

Genome-wide in Silico Identification of New Conserved and Functional Retinoic Acid Receptor Response Elements (Direct Repeats Separated by 5 bp)

Sébastien Lalevée, Yannick N. Anno, Amandine Chatagnon, Eric Samarut, Olivier Poch, Vincent Laudet, Gérard Benoît, Odile Lecompte, Cécile Rochette-Egly

▶ To cite this version:

Sébastien Lalevée, Yannick N. Anno, Amandine Chatagnon, Eric Samarut, Olivier Poch, et al.. Genome-wide in Silico Identification of New Conserved and Functional Retinoic Acid Receptor Response Elements (Direct Repeats Separated by 5 bp). Journal of Biological Chemistry, 2011, 286 (38), pp.33322 - 33334. 10.1074/jbc.M111.263681 . hal-02647235

HAL Id: hal-02647235 https://hal.inrae.fr/hal-02647235

Submitted on 29 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Copyright

Genome-wide in Silico Identification of New Conserved and Functional Retinoic Acid Receptor Response Elements (Direct Repeats Separated by 5 bp)* Separated by 5 bp)*

Received for publication, May 22, 2011, and in revised form, July 28, 2011 Published, JBC Papers in Press, July 29, 2011, DOI 10.1074/jbc.M111.263681

Sébastien Lalevée^{‡¶1,2}, Yannick N. Anno^{§2}, Amandine Chatagnon[¶], Eric Samarut[‡], Olivier Poch[§], Vincent Laudet**, Gerard Benoit[¶], Odile Lecompte[§], and Cécile Rochette-Egly^{‡3}

From the [†]Department of Functional Genomics and Cancer and [§]Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596 and CNRS UMR7104, Université de Strasbourg, F_67404 Illkirch Cedex, [¶]CNRS UMR5534, F-69622 Villeurbanne, [∥]Université Lyon 1, UMR5534, F-69622 Villeurbanne, and **Institut de Génomique Fonctionelle de Lyon, UMR 5242, Institut National de la Recherche Agronomique, Université de Lyon, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France

Background: Retinoic acid (RA) receptors regulate gene expression through binding-specific response elements (RAREs). **Results:** A collection of new DR5 RAREs located ± 10 kb from TSSs and conserved among 6 vertebrates species or more has been amassed. **Conclusion:** We provide a wider knowledge base for analyzing RA target genes.

Significance: The RA response of the conserved target genes differs between species and tissues.

The nuclear retinoic acid receptors interact with specific retinoic acid (RA) response elements (RAREs) located in the promoters of target genes to orchestrate transcriptional networks involved in cell growth and differentiation. Here we describe a genome-wide in silico analysis of consensus DR5 RAREs based on the recurrent RGKTSA motifs. More than 15,000 DR5 RAREs were identified and analyzed for their localization and conservation in vertebrates. We selected 138 elements located ± 10 kb from transcription start sites and gene ends and conserved across more than 6 species. We also validated the functionality of these RAREs by analyzing their ability to bind retinoic acid receptors (ChIP sequencing experiments) as well as the RA regulation of the corresponding genes (RNA sequencing and quantitative real time PCR experiments). Such a strategy provided a global set of high confidence RAREs expanding the known experimentally validated RAREs repertoire associated to a series of new genes involved in cell signaling, development, and tumor suppression. Finally, the present work provides a valuable knowledge base for the analysis of a wider range of RAtarget genes in different species.

Retinoic acid (RA)⁴ is an active derivative of vitamin A that influences a range of essential biological processes such as

development and homeostasis (1-4). RA exerts its action through nuclear RA receptors (RARs), which are typical liganddependent regulators of transcription with a central DNA binding domain linked to a ligand binding domain (for review, see Refs. 5 and 6). In response to RA signaling, RARs heterodimerize with retinoid X receptors (RXRs) and occupy characteristic RA response elements (RAREs) located in the promoter of target genes involved in cell proliferation and differentiation. RXR/RAR heterodimer occupancy at cognate response elements is commonly a determinant of transcriptional responsiveness. Within a given cell type, binding of RXR/ RAR heterodimers to RAREs can either up- or down-regulate transcription in a gene-specific manner. RAREs are composed of two direct repeats of a core hexameric motif (A/G)G(G/T)TCA. The classical RARE is a 5-bp-spaced direct repeat (referred to as a DR5), but RXR/RAR heterodimers can also bind to direct repeats separated by 2 bp (DR2) or 1 bp (DR1) (6, 7).

The development of high throughput technologies such as DNA microarrays revealed that within a given cell type or tissue, the RA response is composed of a huge and complex network of responsive genes (8-10). However, such techniques could not discriminate between direct primary and secondary target genes (which are modulated by the product of a primary target gene rather than by RXR/RAR heterodimers), and only a few of the RA target genes contained identified RAREs. More recently, chromatin immunoprecipitation coupled with array hybridization (ChIP-chip) allowed the identification of new RAR binding loci (11, 12). However, whether such loci bind RARs directly or indirectly through other bound factors could not be easily discriminated. Moreover, the identified loci do not correspond to the full repertoire, as the arrays do not represent all possible regions in a genome. The nascent genome-wide ChIP-seq (chromatin immunoprecipitation coupled with deep sequencing) technology should expand the repertoire of potential high affinity response elements (13, 14). Nevertheless, although powerful, such ChIP-based approaches are highly cell context-specific.

^{*} This work was supported by funds from CNRS, INSERM, the Association pour la Recherche sur le Cancer (ARC 3169), the Agence Nationale pour la Recherche (ANR-05-BLAN-0390-02 and ANR-09-BLAN-0127-01), the Fondation pour la Recherche Médicale (DEQ20090515423), and the Institut National du Cancer (INCa-PLO7-96099 and PL09-194).

The on-line version of this article (available at http://www.jbc.org) contains supplemental Tables S1–S5.

¹ Supported by the Association pour la Recherche sur le Cancer (ARC). Present address: Laboratory for Prenatal Medicine, Dept. of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland.

Supported by the Ministère de l'Enseignement Supérieur et de la Recherche.
 To whom correspondence should be addressed: 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France. Tel.: 33-3-88-65-34-59; Fax: 33-3-88-65-32-01; E-mail: cegly@igbmc.fr.

⁴ The abbreviations used are: RA, retinoic acid; RAR, RA receptor; RXR, retinoid X receptor; DR, direct repeat; RARE, RA response element; TSS, transcription start site; qPCR, quantitative PCR; seq, sequencing.

Now, with the availability of an increasing number of genome sequences, in silico analysis of RAREs can be also performed. The advantage of computational techniques is that it overcomes the chromatin structure and, thus, the cellular context and provides a direct glance on the whole repertoire of possible RAREs.

Here we conducted a genome-wide in silico study of RA response elements. Although RXR-RAR heterodimers can bind to DR5, DR2, or DR1 response elements, the significance and the specificity of the DR2 and DR1 is still unclear. Therefore, we focused on DR5 RAREs. Computational techniques were developed for the genome-wide identification of DR5 RAREs and for the characterization of their genomic and phylogenetic context. In this way we amassed a collection of DR5 RAREs that is conserved across vertebrate species and that was validated for its occupancy and functionally analyzed for the RA-responsiveness of the associated genes. Such a strategy allowed us to characterize a new set of high confidence conserved DR5 RAREs associated to a series of new potential RA-target genes, thus providing a wider knowledge base for the analysis of the RA response in different species.

EXPERIMENTAL PROCEDURES

Bioinformatics—In silico analyses were performed using the Genomic Context data base (GeCo).5 This data warehouse, which was already exploited in a genome-wide study of the Staf transcription factor binding sites (15), aggregates genomic, phylogenetic, and epigenomic data from different sources, allowing the high-throughput contextual characterization of a given set of genetic elements. The underlying data base of annotated genes was built by computing refGene (proteins), rnaGene (snRNA, snoRNA, tRNA, rRNA, scaRNA), kgXref tables from the University of Santa Cruz California, mirna, mirna_literature_references, mirna_mature, and literature_references tables from the Sanger Institute and piRNA file from the piRNA Database. The data base also includes sequence conservation data extracted from the University of Santa Cruz California blastZ alignments. The data base is implemented in high speed DB2 architecture called Biological Integration and Retrieval of Data (BIRD), which can quickly address the whole set of sequences, genomic features, and alignments (15). RGK-TSA DR5 motifs were searched in the human (NCBI build 36, hg18)- and mouse (NCBI build 37, mm9)-masked genomes (RepeatMasker) using an in-house tool dedicated to the automatic search of short motifs and implemented in the GeCo system. The obtained motifs were subsequently characterized. For each motif, we retrieved the nearest gene and its localization as well as, if applicable, the position of the motif regarding the gene elements, exon, intron, transcription start site (TSS), and gene end (end of the last exon). Motif conservation was then analyzed on the basis of University of Santa Cruz California blastZ alignments between the human or mouse and 13 other vertebrate genomic sequences. The considered species were selected for the confidence of their sequencing, the quality of their annotation, and for their repartition through the vertebrate phylogenetic tree: zebrafish (danRer5), fugu (fr2), xeno-

⁵ Y. N. Anno, O. Poch, and O. Lecompte, manuscript in preparation.

pus (xenTro2), lizard (anoCar1), chicken (galGal3), platypus (ornAna1), opossum (monDom4), dog (canFam2), horse (equCab1), cow (bosTau4), rat (rn4), rhesus (rheMac2), and chimpanzee (panTro2). We considered a motif as conserved in a given species if the region encompassing the motif in human or mouse is aligned with a genomic region of the species also containing a RGKTSA DR5 motif.

Cell Culture, RNA Extraction, and qRT-PCR-F9 and P19 mouse embryocarcinoma cells, human MCF7 cells, and zebrafish PAC2 cells were cultured according to standard conditions as previously described (16-19). RNAs were extracted and subjected to qRT-PCR as previously described (20). Transcripts were normalized according to the ribosomal protein gene RPLPO. All mouse primers are listed in supplemental Table S1. The others are available upon request.

