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Abstract

Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation
(H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2
during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a
nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate
viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog
of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3
deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in
plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in
Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating
a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development
that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a
fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few
cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to
H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master
regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation
represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but
also especially from embryonic phase to the seedling stage.
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Introduction

One common principle of flowering plants and probably one of

the main reasons for their evolutionary success is the alternation of

a dormant seed stage with a growing plant that will eventually

reproduce and again generate seeds. Seeds harbor not only the

plant embryo, i.e. the next plant generation, but typically contain a

nourishing tissue, called the endosperm that supports embryo

growth and often provides the nutrients for the germinating

seedling. Moreover, the embryo and the endosperm are protected

by a hard shall, the seed coat, that also facilitates the distribution of

seeds. Remarkably, seeds often will stay dormant after ripening

and require for germination a defined order of environmental

conditions reflecting the progression of the seasons in moderate

climates, i.e. they will germinate only after exposure to warmth

after a period of cold temperatures. Many factors have been

identified to influence this transition from a dormant embryonic

phase to a germinating seedling (for review see [1]). However, a

unifying molecular framework has not been established so far.

For the other major phase transition in plants, e.g. from

vegetative growth to flowering, it has been found that Polycomb

repressive complex 2 (PRC2) regulation is crucial [2–4]. PRC2

activity was also found to be required for repression of flower

formation in young seedlings indicating a function in maintaining

and/or establishing vegetative growth [5,6]. Moreover, severely

compromising PRC2 function revealed its function in maintaining

overall cell and tissue organization, e.g. the distinction between

root and shoot fates [5,6].

PRC2 catalyzes the deposition of trimethylation of Lysine 27 on

histone H3 (H3K27me3), a repressive chromatin mark [7,8]. The

core PRC2 complex is conserved between animals and plants and

contains at least four components, which were first identified in

Drosophila: the HMTase Enhancer of Zeste (E(Z)), the WD40

domain protein Extra sex combs (ESC), the Zn-finger protein
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Suppressor of zeste-12 (SU(Z)12) and the nucleosome-remodeling

factor 55 (NURF-55) [9–12]. Arabidopsis contains three presump-

tive H3K27me3 HMTases, CURLY LEAF (CLF), SWINGER

(SWN) and MEDEA (MEA) that have been found to at least

partially compensate for each other. Similarly, Drosophila Su(Z)12

function is represented by three partially redundantly acting genes,

EMBRYONIC FLOWER 2 (EMF2), FERTILIZATION INDEPEN-

DENT SEED DEVELOPMENT 2 (FIS2), and VERNALIZATION 2

(VRN2). The homolog of Drosophila ESC, FIE, is the only PRC2

component that is represented by a single member in Arabidopsis.

In the past few years, much progress has been made in the

understanding of the modus operandi of PRC2. However, a major

obstacle in studying the function of chromatin regulators is their

essential role in early development as for instance mutants in ESC

in Drosophila and its murine ortholog EED are embryonic lethal

[13–15]. Similarly, PRC2 function is crucial already for endos-

perm formation in flowering plants by controlling the parent-of-

origin dependent activity of a number of genes in the endosperm

(imprinting). PRC2 function is maternal gametophytically re-

quired and loss of the maternal PRC2 function releases targets

genes from their repression leading to endosperm overproliferation

and ultimately to seed abortion [16–19]. This requirement for

endosperm formation has also precluded so far an analysis of

PRC2 action during later stages of seed development and it also

remained an open question whether PRC2 function is required for

initial body plan formation in flowering plants during which an

embryo with shoot, root, and one (Monocotyledons) or two

(Dicotyledons) cotyledons is formed. In contrast to animals, the

two stem cell populations established in embryogenesis, i.e. the

root and shoot meristem, will produce the body of the adult plant

and it has been shown previously that PRC2 is involved in

postembryonic shoot meristem function [20].

