential markers for the NF entry receptor pathway [88,92]. The

fact that GH3 is strongly induced by auxin suggests that this stage

may be correlated with auxin accumulation in the root. The fact

Figure 7. Graphical representation of the different expression patterns identified in Medicago truncatula roots. Classes were defined
from the genes scored as differentially regulated in Medicago truncatula roots by Q-RT-PCR analyses, following 1028 M NF addition (24 h incubation,
in the sunn sickle double mutant background) or S. meliloti inoculation as compared to control roots. WT1 and WT3 respectively mean one or three
day post-inoculation with wild type S. meliloti. Color code: blue = down-regulated; white = no differential expression; brownish = up-regulated (the
darkest corresponding to maximal induction).
doi:10.1371/journal.pone.0016463.g007

Table 6. Expression patterns in roots of nodule- or root hair-associated genes.

nodule regu-
lation class Identifier origin annotation

root
pattern

zone1-2 MT008495 16K+ MtAnn1 annexin A1

zone1-2 MT007328 16K+ MtENOD40 A1

zone1-2 MT016468 16K+ MtENOD11 A1

zone1-2 MT008842 16K+ MtHAP2.1; nodulation-specific A1

zone1-2 MT016469 16K+ MtN2 (MATH, TRAF domains); nodulation-specific A1

zone1-2 MT001725 16K+ MtN1-like, nodulation-specific A2

zone1-2 MT010767 16K+ MtN20 (Zinc finger, GRF type); nodulation-specific A3

zone1-2 MT006735 16K+ Myb A3

zone1-2 MT010452 16K+ MtN19; nodulation-specific A4

zone1-2 MT003118 16K+ EFD (ERF) A4

all MT016467 16K+ MtNIN A1

all MT008693 16K+ MtN24 (membrane protein); nodulation-specific A1

all* MT007813 16K+ MtTubb1 tubulin A1

all* MT002234 16K-NF MtN21 (transporter-like family); nodulation-specific A1

all MT000633 16K+ GH3 auxin response gene A2

all MT007335 16K+ MtLEC4 A4

all* MT003955 16K+ bHLH A4

diff1 MT007526 16K+ MtNip1 (Nodulin 26) A1

diff2 MT015113 16K+ MtLb1 leghemoglobin; nodulation-specific A1

exo1 MT009947 16K+ DNA-binding WRKY A3

nd MtC70568 rh cDNAs MYB (LAF1-like) A1

nd MtC70235 rh cDNAs RLK receptor like kinase A1

nd MT003798 16K-NF MYB (SHAQKYF class) A1

rh cDNA means Nod factor-treated root hair cDNA library; 16K-NF means search of Nod factor-induced genes with 16 K microarrays [82].
doi:10.1371/journal.pone.0016463.t006
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that GH3 and MtN1-like genes were not activated following

inoculation with the S. meliloti exoA mutant may be due to the

inability of this mutant to prevent plant defence reactions.

Other categories of genes were activated later during the

interaction since they were not induced following 24 h NF treatment.

Their activation was HCL-dependant and either detectable or absent

in the lin mutant (Pattern A3 and A4 respectively). Pattern A4 genes

(e.g. MtLEC4, MtN19 and EFD) are thus likely to be activated after

Pattern A3 genes (e.g. MtN20). MtN19 activation was strongly

reduced in the efd-1 mutant both in roots (this study) and in nodules

[26], making it a possible target gene of EFD. The role of MtN19

might thus be related to negative feedback inhibition of nodule

initiation, as proposed for EFD in the root.

A set of nodule-induced genes were found to be repressed in S.

meliloti-inoculated roots. This repression did not rely upon a

functional HCL gene but was LIN-dependent, thus defining a new

repression pattern termed R3. Most of these genes were from the

‘‘exo’’ class. This LIN-dependent/NF pathway-independent repres-

sion was generally not observed with the exoA mutant. Data mining

with LEGoo showed that a significant proportion of these repressed

genes are induced by plant pathogens or pathogenic signals. LIN

may therefore be involved in the down-regulation of defence-like

genes in roots, required to permit S. meliloti infection. This would be

entirely consistent with the hypothesized altered regulation of plant

defence during rhizobial invasion of lin [86]. The absence of

bacterial EPS (as in exoA) would prevent this down regulation and

consequently prevent S. meliloti infection. It will now be interesting to

evaluate whether LIN is on a (so far uncharacterised) pathway

involved in EPS signalling which is critical for successful infections.