RNA Sequencing—After isolation of total RNA, a library of template molecules suitable for high throughput DNA sequencing was created according to the instructions of Illumina. Briefly, the poly(A)-containing mRNAs were isolated from total RNA (4 mg) by two runs of purification on Sera-Mag Oligo-dT Beads (Thermoscientific) and fragmented using divalent cations and heat-catalyzed hydrolysis. Fragmented mRNAs were used as a template to synthesize single-stranded cDNA with Superscript II reverse transcriptase and random primers. After second-strand synthesis, the cDNAs went through end-repair and ligation reactions using paired-end adapter oligos from Illumina and were electrophoresed on an agarose gel. A slice containing fragments in the 300-bp range was excised, and after elution and purification, the library was amplified with 15 cycles of PCR with Illumina sequencing primers and purified using Agencourt AMPure XP beads from Beckman.

The library was then used to build clusters on the Illumina flow cell according to protocol. Image analysis and base calling was performed using the Illumina pipeline. Reads were then mapped onto the mm9/NCBI37 assembly of the mouse genome using Tophat (21). Quantification of gene expression was done using Cufflinks (22) and annotations from Ensembl release 57. For each transcript the number of FPKM (fragments/kb of transcript/million fragments mapped) was converted into raw read counts, which were added for each gene locus by using an R script that we implemented. Then data normalization and identification of significantly differentially expressed genes were performed with the method proposed by Anders and Huber (23) and implemented into the DESeq Bioconductor package. The final *p* values were adjusted for multiple testing according to the method proposed by Benjamini and Hochberg (24), and a cutoff p value of 0.05 was applied for finding significant responsive genes.

RESULTS

Bioinformatic Genome-wide Research of DR5 RAREs Corresponding to the RGKTSA Motif—Only a few RAREs have been identified to date and associated to RA-target genes. Most of them are represented by two direct repeats of the hexameric motif (A/G)G(G/T)TCA, separated by five nucleotides (DR5) (25, 26). Such DR5s have been found in the promoters of human and mouse genes involved in RA metabolism (Cyp26A1) (27), in

RA signaling ($RAR\alpha 2$, $RAR\beta 2$, $RAR\gamma 2$) (28–30), or in development (Hoxa1, Hoxa4, Hoxb1) (31–33). Alignment of these RAREs (Fig. 1) clearly delineates a recurrent motif RGKTSA (coding is according to the IUPAC convention: R = AG; K = GT; S = CG), which differs from the classical consensus motif RGKTCA at position 5, with a G instead of a C (in $RAR\gamma 2$ and Hoxa4). Therefore, with the aim of identifying novel RA-driven primary target genes, we screened the masked human and mouse genomes for DR5 corresponding to two direct repeats of the RGKTSA motif at the genome-wide scale (see "Experimental Procedures"). Such *in silico* screens have the potential of identifying target genes independently of their tissue of expression. We identified 15,925 DR5s corresponding to two direct repeats of the RGKTSA motif in the mouse genome and 14,571 in the human genome (supplemental Tables S2 and S3).

Conservation of the DR5 RAREs during Evolution—A way to assess the potential relevance of response elements is to determine whether they are conserved between species (phylogenetic footprinting). Indeed, highly *in vivo* relevant DR5 RAREs are expected to be conserved and, thus, to be under an ancient strong selective constraint. Therefore, to delineate functional RAREs, we analyzed the conservation of the human and mouse RAREs across 13 additional vertebrate organisms (see "Experi-

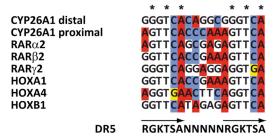


FIGURE 1. Alignments of known DR5 RARE motifs in the promoters of the Cyp26A1, RAR α 2, RAR β 2, RAR γ 2, Hoxa1, Hoxa4, and Hoxb1 genes and definition of a RGKTSA motif.

mental Procedures") by using the BlastZ alignment of the University of Santa Cruz California genome browser. Due to the shortness and the divergence of the RGKTSA sequence, the criterion of conservation was deduced from the presence/absence of the complete DR5 motif RGKTSANNNNNRGKTSA in all considered genomes. We considered that a motif was conserved in a given species if the region encompassing the motif in human or mouse is aligned with a genomic region of the species also containing a RGKTSA DR5 motif (see "Experimental Procedures").

In a phylogeny of vertebrates, we visualized the number of human or mouse RAREs that are conserved in each studied species (Fig. 2). We also calculated for each relevant clade of vertebrates the number of RAREs that are conserved in all the members of these clades. Although these data can be influenced by the coverage of the studied genome (34), this analysis raised three interesting conclusions. (i) Overall, human RAREs are less conserved in rodents than in other mammals. As an example, about 900 human RAREs are conserved in the mouse genome, whereas more than 1500 are conserved in the cow genome. This is in accordance with the known increased evolutionary rates in rodents (35) but questions the use of mouse as a unique in vivo experimental system for studying RA signaling in mammals. (ii) There is a striking difference between the number of RAREs conserved in placental mammals (Eutherians) and in all mammals or in eutherians + marsupials. Indeed around 309 human RAREs (or 319 mouse RAREs) are conserved in placental mammals, whereas only half (162 human RAREs, 170 mouse RAREs) is conserved in eutherians + marsupials. The decrease is even higher if we consider the number of RAREs conserved in all mammals (101 from human and 107 from mouse genomes). This suggests that a specific elaboration of the RA regulatory network occurred in eutherians and highlights the importance of studying the corresponding RA target genes. (iii) Only six RAREs are conserved in all jawed verte-

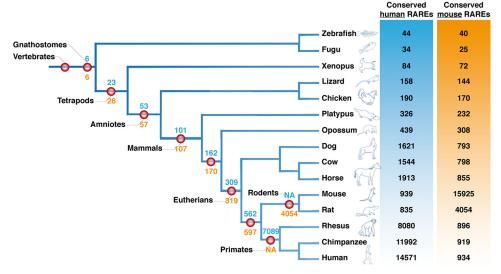


FIGURE 2. **Phylogenetic tree of jawed vertebrates showing the phylogenetic conservation of the DR5 RAREs.** On the *right*, the number of human RAREs (*blue*) or mouse RAREs (*orange*) conserved in each species is indicated. For example, in chimpanzee, there are 11,992 RAREs conserved from the 14,571 found in human. In contrast there are 919 RAREs conserved from the 15,925 found in the mouse genome. At each relevant node of the tree, the number of RAREs conserved in the species of the relevant node is indicated in *red*. The *blue numbers* represent the human RAREs, and the *orange numbers* represent the mouse RAREs. For example, in the rodent primate clade we found 562 human RAREs and 597 mouse RAREs conserved in the 5 relevant species (mouse, rat, rhesus, chimpanzee, and human). *NA*, not applicable.

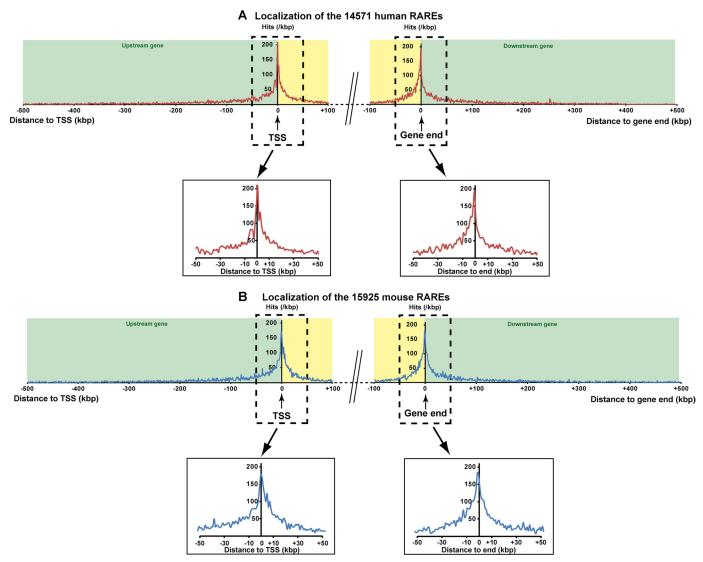


FIGURE 3. Genome-wide distribution of the identified human (A) and mouse (B) DR5 RAREs. The distance between the RARE and the corresponding gene was calculated by identifying its proximity to both boundaries of the genes, the TSS, and the end (end of the last exon). Following this rule for a RARE located upstream of the TSS, the distance was calculated from the TSS and was negative. For a RARE located downstream of a gene, the distance was calculated from the end of the gene and was positive. In the case of a RARE present inside the gene, both distances to the TSS and to the end of the gene were calculated, and the minimal distance in absolute value, called dTSS*, was considered (cf. Fig. 5). The genome-wide mapping of the RARE versus a canonical gene was calculated by cumulating the number of hits present in a 1-kb sliding window from each side from the TSS or from the end of the gene (the first point being attributed to 500 bp before and after TSS or gene end). These calculations were applied to a distance of 500 kb outside of the gene and 100 kb inside of the gene.

brates (gnathostomes). Three of these RAREs are associated to developmental genes, Dach1 (Daschung homolog 1) (36), Meis1 (Meis homeobox 1) (37), and TSHZ3 (Teashirt 3) (38). The three others are associated to the Gria2 (glutamate receptor 2) (39), Lphn2 (latrophilin 2) (40), and Pagr3 (an adiponectin receptor) (41) genes. It is interesting to note that, except Meis1 (8, 10, 37), these gene are not known RAR target genes. Nevertheless, they are likely to be RA-regulated in virtually any vertebrate species and thus might be considered as new interesting models.