We and others have previously identified a mutant in the cell

cycle regulator CDKA;1 in which the second mitosis during pollen

development is missing or substantially delayed [21–23]. However,

mutant pollen can successfully fertilize the egg cell giving rise to an

embryo while triggering the onset of endosperm development

without a paternal contribution. This type of fertilization was

found to bypass the maternal requirement of PRC2-dependent

repression during endosperm development resulting in a mutual

rescue of the paternal effect of cdka;1 mutant pollen and the

maternal effect caused by mutations in MEA, FIS2 or FIE [24].

Here we have used cdka;1 mutant fertilization to generate

homozygous fie mutant plants allowing us to functionally address

the requirement of PRC2 action during embryogenesis and

subsequent plant growth and development. Our results show that

PRC2 is required neither for the generation nor maintenance of

embryonic organization in striking contrast to animal PRC2

function. However, PRC2 in plants is vital for the reprogramming

of developmental fates mediating the switch from embryonic states

to growing seedlings. Furthermore, our genome-wide ChIP- and

transcriptional profiling experiments gave insights into the

circuitry of PRC2 action indicating that developmental phase

transitions are robustly controlled by PRC2 through simulta-

neously targeting genes at different hierarchical levels and

triggering positive feed back loops. This network design allows

the transduction of environmental cues into stable and self-

maintaining developmental fates likely underlying the enormously

adaptable yet enduring growth of plants.

Results

Generation of homozygous fie mutant plants
Since the female gametophytic defect of mutants in FIS class

genes can be bypassed by fertilization with cdka;1 mutant pollen

[24], we asked whether this would allow the generation of

homozygous fie mutant plants in crosses of heterozygous fie mutant

mother plants with pollen of cdka;1-fie double heterozygous plants.

Indeed, in the progeny of this cross and amid the descendents of a

self-pollinated double heterozygous cdka;1-fie mutant a morpho-

logically distinguishable class of plants was identified that was

never found among the progeny of heterozygous fie or cdka;1

mutants. Subsequent genotyping confirmed that these plants were

homozygous mutant for fie (Figure 1). Reciprocal crosses

corroborated that the appearance of fie resulted solely from

fertilization with paternal cdka;1 whereas maternal cdka;1 did not

contribute to the generation of viable fie mutants (Table 1).

The fie mutant used as reference allele in this study is a T-DNA

insertion line in a central exon and represents a transcriptional null

mutant (Figure S1). In the same way generated homozygous

seedlings for three additional fie alleles resulted in the same mutant

phenotype (Figure S1 and data not shown). Thus, circumventing

the requirement of FIS action in the endosperm is sufficient to

generate homozygous null mutants for the PRC2 core gene FIE.