Finally, a single gene from the NN class possessed a distinct

repression pattern (R4) which was unaffected by any of the tested

mutations. This gene encodes a transcription factor up-regulated

by N satiety [71] and therefore likely to be positively controlled by

a signal linked to the plant N nutritional status. This would explain

why its expression decreases in NH4NO3-starved plants.

In conclusion, by global analyses of gene expression using both

WT and symbiotic mutant material, we have identified distinct

patterns of gene activation or repression in roots and nodules,

complementary to previous studies [17,27,28], as well as

associated candidate regulators. This and other studies aim to

define the temporal order of activation/repression and the

hierarchy of multiple gene expression within the complex

symbiotic programme. We can anticipate that approaches based

on physical dissection and transcriptome analyses of defined root

or nodule tissues will also be very useful for the understanding of

gene networks associated to nodule development and activity. This

work also shows the necessity and value of efficient data mining

tools. Those are critical to combine various sources of information,

cross-compare genetic programmes involved in different plant

responses and developmental pathways, and provide a solid basis

for selecting genes for further functional studies.

Materials and Methods

Plant growth and Bacterial strains
M. truncatula cv Jemalong A17 (wild type, nfp-1, nfp-2, hcl-1, lin

and efd-1 lines) was grown in aeroponic caissons as described in

[93], with the following chamber conditions: temperature: 22uC;

75% hygrometry; light intensity: 200 mE.m22.s21; light-dark

photoperiod: 16 h–8 h. Wild type S. meliloti RCR2011 pXLGD4

(GMI6526), S. meliloti RCR2011 exoA pXLGD4 (GMI3072), S.

meliloti RCR2011 bacA pXLGD4 (GMI11491) and S. meliloti

RCR2011 fixJ pXLGD4 (GMI5730) were grown at 28uC in

tryptone yeast medium supplemented with 6 mM calcium chloride

and 10 mg.mL21 tetracycline. For microarray analyses, plants

were grown for 2 weeks in caisson growth medium [36] supple-

mented with 10 mM NH4NO3, then for 3 days in nitrogen-free

caisson growth medium before inoculation. For Q-RT-PCR

experiments, seedlings were grown for 5 days in nitrogen-free

caisson growth medium before inoculation. Caissons (10 L of

growth medium) were inoculated with 10 mL of bacterial culture

diluted to OD600 = 1 in nitrogen-free plant growth medium. For

nodule harvesting, segments of nodulated root systems were kept

on ice for a few minutes while nodules were cut out; those were

immediately frozen in liquid nitrogen and stored at 280uC. Each

nodule or control root sample was harvested from 50 plants, each

biological repetition corresponding to a different caisson.

Microarray analyses
Total RNA was extracted with the Trizol RNA extraction kit

(Invitrogen) then purified on a Microcon-30 column (Millipore) and

RNA quality was checked using a Bioanalyser (Agilent Technolo-

gies). Sixteen micrograms of total RNA were used to generate Cy3

and Cy5-labelled cDNAs as in [29]. The Mt16KPlus microarrays

are described at http://www.ebi.ac.uk/arrayexpress (accession

number A-MEXP-138). Hybridization of targets, image acquisition

and analysis were carried out following [29], using an ASP

hybridization station (Amersham Biosciences) and the ImaGene

5.5 software (Biodiscovery, Los Angeles). Four repetitions were

analysed for each nodule sample, using a same reference sample

(nitrogen-starved non inoculated roots) for all microarray experi-

ments. All data is MIAME compliant; the raw data has been

deposited in the MIAME compliant ArrayExpress database

(accession number: E-TABM-688). Data were processed as

indicated in [26] (normalization, t-statistics and multiple-compar-

ison corrections with the Benjamini and Hochberg method [94,95])

with the EMMA2 software [96]. The differentially regulated gene

probes were automatically annotated, using the corresponding

IMGAG gene annotation (http://www.medicago.org/genome/

IMGAG/) [97] when available, as well as the annotation of the

best hit in TAIR [98] and Swissprot [99] databases.