Genome-wide Analysis of the Location of the Identified DR5 RAREs—The identified mouse and human RAREs were also annotated by analyzing genome-wide their locations using the GeCo system (see "Experimental Procedures"), which allows users to retrieve the genes in the neighborhood of factor binding sites with respect to annotated Refseq genes.⁵ Then, in both the human and mouse genomes, the RAREs were localized relative to the nearest matched gene boundary: upstream and downstream distance from the TSS and from the end of genes. As shown in Fig. 3, A and B, the regions flanking TSSs and the ends of genes depict the highest concentration of RAREs compared with the further regions (± 500 kb). This suggests that the RAREs located in the vicinity of TSSs and gene ends would be more relevant than the others, as described for most nuclear receptors and transcription factors (14, 42–46). Therefore, we selected the RAREs located between -10 and +10 kb, *i.e.* the RAREs ± 10 kb from the TSSs and ± 10 kb from gene ends. According to this criterion, 3862 RAREs were selected in the mouse genome and 3429 in the human one (supplemental Tables S2 and S3).

Selection of a List of RAREs Located ± 10 kb from Gene Limits and Conserved in Six Organisms or More—Considering the low number (6) of highly conserved RAREs and the overall reparti-

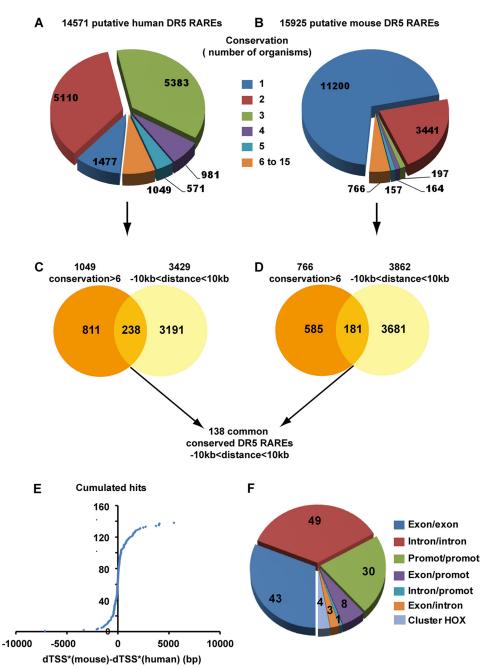


FIGURE 4. **Selection of 138 RAREs located** \pm **10 kb from TSSs and gene ends and conserved in more than 6 organisms.** *A* and *B*, shown is conservation of the human and mouse RAREs among the 15 organisms tested. *C* and *D*, for both the human and mouse genomes, the RAREs conserved in more than 6 organisms were crossed with those located \pm 10 kb from gene boundaries. Crossing the resulting mouse and human RAREs led to a list of 138 RAREs with highly confident conservation and located \pm 10kb. *E*, the differences between mouse and human dTSS* were calculated and plotted into cumulative hits. *F*, conservation of the RARE positions (intron, exon, and promoter) between mouse and human is shown.

tion of the 15 organisms among the vertebrate tree, we arbitrary selected a criterion of conservation in 6 organisms. Only 7% of the human RAREs (1049 sites) (Fig. 4A) and 5% of the mouse RAREs (766 sites) (Fig. 4B) were found to be conserved in 6 organisms and more.

Then these human and mouse RAREs conserved across six and more organisms were further analyzed for their localization relative to the matched gene annotations. Among these RAREs, 238 human RAREs and 181 mouse RAREs were found to be located at the proximity of genes in the ± 10 kb regions that we defined above (Fig. 4, C and D, and supplemental Tables 2 and

3). By using these two criteria of restriction, we obtained a list of 138 RAREs that are common to both mouse and human organisms and that are reliable in terms of genome annotation, name of the corresponding genes, localization, and conservation in more than 6 organisms (Fig. 5).

The orientation and localization of each conserved RARE listed in Fig. 5 were compared. Most interestingly, 100% of these RAREs showed the same orientation in the human and mouse genomes, and $\sim 70\%$ showed less than a 500-bp difference in their distances to the nearest associated genes (Fig. 4*E*), suggesting that these RAREs are good candidates for being func-

			MOUSE									Mouse-Human
Official gene name	Position	BS strand	Gene strand	Phylogenetic Conservation	dTSS*	RARE Sequence	Position	BS strand	Gene strand	Phylogenetic Conservation	dTSS*	dTSS* difference
2310007D09Rik	Exon	+	+	8	-3436	GGTTCACGAAAAGTTCA	Exon	+	+	8	-5116	1680
4121402D02Rik	Intron	-	+	8	-5908	AGGTGAGTAAAAGTTGA	Intron	-	+	8	-5567	-341
4632412N22Rik		-	+	6	1259	GGGTCACAATCAGGTGA		-	+	6	1282	-23
4930452B06Rik	Exon	+	-	7	-459	AGTTCAGACAAGGGTCA	Exon	+		7	-495	36
4930562D19Rik	Exon	-	-	8	8578	GGGTGACCCCGAGTTCA	Exon	+	+	8	9552	-974
6430527G18Rik		-	-	8	-3426	GGGTGACGCGAGGTTCA		-	-	8	-4278	852
Abhd2	Exon	-	+	7	-1367	AGGTCAGATCCAGGTCA	Exon	-	+	7	-6849	5482
Aco2	Intron	+	+	9	404	AGGTGAGGACAAGGTGA	Intron	+	+	9	383	21
Actn4	Exon	-	-	6	-1391	GGGTGAGGCCGAGTTCA	Exon	+	+	6	-1535	144
Agap1	Intron	+	+	9	-9441	GGGTCACTCTGGGGTCA	Intron	+	+	8	-7485	-1956
Aipl1	Intron	-	-	6	-2338	GGGTCAAGGTCAGGTCA	Intron	-	-	6	-3811	1473
Alk	Intron	-	-	8	5054	AGGTGAGATGTGGGTCA	Intron	-	-	8	5420	-366
Ankrd50	Exon	+	-	9	-1989	AGTTGAAGCTAGGGTCA	Exon	+	-	9	-4700	2711
Ar	Exon	-	+	8	-1258	AGTTCATTCGAAGTTCA	Exon	-	+	8	-1413	155
Arpp21	Intron	-	-	7	-6279	GGTTCATTCATAGGTCA	Intron	+	+	7	-5225	-1054
Atxn2		+	+	6	-561	GGTTCAAATGAAGGTCA		-	-	6	-495	-66
BC052040	Exon	-	+	12	-1662	AGTTCAGCTGAAGTTCA	Exon	-	+	12	-1701	39
Bhlhbe40		-	+	12	1556	AGGTCAGCGCTGGGTGA		-	+	12	1775	-219
Bmf	Exon	+	-	8	-864	AGGTCACTGGGAGGTGA	Exon	+	-	8	-876	12
Bmp7	Intron	+	-	12	4301	AGTTCAAAGCTGGGTCA	Intron	+	-	12	5173	-872
Brs3	Exon		+	6	115	AGTTCAAATGCAGTTGA	Exon	-	+	6	95	20
Cacna1g	Intron	+	-	9	6105	GGGTCAGCCAGGGGTCA	Intron	-	+	9	6019	86
Camk2b	Exon	+	-	6	-3030	AGGTCAGCCCTGGGTCA	Exon	+	-	6	-3536	506
Ccdc132	Exon		+	8	-8558	AGTTCACTGGCGGTTGA	Exon		+	8	-9145	587
Ccno	EROII		+	7	-5719	AGTTCACTAAAAGTTCA	EXOII	+		6	-8211	2492
Cdcp2		+	+	7	663	GGGTGACACACAGTTCA		-	-	7	1092	-429
Cited2		+	+	8	574	GGTTGACTCAAAGGTCA				8	632	-58
Clpb	Intron		+	7	5382	AGGTGATTCCAGGGTCA	Intron	+		7	5499	-117
Col24a1	Exon		+	7	292	AGTTCACTTGCGGTTCA	meron	+		7	-296	588
Crygn	EROII	+		6	3244	GGGTGAGGGGGGAGGTCA		+	-	6	1061	2183
Ctsk	Exon	-	+	7	2154	GGTTCATAGCCAGTTCA	Exon	+	-	7	2220	-66
Cugbp1	Exon		+	11	-379	AGGTCAACACAAGGTCA	Exon	+	-	11	-375	-4
Cugbp2	Exon	+	-	14	-5337	AGTTCAGCAAAAGGTGA	Exon	-	+	14	-5629	292
Сур26а1	EROII		+	14	-31	AGTTCACCCAAAGTTCA	Exon	1	+	14	329	-360
Cyp26a1		+	+	8	-1898	GGGTCACAGGCGGGTCA	LAUII	+	+	8	-1557	-341
Diap3	Exon			6	-229	AGTTGACAGAAGGGTCA	Exon	-		6	-1227	998
E130309F12Rik	Intron	+	+	9	745	GGGTGAGGCTCGGGTCA	Intron	+	+	9	958	-213
Ebf3	incloir	-	-	11	-7615	AGGTGAAACCGAGTTCA	millon	-	-	11	-8385	770
Elf4	Exon	+		7	-7145	GGGTCAGTGACAGGTGA	Exon	+	- :	7	-6455	-690
Enpp2	LAUII	+	- : -	7	2163	AGTTCAACCTGAGGTGA	LAUIT	+	- :	7	2866	-703
Ephb3	Intron		+	8	-6596	GGGTCACCTGGAGTTCA	Intron		+	8	-7178	582
Esrrg	Exon		+	10	-3113	GGTTCACAATAAGTTCA	Exon	+	-	10	-3061	-52
Ext2	Intron			9	-7409	AGTTCAAGCCCAGGTCA	Intron	+	+	9	-8911	1502
Fbxo30	Exon	+	+	6	-5674	AGGTCATTTGGAGTTCA	Exon	-		6	-6502	828
Flt4	Intron	+	+	8	3918	AGGTCAGCAGGGGTTCA	Intron	-	-	8	4073	-155
Foxa2	IIIIIIII	+	-	9	8392	AGGTCAGGGGGAGGTCA	IIILIOII	+	-	9	8252	140
Frap1	Exon		+	9	-7491	AGTTCAGCAAGGGGTCA	Exon	+	- :	9	-7802	311
	Intron	-	+	7	522	AGTTCAGCAAGGGGTCA	Intron	+	+	7	-7802 579	-57
Gabarapl2		-	+		-8572			+	+	6	-8030	-542
Gpr149 Gria2	Intron	+	-	6 15	-85/2 -6381	AGGTGAATCCAAGGTGA	Intron	-	_	15	-8030 -4962	-542 -1419
	Intron			15 8	-6381 -2144	AGGTGATTCCAAGGTCA	Intron	+	+	7	-4962 -2337	-1419 193
Gzmk	E	+	-		-2144 -49	GGGTGAGATTTAGTTCA	F				-2337 -49	
Hey1	Exon	+	-	7		AGGTCAAACCCAGTTCA	Exon	+	-	7	-49 322	0
Hic1	Intron	-		9	1444	GGTTCACGGCGGGGTCA	Intron	+	+	9		1122
Hip1r	Exon	+	+	7	-2808	AGGTGAACGAGAGGTGA	Exon	+	+	8	-3142	334

FIGURE 5. List of the 138 conserved RAREs located ±10 kb from TSSs and genes ends. For the 138 conserved RAREs located ±10 kb, gene names and orthology were analyzed manually in both the human and mouse genomes. The sequence, localization, and dTSS* of each RARE are shown as well as the name of the associated gene. BS, binding sequence.

RARE.

tional. Moreover, 43 RAREs located in exons, 49 in introns, and 30 in promoters correlated well between the two genomes (Fig. 4F). The other RAREs, although associated with a same gene in both genomes, depicted different localizations, most probably due to differences in genes annotations between the two genomes. Note that three RAREs associated with Hox genes differed between both genomes, most probably due to the complex organization and evolution of the Hox clusters.

RAR Binding to the Selected DR5 RAREs and Analysis of the Associated Genes—Then the key question to address was whether the DR5 RAREs that we selected in silico reflect biological significance in vivo; in other words, whether they are able to bind RAR/RXR heterodimers. To address this, we first crossed the list of 15,925 DR5 RAREs found in the mouse genome with the RAR and RXR binding sites mapped in ChIPseq experiments⁶ performed with a mouse embryocarcinoma cell line (F9 cell lines), which is well known to respond to RA (1). In these cells, 4% of these RAREs were occupied by RAR/RXR heterodimers in the absence of RA (Table 1). This percentage increased up to 9% after 48 h of RA treatment. In fact, taking into account that some sites become occupied whereas othvalidating our strategy. Among these RAREs (Table 2), 39 were occupied in the absence of RA, among which 17 depicted an important increase in their occupancy in response to RA. In addition, 19 RAREs, although unoccupied in the absence of RA, became occupied after RA addition, raising to 58 the number of RAREs that can be occupied in F9 cells. Note that the increase in occupancy started rapidly (within 2 h) or later (24 – 48 h) depending on the

ers dissociate from RAR/RXR heterodimers in response to

RA, 11% of the RAREs were found to be able to bind RAR/

RXR heterodimers (Table 1). As a control, a random list of

15,925 17-bp sequences extracted from the mouse-masked

genome (supplemental Table S4) was crossed with the same

binding sites (Table 1). Most interestingly, the percentage of

occupied RAREs increased up to 42% when the same cross-

ing was applied to the list of 181 conserved mouse RAREs

and to our final in silico list of 138 RAREs (Table 1), thus

Some of these RAREs have been already reported to be direct RAR targets in EMSA, ChIP, or ChIP-chip experiments. It is the case for the canonical RAREs associated to the well known RA target genes involved in transcription regulation such as RARβ2, Hoxa1, Hoxb1, and Wt1 (19, 32, 47–50) or in RA metabolism (*Cyp26A1*, *Rbp1*). Most inter-

⁶ A. Chatagnon and G. Benoit, manuscript in preparation.