Quantitative RT-PCR analyses
RNA samples (three biological repetitions per sample) were

isolated using the SV total RNA extraction kit (Promega) following

the manufacturer’s procedure and analysed with a Bioanalyser

(Agilent Technologies). The absence of genomic DNA contami-

nation was verified by quantitative PCR with primers for the

MtMADS1 gene intron and the EFD promoter (Table S8). Reverse

transcription was performed on 2 to 3 mg of RNA using the

superscript reverse transcriptase II (Invitrogen) and anchored

oligo(dT). Quantitative RT-PCR analyses were conducted on 384-

well plates, using a LightCycler 480 (Roche) with the manufac-

turer’s recommended conditions and the primers shown in Table

S8. Cycling conditions were as follows: 95uC for 5 min, 45 cycles

at 95uC for 15 s and 60uC for 1 min. We used an ubiquitin gene as

an internal standard for sample comparisons.

In situ hybridizations
Four independent experiments were conducted using digoxigenin-

labeled riboprobes produced by in vitro transcription with either T7

or SP6 RNA polymerase (antisense and sense probes respectively)

(Promega), following the manufacturer’s recommendations. Alkaline

hydrolysis was carried out in sodium carbonate buffer, pH 10.2 to

obtain an average probe length of about 150 nucleotides. Nodules

were fixed in 4% paraformaldehyde in 100 mM phosphate buffer

(pH 7.4), embedded in paraffin and cut in 8 mm sections, using a

Reichert-Jung 2040 microtome. Hybridization was done overnight at
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45uC in 4xSSC pH 7.0, 50% formamide, 10% dextrane sulphate,

250 mg.mL21 salmon sperm DNA, 250 mg.mL21 tRNA, 2x

Denhardt, and followed by washes once in 4x SSC (5 min room

temperature), twice in 2x SSC (30 min at 40uC), once in 1x SSC

(60 min, 45uC) and twice in 0.2X SSC (30 min, 45uC). Hybridised

probes were detected with anti-digoxigenin antibodies (Roche) bound

to alkaline phosphatase, revealed by a standard NBT-BCIP reaction.

The revelation of alkaline phosphatase activity was stopped with

distilled water (5 min) and background staining was removed by

90 sec washes in 40%, 70%, 100% ethanol, then 70%, 40% ethanol

and finally pure water.

Use of MapMan, LEGoo and the Medicago truncatula
gene atlas

MapMan software (version 3.5.1) [100,101,102] was obtained

from http://mapman.gabipd.org/web/guest/mapman and used

as recommended. The gene descriptions, given in Table S9, were

directly exported from MapMan representations.

The correspondence between Mt16KPlus or Affymetrix gene

probes, gene identifiers, published mRNAs and MtGI TC

numbers was established with the LEGoo portal (http://www.

legoo.org/), using the ‘‘Nickname’’ tool with default settings.

When no direct correspondence was found between a Mt16KPlus

reporter and an Affymetrix gene probe, the corresponding TC

identifier (MtGI9) was first searched and used to look for an

Affymetrix probe correspondence. Overall correspondence with a

single Affymetrix gene probe was found with ,93% of the

Mt16KPlus reporters. ‘‘Nickname’’ was also used to identify the

best hits in TAIR and Swissprot databases.

Supporting Information

Figure S1 Example of a WRKY transcription factor gene
from the exo1 regulation class activated both in nodules
and pathogenic conditions. Gene up-regulated in wild type

and mutant nodules ([19,20], this study) as well as M. truncatula

plants treated by yeast elicitor [68] or challenged with the bacterial

pathogen Pseudomonas syringae [103].

(TIFF)

Table S1 list of 16kPlus reporters scored as differen-
tially regulated in nodules, as compared to non inocu-
lated, nitrogen-starved roots.
(XLS)

Table S2 Cross comparison of differentially regulated
genes found in different nodule samples compared to
non-inoculated roots.
(XLS)

Table S3 Examples of multigene families containing
root-expressed genes and nodule-associated genes.

(XLS)

Table S4 list of putative regulator genes scored as
differentially regulated in nodules when compared to
non inoculated, nitrogen-starved roots.

(XLS)

Table S5 Search of co-regulated transcription factors
using the Medicago truncatula gene atlas data.

(XLS)

Table S6 Use of the Legoo knowledge base to search for
possible expression of nodule-associated regulators in
other conditions.

(XLS)

Table S7 Quantitative RT-PCR analyses in root sam-
ples.

(XLS)

Table S8 List of primers used for quantitative RT-PCR
analyses.

(DOC)

Table S9 List of genes classified by MapMan as related
to heme (hemoglobin genes), phenylpropanoids and
flavonoids.
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