Hmbox1		+		9	48	AGGTGATCACAGGGTGA	Exon		+	9	-133	181
Hoxa1		-	-	12	1940	GGTTCACCGAAAGTTCA	CAOTI	-	-	12	1749	191
Hoxa3	Intron	-		14	-6472	AGGTGAACTTCAGGTCA				14	-3124	-3348
Hoxa3	Intron			14	6064	GGTTCAAGAAGAGTTCA	Intron			14	6071	-7
Hoxb1	IIICIOII	+	+	13	5100	GGTTCATAGAGAGTTCA	millon			14	7170	-2070
Hoxb3	Intron	+	+	14	-6694	GGTTCAAGAAGAGTTCA	Intron			14	-6561	-133
Hoxc4	IIICIOII	+	+	14	-5034	AGGTGAAATGCAGGTCA	Intron	+	+	14	-6699	1665
Hoxd3	Intron	+	+	13	-6731	GGTTCAAGCAGAGTTCA	Intron	+	+	12	-7185	454
Hoxd4	Intron	+	+	14	2778	AGGTGAAATGCAGGTCA	milion	+	+	14	-1240	4018
Hoxd4	Intron	+	-	11	2696	AGTTGAGCGGGAGGTGA		+	+	11	-1322	4018
lvns1abp	IIILIOII	-	-	9	-187	AGGTCAGCGCAAGGTGA		+	, T	9	-139	-48
	Intron		-	7	4801		Intron	+	+	7	4877	
Jmjd3	Intron	+	-			GGGTCACATCGGGGTCA AGTTCACAGTGGGTTCA	Intron	+	+		-778	-76
Klk13	Intron	+	+	6	435			<u> </u>		6		1213
Lgals2	Intron		-	/	-394	AGGTCAAGGTGAGGTCA	Intron	+	<u> </u>	7	-322	-72
Lman2I	Intron	+	-	6	6032	AGGTCAAATCAGGTTGA	Intron	+	-	6	6093	-61
Lrrc29	Exon	+	-	6	-3339	GGTTGAAGCTGAGGTCA	Intron	+	-	6	-3496	157
Meis2	Intron	+	-	14	-7698	GGTTCACTCAAAGGTCA	Intron	+	-	14	-7710	12
Meis2	Intron	+		12	-6268	GGGTCATTCAGAGGTCA	Intron	+		12	-6210	-58
Meis2		-		8	-6129	AGGTCAAGAATAGTTCA		-	-	9	-4855	-1274
MII1	Intron	-		7	1810	AGTTGAGTTCAGGTTCA	Intron	+	+	7	1873	-63
Mmp24	Exon	+	+	6	-1581	AGGTGAACTAGAGGTGA	Exon	+	+	6	-1658	77
mmu-let-7c-2		+	+	8	-3954	AGGTGACTTCGGGGTGA		+	+	8	-5394	1440
mmu-mir-10a		+	+	13	-2566	AGGTGAACCGCAGGTCA		-	-	14	-2623	57
Myf6	Intron	+	-	6	680	GGGTCACTGGGGGTTCA	Intron	-	+	6	705	-25
Myo3b	Intron	-	+	6	-7559	GGTTCAACTAGAGTTCA	Intron	-	+	6	-6568	-991
Nkapl	Exon	-	-	6	-386	AGGTGAAATTGGGTTGA	Exon	+	+	6	-624	238
Onecut2	Intron	+	+	12	9911	AGTTCAGCTATGGTTCA	Intron	+	+	12	9964	-53
Osr1		+	+	8	-988	GGGTCAGCCGGAGGTCA		-	-	8	-1004	16
Otp		+	+	7	-415	AGGTCACGCCAGGGTCA		-	-	6	-401	-14
Parp8		-	-	8	9175	AGTTCATTTACAGGTCA		+	+	7	8462	713
Pcbp2	Intron	-	+	9	-6347	GGTTGATGCTGAGGTGA	Intron	-	+	10	-6242	-105
Pcbp4	Intron	+	+	8	3290	AGGTGAGCTGGAGGTCA	Intron	-	-	8	3438	-148
Pld2	Intron	-	+	7	-7034	AGGTGACAGCAAGGTCA	Intron	-	+	7	-9119	2085
Polb	Exon	-	-	7	-8806	GGGTGAGACAAAGTTCA	Exon	+	+	7	-9115	309
Pou3f1		-	+	6	3357	AGGTGATGCTGGGTTCA		+	-	6	4039	-682
Prnpip1		+	+	10	-3868	AGTTCAGATTCAGGTCA		-	-	10	-3986	118
Prss27		+	+	8	-148	GGTTCAGGGCTAGGTCA	Exon	-	-	8	195	-343
Ptch1	Intron	+	-	11	6913	GGGTCACAGGCAGGTCA	Intron	+	-	9	7203	-290
Ptchd1	Exon	-	-	11	-4895	AGGTCAGTGAAGGGTCA	Exon	+	+	11	-3721	-1174
Ptprj	Exon	-	-	7	-917	AGGTCACACGAAGGTCA	Exon	+	+	8	-963	46
Ptprj	Exon	+	-	6	-7803	AGTTGATGAGCAGGTCA	Exon	-	+	6	-7307	-496
Qk		+	-	14	608	AGGTCATCATTGGGTGA	Exon	-	+	14	-3124	3732
Rab11fip2	Exon	-	-	8	5995	GGGTGAGATAAAGGTCA	Exon			8	6099	-104
Rab39b	Exon	-	-	7	410	GGGTCAAGAGAGGTTCA	Exon	-	-	7	492	-82
Raph1	Intron	-		7	-8272	GGGTCAAGTTAAGGTCA	Intron			7	-1126	-7146
Rarb				12	-303	GGTTCACCGAAAGTTCA		+	+	13	-52	-251
Rarb	Exon	+	-	9	-4293	AGGTGAACACAAGGTCA	Exon		+	9	-4316	23
Rbbp7	Exon	-	+	8	1280	GGGTCATAACCAGGTCA	Exon	+	-	9	1283	-3
Rbm35b	Exon	+		8	-943	AGTTCAGGTAGAGTTGA	Exon	+		8	-2314	1371
Rbp1	Intron		+	8	7034	GGGTCATCCTAAGTTCA	Intron	+		8	5998	1036
Rnf10	Exon	+	-	8	-2326	GGGTGACAGAGGGGTCA	Exon		+	8	-6394	4068
Rnf214	Exon	-		6	6752	GGTTCATCAGCAGGTGA	Exon	+	+	6	5981	771
Ror1	Intron	+	+	12	-6573	AGGTCAAGCAGAGGTCA	Intron	+	+	12	-6197	-376
Rxrb	Intron	-	+	8	-1559	AGGTCACTCAAAGGTCA	Intron	+		8	-1884	325
Sat1	Exon	+	-	8	-460	AGTTGATGGATGGTTCA	Exon		+	8	-471	11
Sema3e	Exon	-	+	8	63	AGTTCAGGCAGGGTTGA		+		8	-117	180
Sgk2	Exon	-	+	8	-1190	GGGTGAACTCTGGGTCA	Exon		+	8	-755	-435
Shank3	Intron	-	+	7	-620	GGGTCAGCGCCAGGTGA	Intron		+	7	-2523	1903
Shf	Intron	-	-	11	-6710	AGTTGACATTAAGGTCA	Exon			11	-6489	-221
Slc22a5	Intron	-	-	9	-7623	GGGTGAAGCTCAGGTCA	Intron	+	+	8	-7207	-416
Sk22a5	Intron	+		8	-7756	AGTTCAACAAAAGGTCA	Intron		+	7	-7343	-413
Slc25a23	Exon	-	-	8	-1767	GGGTCACGTCCAGGTGA	Exon			8	-1912	145
Slc9a3	Intron	+	+	7	682	AGGTGACAGGAAGGTCA	Intron	-		8	931	-249
Smyd5	Exon	-	+	7	-1309	AGGTCACATTGGGTTCA	Exon	-	+	7	-1380	71
Sp7	Exon	-	-	8	-384	GGGTGACCCCAGGGTCA	Exon			8	-972	588
Srp68	Exon	+	-	9	-633	GGTTGAGGGCCAGGTCA	Exon	+		9	-692	59
Sspn		+	+	8	3592	AGTTCATCTATAGGTCA		+	+	8	5189	-1597
Tcf7l2	Intron	-	+	9	-2852	AGGTCAGAATCAGGTGA	Intron		+	9	-1478	-1374
Tcfap2c		+	+	6	2676	GGGTCATGGGTGGGTGA		+	+	6	3016	-340
Tfg	Intron	-	-	9	-1690	GGTTCAAGGTGAGTTCA	Intron	+	+	9	-1666	-24
Tnks1bp1	Exon	+	+	6	-2692	AGGTCAGTGGAGGGTGA	Intron			6	-2816	124
Top2b	Intron	+	+	8	1145	AGTTCAGACCAGGGTCA	Intron			9	907	238
Trpc1		-		6	304	AGTTCACATATAGTTCA	Exon	+	+	6	-1225	1529
Ttc27		-	+	8	3495	AGTTGACTCAGAGGTCA	CAUT		+	8	4339	-844
Wnt1			+	7	153	GGGTCATCCAAGGGTCA			+	6	85	68
	Intron	+	+	10	1493	GGGTCACTGAGAGTTCA	Intron		-	9	1239	254
				13	-4329	AGTTGAATCTGGGGTCA	inclosi	-	-	13	-4441	112
Wnt5a	IIIIIIII	+	+							1.0		
Wnt5a Wt1		+	+		7818	AGTTCACCCAAAGTTGA	Intron	+		10	8308	-490
Wnt5a Wt1 Wt1	Intron	+ - +	+ + +	10	7818 3362	AGTTCACCCAAAGTTGA AGGTCACCTTCAGTTCA	Intron	+	-	10 8	8308 3781	-490 -419
Wnt5a Wt1 Wt1 Yes1	Intron Intron	+	+	10 8	3362	AGGTCACCTTCAGTTCA	Intron			8	3781	-419
Wnt5a Wt1 Wt1 Yes1 Ypel5	Intron Intron Exon	+ +	+	10 8 9	3362 -2592	AGGTCACCTTCAGTTCA AGTTCAAGATCGGGTCA	Intron Exon	+	+	8 9	3781 -1891	-419 -701
Wnt5a Wt1 Wt1 Yes1 Ypel5 Zbtb5	Intron Intron Exon Exon	+	+	10 8 9	3362 -2592 -3813	AGGTCACCTTCAGTTCA AGTTCAAGATCGGGTCA AGTTCAAATGCAGGTGA	Intron Exon Exon		+	8 9 9	3781 -1891 -4120	-419 -701 307
Wnt5a Wt1 Wt1 Yes1 Ypel5 Zbtb5 Zdhhc3	Intron Intron Exon Exon Intron	+ + + -	+	10 8 9 9 7	3362 -2592 -3813 676	AGGTCACCTTCAGTTCA AGTTCAAGATCGGGTCA AGTTCAAATGCAGGTGA AGGTGAAGCTGGGGTCA	Intron Exon	+ +	+	8 9 9 7	3781 -1891 -4120 948	-419 -701 307 -272
Wnt5a Wt1 Wt1 Yes1 Ypel5 Zbtb5	Intron Intron Exon Exon	+ +	+	10 8 9	3362 -2592 -3813	AGGTCACCTTCAGTTCA AGTTCAAGATCGGGTCA AGTTCAAATGCAGGTGA	Intron Exon Exon	+ +	+	8 9 9	3781 -1891 -4120	-419 -701 307

FIGURE 5—continued

estingly, this analysis revealed that two RAREs are associated to the $RAR\beta2$, Wt1, and Cyp26A1 genes. However, only one of the RAREs associated to the Wt1 and Cyp26A1 genes was occupied in F9 cells, whereas both RAREs associated to the $RAR\beta2$ gene were occupied. Of note is that for $RAR\beta2$, the RARE located in the promoter was more efficiently occupied than the other one, located in an exon, increasing the complexity of the transcriptional regulation of this gene in F9 cells.

Other occupied RAREs were associated to genes that are already known as RA-responsive genes but for which no RAREs had been identified yet. Among these genes are the "stimulated

by RA" (*Stra1*) genes such as *Bhlhb40* (*Stra13*) (51), *Tcfap2C* (*Stra2*) (52), and *Meis2* (*Stra10*) (53), and zinc finger proteins (*Zfp598* and *Zfp503*) (8, 10). Note that three RAREs are associated to the *Meis2* gene but that only two were occupied by RAR/RXR heterodimers in F9 cells. The analysis also revealed occupied RAREs associated to gene regulatory regions, which were recently found to be occupied by RARs in ChIP-chip and ChIP-qPCR experiments performed with other cell lines but without any indication whether this occupancy was direct or indirect through other bound factors (11). This is exemplified by the RAREs associated to the *Atxn2*, *Top2b*, *Wnt1*, and *Wnt5* genes.

TABLE 1 Numbers of occupied mouse DR5 RAREs in the initial list (15,925 predicted sites), the list of conserved 181 sites located ± 10 kb from TSSs, and in the final list of 138 RAREs

For finding significant occupied sites, a cutoff p value of 0,00001 was applied. As a control, the same strategy was applied to a random list of 15,925 sequences of 17 kb.

	RAREs							
F9 cells	Random list	Predicted (159,25)	Conserved (181)	Final list (138)				
Untreated	32 (0.2%)	691 (4%)	48 (26%)	39 (28%)				
RA 2 h	62	1,109	49	45				
RA 24 h	39	964	46	33				
RA 48 h	85	1,523 (9%)	71	55				
Total	112	1,791 (11%)	76 (42%)	58 (42%)				

Most interestingly, a new repertoire of occupied RAREs was found to be associated to new potential RA target genes encoding transcription regulators (RXRβ, Jmjd3, Foxa2), several Homeobox genes belonging to clusters (Hoxa3, Hoxb3, Hoxd3), galectins (Lgals2), membrane-associated proteins (Sema3e, Abhd2, Crygn), RNA-binding proteins (Cugbp1, Qk, Srp68, Pcbp4), ATPases (Clpb), and proteins involved in cell death (Sspn), neuronal functions (Agap1), developmental processes (Otp), cell signaling (Raph1, Arpp21, Zdhhc3, Cacna1g, Camk2b, Ephb3, and Pld2), and cytoskeleton organization (Ivns1abp). RAREs were also found associated to the tumor suppressor HIC1 gene, the kallikrein-related peptidase 13 (KLK13) gene, the Myf6 gene, which belongs to the family of muscle regulatory factors, and the Prss27 gene, which encodes a membrane-anchored protease. Note that in the two latter cases, the occupation of the sites decreased after RA addition.

The other RAREs of the bioinformatics list were not occupied by RARs in F9 cells either in the absence or presence of RA. However, as RAR binding relies on the cellular and/or physiological context, one cannot exclude that these RAREs would be occupied in other cell lines or tissues or in other species.

RA Regulation of the Genes Associated to the Selected RAREs— Next we assessed whether the genes associated to the selected RAREs are RA-regulated. Our in silico screen identified 138 DR5 RAREs, but taking into account that several RAREs were found associated to a same gene, there are 129 potential RAregulated genes. First, the set of RA-regulated genes was analyzed by high throughput qPCR sequencing (RNA-seq) using F9 cells for which we already had a list of 58 occupied DR5 RAREs. A list of 167 genes that were either induced or repressed after a 4-h treatment with RA was generated after data normalization and identification of the significant differentially expressed genes (supplemental Table S5). This list was finally reduced to 164 distinct genes after removal of the duplicated

Then this list of 164 RA-regulated genes was crossed with the list of 129 RARE-associated genes raised in silico, resulting in the selection of 9 RA-responsive genes common to the two lists (Fig. 6). This list includes indeed the canonical RAR target genes (Cyp26A1, RARB2, Rbp1, Hoxa1, and Hoxb1). It also includes two new *Hox* genes (*Hoxa3*, *Hoxb3*) as well as two new Stra genes, Tcfap2C and BHBLH4. In F9 cells, for all these nine RA-responsive genes, the associated DR5 RAREs were occupied by RAR/RXR heterodimers, and this occupancy was increased in response to RA (see Table 2).

Note that several other genes that are not in our bioinformatics list are activated in RA-treated F9 cells. However, some rely on other DR elements (cdx1) and/or reflect the complexity of Hox clustering (Hoxa5, Hoxb5, Hoxa4, and Hoxb2) (54-57). Others are known RA-responsive genes (1, 58-60) with DR5 RAREs (see supplemental Table S2) but are not conserved in several species (Cyp26B1, Stra6, Stra8, Foxa1, Gbx2/Stra7) or are located out of the ± 10 -kb limits (*Gata6*).

The RA-responsiveness of the genes we selected *in silico* was also analyzed in qRT-PCR experiments performed with F9 cells after RA treatment for different times up to 8 h. According to the confidence of the quality of their annotation and sequencing, 49 genes among the 129 genes (supplemental Table 1) were analyzed. This approach confirmed the RA inducibility of the nine genes selected above (Fig. 7, A–D). Interestingly, it also revealed that the inducibility of these genes increases with time (Fig. 7, A-D). Moreover, some additional RAR-bound genes, such as Meis2, KLK13, and HIC1, can be also activated in response to RA but with a low efficiency and at later times (8 h) (Fig. 7, *D* and *E*), raising to 12 the list of RA-responsive genes controlled by conserved DR5 RAREs and located ± 10 kb from TSSs in F9 cells (Fig. 6).

Given that the RA response of target genes is well known to be cell type-specific, the same qRT-PCR experiments were performed with another RA-responsive mouse embryocarcinoma cell line, the P19 cell line. As shown in Fig. 7, *F–J*, the same genes were activated in response to RA, although with different intensities and kinetics. As an example, the *Hoxa1* and *Meis2* genes were more efficiently activated in P19 cells than in F9 cells. Note that the Myf6 gene, which was not activated in F9 cells, responded to RA in P19 cells (Fig. 71), raising the number of RA-responsive genes to 13.

Finally, as the RAREs controlling these 13 genes are highly conserved between species (Fig. 5), we analyzed whether they also responded to RA in other cell lines from other species such as a human breast cancer cell line (MCF7 cells) (Fig. 8A) and a zebrafish cell line (PAC2) (Fig. 8B). The Bhlhe40 gene was significantly activated in MCF7 cells but not in zebrafish PAC2 cells. In contrast, Meis2 was strongly activated in PAC2 cells and not in MCF7 cells. These results are summarized in Fig. 9 and point out that the RA response of the new RARE-associated genes we identified may vary from one cell type to the other and from one species to the other.

DISCUSSION

Here we describe a genome-wide in silico analysis of consensus DR5 RAREs with recurrent RGKTSA motifs. The advantage of such a computational approach is that it overcomes the chromatin and cellular context and thus provides a direct glance on the whole repertoire of possible RAREs. Moreover, the choice of recurrent RGKTSA motifs was expected to expand this repertoire of RAREs.

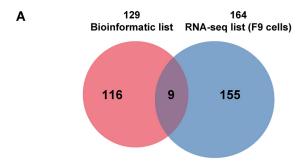

This computational study revealed around 15,000 DR5 RAREs in the human and mouse genomes. Among these RAREs, 24% are concentrated in regions located ± 10 kb from the TSSs and the gene ends, and 5–7% are conserved in 6 organisms or more. It also revealed that the degree of conservation of the overall RAREs is not linear with time in the various verte-

TABLE 2RAR/RXR occupancy of the selected RAREs in F9 cells treated or not with RA (10^{-7} M) for the indicated times

	Occupied RAREs in F							
Official gene name	dTSS*	Control	RA 2h	RA 24h	RA 48h			
2310007D09Rik	-3436							
4121402D02Rik	-5908							
4632412N22Rik	1259							
4930452B06Rik	-459							
4930562D19Rik	8578							
6430527G18Rik	-3426	+	+	+	+			
Abhd2	-1367	+	+	+	+			
Aco2	404							
Actn4	-1391	-	+	-	+			
Agap1	-9441			++	++			
Aipl1	-2338			- 11				
Alk	5054							
Ankrd50	-1989							
Ar	-1258							
Arpp21	-6279	-	+		+			
Atxn2	-561	+	++	++	++			
BC052040	-1662				+			
Bhlhe40	1556	+	++	++	++			
Bmf	-864				+			
Bmp7	4301							
Brs3	115							
Cacna1g	6105	+	+	++	++			
Camk2b	-3030	+	+	+	+			
Ccdc132	-8558							
Ccno	-5719							
Cdcp2	663	-		-	+			
Cited2	574		+		+			
Clpb	5382	+	+	+	+			
Col24a1	292				+			
Crygn	3244	++	++	++	++			
Ctsk	2154							
Cugbp1	-379	+	+		+			
Cugbp2	-5337							
Cyp26a1	-31							
Сур26а1	-1898	++	++++	+++	+++			
Diap3	-229		3333	0.00	2000			
E130309F12Rik	745							
Ebf3	-7615							
Elf4	-7145							
Enpp2	2163							
Ephb3	-6596	+	+	-	+			
Esrrg	-3113							
Ext2	-7409							
Fbxo30	-5674							
Flt4	3918							
Foxa2	8392		+		+			
Frap1	-7491							
Gabarapl2	522							
Gpr149	-8572							
Gria2	-6381							
Gzmk	-2144							
Hey1	-49		-	-	+			
Hic1	1444	+	++	++	++			
Hip1r	-2808							
Hmbox1	48							
Hoxa1	1940	+	+++	++++	++			
Hoxa3	-6472	+	+	++	+			
Hoxa3	6064	+	+++	+++	++			
Hoxb1	5100	+	+	++	++			
Hoxb3	-6694	+		++	++			
Hoxc4	-5034							
Hoxd3	-6731	-	-	+	+			
Hoxd4	2778							
Hoxd4	2696							
	-187		+	+	+			
lvns1abp					l .			
	4801	++	++	++	++			
Ivns1abp Jmjd3 Klk13	4801 435	++	++	-	++			
Jmjd3		++ - +			l			

	Occupied RAREs in F9 cells									
Official gene name	dTSS*	Control	RA 2h	RA 24h	RA 48h					
Lrrc29	-3339	Control	10.211	ICA Z-4II	104 4011					
Meis2	-7698	++	++	++	++					
Meis2	-6268	+	++	++	+					
Meis2	-6129									
MII1	1810									
Mmp24	-1581									
mmu-let-7c-2	-3954									
mmu-mir-10a	-2566									
Myf6	680	+	-	-	-					
Myo3b	-7559									
Nkapl	-386									
Onecut2	9911									
Osr1	-988									
Otp	-415	+	++	++	++					
Parp8	9175									
Pcbp2	-6347									
Pcbp4	3290	+	+	+	+					
Pld2	-7034	+	+		+					
Polb	-8806									
Pou3f1	3357									
Prnpip1 Prss27	-3868 -148	+	+							
Ptch1	6913	+	+		-					
Ptchd1	-4895									
Ptprj	-917									
Ptprj	-7803									
Qk	608	+	+++	++	++					
Rab11fip2	5995	·								
Rab39b	410									
Raph1	-8272	+	+		+					
Rarb	-303	+	++		+					
Rarb	-4293	+++	++++	++++	++++					
Rbbp7	1280	+	+		+					
Rbm35b	-943									
Rbp1	7034	++	++	+++	++					
Rnf10	-2326									
Rnf214	6752									
Ror1	-6573									
Rxrb	-1559	++	++	++	++					
Sat1	-460									
Sema3e	63	+	+	+	+					
Sgk2	-1190									
Shank3	-620									
Shf	-6710									
Slc22a5	-7623									
Slc22a5 Slc25a23	-7756 -1767				+					
Slc9a3	682									
Smyd5	-1309									
Sp7	-384									
Srp68	-633	+	+	-	+					
Sspn	3592	-	+	+	+					
Tcf7l2	-2852									
Tcfap2c	2676				+					
Tfg	-1690									
Tnks1bp1	-2692									
Top2b	1145		+	++	++					
Trpc1	304									
Ttc27	3495									
Wnt1	153	†		+	+					
Wnt5a	1493	+	+	-	+					
Wt1 Wt1	-4329 7818		+	+						
Yes1	7818 3362									
Ypel5	-2592									
Zbtb5	-3813									
Zdhhc3	676		+		+					
Zfp503	1645	++	++	++	++					
Zfp598	6048	+			+					

B Genes from the bioiformatic list that are RA regulated in F9 cells Cyp26A1 Hoxa1 Hoxa3 Hoxb1 Hoxb3 RAR_{β2} Rbp1 Tcfap2c Bhlhe40

C Other genes from the bioinformatic list that are RA-regulated later and/or in other cell types

> Hic1 KLK13 Meis2 Myf6

FIGURE 6. RA-responsiveness of the conserved DR5 RARE-associated genes identified in silico as assessed by RNA-seq in F9 cells. A, shown are Venn diagrams. B and C, shown is a summary of the RA-regulated genes.

brates and that the RA gene regulatory network is specifically elaborated in specific groups. Surprisingly, this occurred specifically in placental mammals (eutherians) versus all mammals. Indeed, 3-fold more RAREs are conserved in the former than in the latter. As no major events of genomic reorganization are known to have occurred at the base of placental mammals, this elaboration might be specific to RA signaling.

Finally it provided a list of 138 RAREs located ± 10 kb from TSSs and gene ends and conserved in 6 organisms or more. This list includes the majority of known RAREs, validating the restrictive criteria of our analysis. It also includes RAREs associated to "stimulated by RA" (Stra) genes for which no RAREs had been identified yet. The interesting point is that it provided a newly expanded set of high confidence conserved DR5 RAREs associated to a series of new genes involved in transcription, cell signaling, development, neuronal functions, and tumor suppression. The other interesting point is that in some cases, two to three RAREs were found to be associated to a same gene (e.g. Cyp26A1, RARβ2, and Meis2), increasing the complexity of the transcriptional regulation of these genes.

However, in silico identification of RAREs does not assure their functionality. Therefore, we combined the present computational analysis to experimental biology to determine whether the selected RAREs can bind RARs (ChIP-seq) and respond to RA (RNA-seq and qRT-PCR). Such an integrated strategy performed with mouse embryocarcinoma cells (F9 cell line) revealed that 11% of the 15,925 mouse RAREs present in the starting list were occupied by RAR/RXR heterodimers. Interestingly, this percentage increased to 40% in the final list of

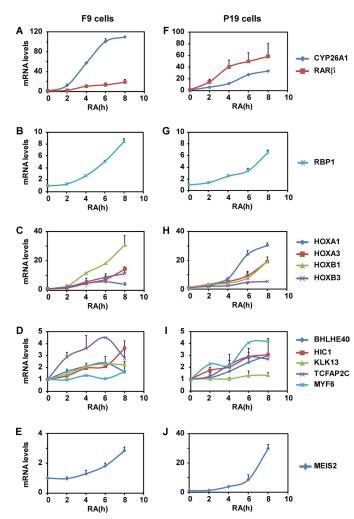


FIGURE 7. Real time RT-PCR analysis of the RA regulation of the genes associated to the conserved DR5 RAREs identified in silico in F9 (A-E) and **P19** (F-J) mouse embryocarcinoma cells. The results correspond to the mean \pm S.D. of three independent experiments.

conserved RAREs located ±10 kb from TSSs, validating our selection strategy.

Of note is that, in F9 cells, among the 58 occupied RAREs of our final list, only 12 of the corresponding genes were rapidly activated in response to RA. These genes include indeed the canonical RA target genes (Cyp26A1, RARβ2, Rbp1, Hoxa1, Hoxb1) as well as new Hox genes (Hoxa3 and Hoxb3), Stra genes (Tcfap2c, Bhlhe40, Meis2), HIC1, and KLK13. These 12 genes were also activated in another mouse embryocarcinoma cell line (P19). However, some of them (exemplified by the Bhlhe40 and Meis2 genes) did not respond to RA in human MCF7 cells or in zebrafish PAC2 cells. In contrast, another gene, Myf6, which was occupied but not RA-responsive in F9 cells, was significantly induced in P19 cells. This corroborates that the RA regulation of target genes differs from one cell type to the other (Fig. 9), most probably in line with their chromatin context and final feature (differentiation or proliferation). In fact, the majority of the genes associated to occupied RAREs were not RA-regulated in F9 cells. This lack of RA response may be due to the fact that the genes are already expressed (and thus cannot be further stimulated). However, one cannot exclude that RA regulation requires longer times as exemplified for

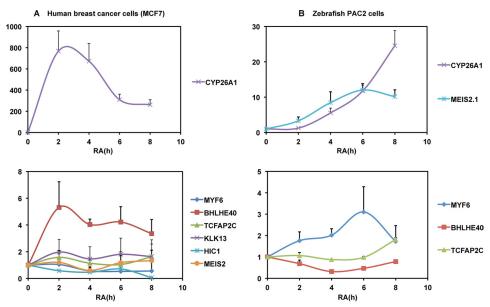


FIGURE 8. Real time RT-PCR analysis of the RA regulation of the genes associated to the conserved DR5 RAREs in human MCF7 (A) and zebrafish PAC2 (B) cells. The results correspond to the mean \pm S.D. of three independent experiments.

RA-target gene		qRT-PCR validation	in different cell lines	Associated RARE(s)						
	Mouse F9	Mouse P19	Human MCF7	Zebrafish PAC2	Number	Conservation	Occupancy in F9 cells			
	Canonical DR5 RARE-associated genes									
Сур26а1			+	+	1	14	=			
Сургой	•	,	·	·	2	8	+++			
Hoxa1	+	+	+	ND	1	12	+++			
Hoxb1	+	+	+	ND	1	13	+			
Rarb		+	±	Gene loss -	1	12	++++			
Kaib	,		•		2	9	++			
Rbp1	+	+	ND	ND	1	8	++			
	New DR5 RARE-associated genes									
Hoxa3	+	+	ND	ND	1	14				
Hoxb3		+	ND	ND	1	14				
Bhlhbe40		+	+	•	1	12	++			
Tcfap2c	+	+	•	. C. 11	1	6	•			
					1	14	++			
Meis2		•			2	12	++			
					3	8	•			
Hic1		+	•	ND	1	9	•			
Klk13				Gene loss	1	6	•			
Myf6	•	+		+	1	6	±			

FIGURE 9. Recapitulation of the conserved DR5 RAREs that are RA-activated in mouse embryocarcinoma cells (F9 and P19 cell lines), human breast cancer cells (MCF7 cells), and a zebrafish cell line (PAC2 cells).

Zfp503 (10), specific RARE-mediated conformational changes of the bound RAR (61), and/or cross-talks with other signaling pathways (12, 62), emphasizing the complexity of the RAR-mediated regulation of gene expression.

Remarkably, the majority of the RAREs present in our *in silico* list were not occupied *in vivo* in F9 cells. This is not surprising, as RAR binding relies on the cellular and physiological context and/or may require other cell specific transcription factors (12). Thus, one can predict that the other RAREs present in the *in silico* list would be occupied in other appropriate cell types or tissues with the corresponding genes being RA regulated under specific conditions.

The final interesting point of this study is the identification of 6 RAREs that are conserved in all the 15 species studied. However, except the RARE associated to the *Gria2* gene, all these

RAREs are located out of the ± 10 -kb limits we defined. Moreover, none of the corresponding genes were RA-regulated in F9 cells, as assessed in RNA-seq experiments, except Meis1, which was activated 24 h after the RA addition to F9 cells (10). Nevertheless, these genes are mostly developmental genes (36–41) that are expressed in specific cell types and tissues and at specific developmental stages. Therefore, they might be new markers of the RA response, valid at specific times, in specific tissues from any jawed vertebrate species, opening new avenues for the study of RA signaling during development.

In conclusion, the novelty of the present study resides in an integrated strategy combining genome-wide biocomputing analysis and biological experiments for discovering and characterizing new RAR target genes and response elements. In addition to providing a wider valuable knowledge base for the anal-

ysis of robust RA-responsive genes, such a strategy also brought significant biological information. Indeed, it revealed (i) low conservation of RAREs between human and mouse (6%) and significant differences in the RA regulation of the highly conserved RAR target genes between species. Thus, it suggests that the RA response will differ from one species to the other as well as from one tissue to the other and under different situations. Finally, one can predict that the small set of conserved RAR direct target genes would act as key effectors of evolutionary steps.

Acknowledgments-We warmly acknowledge all members of the team and of the cell culture facilities for help. Special thanks to Regis Lutzing for qRT-PCR and to Bernard Jost and Celine Keime for RNA-sea.

REFERENCES

- 1. Bour, G., Taneja, R., and Rochette-Egly, C. (2006) in Nuclear Receptors in Development (Taneja, R., ed.) pp. 211-253, Elsevier Science Publishing Co., Inc., New York
- 2. Duong, V., and Rochette-Egly, C. (2011) Biochim. Biophys. Acta 1812, 1023-1031
- 3. Mark, M., Ghyselinck, N. B., and Chambon, P. (2009) Nucl. Recept. Signal.
- 4. Samarut, E., and Rochette-Egly, C. (2011) Mol. Cell. Endocrinol., in press
- 5. Rochette-Egly, C., and Germain, P. (2009) Nucl. Recept. Signal. 7, e005
- 6. Bastien, J., and Rochette-Egly, C. (2004) Gene 328, 1-16
- 7. Cotnoir-White, D., Laperrière, D., and Mader, S. (2011) Mol. Cell. Endocrinol. 334, 76-82
- 8. Eifert, C., Sangster-Guity, N., Yu, L. M., Chittur, S. V., Perez, A. V., Tine, J. A., and McCormick, P. J. (2006) Mol. Reprod. Dev. 73, 796 – 824
- 9. Harris, T. M., and Childs, G. (2002) Funct. Integr. Genomics 2, 105-119
- 10. Su, D., and Gudas, L. J. (2008) Biochem. Pharmacol. 75, 1129-1160
- 11. Delacroix, L., Moutier, E., Altobelli, G., Legras, S., Poch, O., Choukrallah, M. A., Bertin, I., Jost, B., and Davidson, I. (2010) Mol. Cell. Biol. 30, 231 - 244
- 12. Hua, S., Kittler, R., and White, K. P. (2009) Cell 137, 1259-1271
- 13. Hoffman, B. G., and Jones, S. J. (2009) J. Endocrinol. 201, 1-13
- 14. Reddy, T. E., Pauli, F., Sprouse, R. O., Neff, N. F., Newberry, K. M., Garabedian, M. J., and Myers, R. M. (2009) Genome Res. 19, 2163-2171
- 15. Anno, Y. N., Myslinski, E., Ngondo-Mbongo, R. P., Krol, A., Poch, O., Lecompte, O., and Carbon, P. (2011) Nucleic Acids Res. 39, 3116-3127
- 16. Rochette-Egly, C., Gaub, M. P., Lutz, Y., Ali, S., Scheuer, I., and Chambon, P. (1992) Mol. Endocrinol. 6, 2197-2209
- 17. Taneja, R., Rochette-Egly, C., Plassat, J. L., Penna, L., Gaub, M. P., and Chambon, P. (1997) EMBO J. 16, 6452-6465
- Samarut, E., Amal, I., Markov, G., Stote, R., Dejaegere, A., Laudet, V., and Rochette-Egly, C. (2011) Mol. Biol. Evol. 28, 2135-2137
- 19. Bruck, N., Vitoux, D., Ferry, C., Duong, V., Bauer, A., de Thé, H., and Rochette-Egly, C. (2009) EMBO J. 28, 34-47
- 20. Bour, G., Plassat, J. L., Bauer, A., Lalevée, S., and Rochette-Egly, C. (2005) J. Biol. Chem. 280, 17027-17037
- 21. Trapnell, C., Pachter, L., and Salzberg, S. L. (2009) Bioinformatics 25, 1105 - 1111
- 22. Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., and Pachter, L. (2010) Nat. Biotechnol. 28, 511-515
- 23. Anders, S., and Huber, W. (2010) Genome Biol. 11, R106
- 24. Benjamini, Y., and Hochberg, Y. (1995) J. R. Stat. Soc. Series B Stat. Methodol. 57, 289-300
- 25. Umesono, K., Murakami, K. K., Thompson, C. C., and Evans, R. M. (1991) Cell 65, 1255-1266
- 26. Leid, M., Kastner, P., and Chambon, P. (1992) Trends Biochem. Sci 17, 427 - 433

- 27. Loudig, O., Maclean, G. A., Dore, N. L., Luu, L., and Petkovich, M. (2005) Biochem. J. 392, 241-248
- 28. de Thé, H., Vivanco-Ruiz, M. M., Tiollais, P., Stunnenberg, H., and Dejean, A. (1990) Nature 343, 177-180
- 29. Leroy, P., Nakshatri, H., and Chambon, P. (1991) Proc. Natl. Acad. Sci. *U.S.A.* **88,** 10138 – 10142
- 30. Lehmann, J. M., Zhang, X. K., and Pfahl, M. (1992) Mol. Cell. Biol. 12, 2976 - 2985
- 31. Langston, A. W., and Gudas, L. J. (1992) Mech. Dev. 38, 217–227
- 32. Huang, D., Chen, S. W., Langston, A. W., and Gudas, L. J. (1998) Development 125, 3235-3246
- 33. Doerksen, L. F., Bhattacharya, A., Kannan, P., Pratt, D., and Tainsky, M. A. (1996) Nucleic Acids Res. 24, 2849 - 2856
- 34. Milinkovitch, M. C., Helaers, R., Depiereux, E., Tzika, A. C., and Gabaldón, T. (2010) Genome Biol 11, R16
- 35. Bromham, L., and Penny, D. (2003) Nat. Rev. Genet. 4, 216-224
- 36. Jing, Y., Machon, O., Hampl, A., Dvorak, P., Xing, Y., and Krauss, S. (2011) Cell. Mol. Neurobiol. 31, 715-727
- 37. Mercader, N., Leonardo, E., Piedra, M. E., Martínez-A, C., Ros, M. A., and Torres, M. (2000) Development 127, 3961-3970
- 38. Faralli, H., Martin, E., Coré, N., Liu, Q. C., Filippi, P., Dilworth, F. J., Caubit, X., and Fasano, L. (2011) J. Biol. Chem. 286, 23498-23510
- 39. Mead, A. N., and Stephens, D. N. (2003) J. Neurosci. 23, 9500 9507
- 40. Xing, Y., Nakamura, Y., and Rainey, W. E. (2009) Mol. Cell. Endocrinol. **300,** 43–50
- 41. Garitaonandia, I., Smith, J. L., Kupchak, B. R., and Lyons, T. J. (2009) J. Recept. Signal. Transduct. Res. 29, 67-73
- 42. Lin, C. Y., Ström, A., Vega, V. B., Kong, S. L., Yeo, A. L., Thomsen, J. S., Chan, W. C., Doray, B., Bangarusamy, D. K., Ramasamy, A., Vergara, L. A., Tang, S., Chong, A., Bajic, V. B., Miller, L. D., Gustafsson, J. A., and Liu, E. T. (2004) Genome Biol. 5, R66
- 43. Smeenk, L., van Heeringen, S. J., Koeppel, M., van Driel, M. A., Bartels, S. J., Akkers, R. C., Denissov, S., Stunnenberg, H. G., and Lohrum, M. (2008) Nucleic Acids Res. 36, 3639 – 3654
- 44. Carroll, J. S., Meyer, C. A., Song, J., Li, W., Geistlinger, T. R., Eeckhoute, J., Brodsky, A. S., Keeton, E. K., Fertuck, K. C., Hall, G. F., Wang, Q., Bekiranov, S., Sementchenko, V., Fox, E. A., Silver, P. A., Gingeras, T. R., Liu, X. S., and Brown, M. (2006) Nat. Genet. 38, 1289-1297
- 45. Carroll, J. S., and Brown, M. (2006) Mol. Endocrinol. 20, 1707-1714
- 46. Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., Orlov, Y. L., Velkov, S., Ho, A., Mei, P. H., Chew, E. G., Huang, P. Y., Welboren, W. J., Han, Y., Ooi, H. S., Ariyaratne, P. N., Vega, V. B., Luo, Y., Tan, P. Y., Choy, P. Y., Wansa, K. D., Zhao, B., Lim, K. S., Leow, S. C., Yow, J. S., Joseph, R., Li, H., Desai, K. V., Thomsen, J. S., Lee, Y. K., Karuturi, R. K., Herve, T., Bourque, G., Stunnenberg, H. G., Ruan, X., Cacheux-Rataboul, V., Sung, W. K., Liu, E. T., Wei, C. L., Cheung, E., and Ruan, Y. (2009) Nature **462**, 58 – 64
- 47. Bollig, F., Perner, B., Besenbeck, B., Köthe, S., Ebert, C., Taudien, S., and Englert, C. (2009) Development 136, 2883-2892
- 48. Gillespie, R. F., and Gudas, L. J. (2007) J. Biol. Chem. 282, 33421-33434
- 49. Gillespie, R. F., and Gudas, L. J. (2007) J. Mol. Biol. 372, 298-316
- Lalevée, S., Bour, G., Quinternet, M., Samarut, E., Kessler, P., Vitorino, M., Bruck, N., Delsuc, M. A., Vonesch, J. L., Kieffer, B., and Rochette-Egly, C. (2010) FASEB J. 24, 4523-4534
- 51. Boudjelal, M., Taneja, R., Matsubara, S., Bouillet, P., Dolle, P., and Chambon, P. (1997) Genes Dev. 11, 2052-2065
- 52. Oulad-Abdelghani, M., Bouillet, P., Chazaud, C., Dollé, P., and Chambon, P. (1996) Exp. Cell Res. 225, 338-347
- 53. Oulad-Abdelghani, M., Chazaud, C., Bouillet, P., Sapin, V., Chambon, P., and Dollé, P. (1997) Dev. Dyn. 210, 173-183
- 54. Lickert, H., and Kemler, R. (2002) Dev. Dyn. 225, 216-220
- 55. Tabariès, S., Lapointe, J., Besch, T., Carter, M., Woollard, J., Tuggle, C. K., and Jeannotte, L. (2005) Mol. Cell. Biol. 25, 1389-1401
- 56. Coulombe, Y., Lemieux, M., Moreau, J., Aubin, J., Joksimovic, M., Bérubé-Simard, F. A., Tabariès, S., Boucherat, O., Guillou, F., Larochelle, C., Tuggle, C. K., and Jeannotte, L. (2010) PLoS One 5, e10600
- 57. Balmer, J. E., and Blomhoff, R. (2005) J. Steroid Biochem. Mol. Biol. 96, 347 - 354

- 58. Bouillet, P., Sapin, V., Chazaud, C., Messaddeq, N., Décimo, D., Dollé, P., and Chambon, P. (1997) *Mech. Dev.* **63**, 173–186
- Bouillet, P., Chazaud, C., Oulad-Abdelghani, M., Dollé, P., and Chambon,
 P. (1995) Dev. Dyn. 204, 372–382
- 60. Oulad-Abdelghani, M., Bouillet, P., Décimo, D., Gansmuller, A., Heyberger, S., Dollé, P., Bronner, S., Lutz, Y., and Chambon, P. (1996) *J. Cell*
- Biol. 135, 469-477
- Meijsing, S. H., Pufall, M. A., So, A. Y., Bates, D. L., Chen, L., and Yamamoto, K. R. (2009) Science 324, 407–410
- 62. Ross-Innes, C. S., Stark, R., Holmes, K. A., Schmidt, D., Spyrou, C., Russell, R., Massie, C. E., Vowler, S. L., Eldridge, M., and Carroll, J. S. (2010) *Genes Dev.* 24, 171–182

Genome-wide *in Silico* Identification of New Conserved and Functional Retinoic Acid Receptor Response Elements (Direct Repeats Separated by 5 bp)

Sébastien Lalevée, Yannick N. Anno, Amandine Chatagnon, Eric Samarut, Ölivier Poch, Vincent Laudet, Gerard Benoit, Odile Lecompte and Cécile Rochette-Egly

J. Biol. Chem. 2011, 286:33322-33334. doi: 10.1074/jbc.M111.263681 originally published online July 29, 2011

Access the most updated version of this article at doi: 10.1074/jbc.M111.263681

Alerts:

- · When this article is cited
- · When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:

http://www.jbc.org/content/suppl/2011/07/29/M111.263681.DC1

This article cites 60 references, 19 of which can be accessed free at http://www.jbc.org/content/286/38/33322.full.html#ref-list-1