Homozygous fie mutants display a progressive mutant
phenotype

Loss of ESC function in flies or mammals causes embryo

lethality and is essential for the patterning of the body plan

[15,25]. In contrast, macro- and microscopical analyses revealed

that fie mutant seedlings initially showed a wild-type-like body plan

with a root and a shoot, two cotyledons, and newly forming rosette

leaves that were at this stage morphologically indistinguishable

from wild-type sister plants (Figure 1A, 1D). However, fie mutants

grew more slowly than the wild type and around 10 days after

stratification (10 DAS) already initiated flower buds (Figure 1E

shows a flower bud at 15 DAS) whereas the wild type started to

flower only after more than 30 DAS. During the next 10 days,

homozygous fie mutants developed an increasing number of

ectopic cells (Figure 1K, 1L) and organs (Figure 1H, 1I), showed

signs of organ transformations (Figure 1G) and generated somatic

embryos (Figure 1J). The loss of spatial and temporal organization

Author Summary

Epigenetic regulation of gene expression through modi-
fications of histone tails is fundamental for growth and
development of multicellular organisms. The trimethyla-
tion of lysine 27 of histone 3 (H3K27me3) is the landmark
of Polycomb Repressive Complex2 (PRC2) function and is
associated with gene repression. Here we present the
development of a genetic system to generate homozy-
gous null mutants of Arabidopsis PRC2. A first major
finding is that H3K27me3 is globally lost in these mutants.
Surprisingly, we found that initial body plant organization
and embryo development is largely independent of PRC2
action, which is in sharp contrast to embryonic lethality of
PRC2 mutants in animals. However, we show here that
PRC2 is required to switch from embryonic to seedling
phase, and mutant seeds showed enhanced dormancy and
germination defects. Indeed, many genes controlling seed
maturation and dormancy are marked by H3K27me3 and
are upregulated upon loss of PRC2. The invention of seed
dormancy of land plants is regarded as one of the major
reasons for the evolutionary success of flowering plants,
and the here-discovered key role of PRC2 during the
developmental phase transition from embryo to seedling
growth reveals the adaptation of conserved molecular
mechanisms to carry out new functions.

PRC2 Controls the Embryo-to-Seedling Transition
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Figure 1. Phenotypic analysis of postembryonic development. Comparison between wild type (A–C) and fie mutant (C–L) development.
(A) Wild type seedling at 5 DAS. (D) fie mutants resemble wild type plants at 5 DAS besides a reduction in growth. (B) Wild-type seedlings are in a
vegetative phase at 15 DAS and under day-neutral growth conditions will start to bolt when one month old in contrast to (E) fie mutants that show
flowers (arrow) already at 15 DAS. (C) Vegetative growth leads to major increase in size of a wild-type plant (left) after 40 DAS whereas a fie mutant

PRC2 Controls the Embryo-to-Seedling Transition
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continued and homozygous fie seedlings transformed into callus-

like structures that could be maintained for several months

displaying an increasing number of small cells (Figure 1F). This

neoplastic behavior was confirmed by flow cytometrical analyses

showing that shortly after germination fie cells started to endo-

replicate as a sign of differentiation, a cellular behavior typically

found in maturing wild-type plants (Figure S2A, S2B, S2D) [26],

whereas at three months after germination the peaks correspond-

ing to 8C and 16C were very much reduced and the remaining

cell population gave rise to a DNA profile with cells being mostly

in a G1 and a G2 phase, suggesting a massively dividing cell

population (Figure S2C, S2D).

Thus, PRC2 in plants does not appear to be required for initial

body plan organization, indicating a major difference with animal

PRC2 function. After germination homozygous fie mutants

displayed a progressive loss of cell differentiation states resembling

the previously characterized clf-swn double mutant or a special fie

mutant allele that results from the incomplete rescue of a fie

mutant with a FIE-expressing transgene [5,6].

H3K27me3 is lost in homozygous fie mutants
As H3K27me3 is essential in animal embryogenesis we asked if

this mark is in fact missing in the viable fie mutants. Therefore we

first analyzed by immuno-cytology the distribution of H3K27me3

in the nuclei of wild-type control plants and homozygous fie

mutants (Figure S3). In two-week old wild-type plants, a clear

nuclear signal that is widely dispersed along the entire chromatin

was found (Figure S3A–S3C) consistent with previous studies

[27,28]. The spotted antibody signal is excluded from compacted

heterochromatic regions, as visualized by DAPI staining. In

contrast, no signal was observed in nuclei of two-week old fie plants

(Figure S3D–S3F).

To obtain a high-resolution molecular map of the genome-wide

distribution of H3K27me3 in wild type versus fie seedlings,

chromatin immunoprecipitation (ChIP) was performed, followed

by hybridization to a whole genome tiling array. A total of 5634

genes were identified as putative PRC2 targets in wild type

seedlings, in good agreement (68% overlap) with a previous

analysis (Table S1, Figure S4) [29].

In fie seedlings, the H3K27me3 signal was absent or extremely

reduced throughout the genome (Figure 2). However, out of 5634

H3K27me3 positive genes in wild type, 1384 (24.6%) still passed

the detection threshold in fie seedlings (Figure S4). Furthermore,

2014 genes appeared to be marked de novo by H3K27me3 in fie.

Yet, in addition to being much weaker, the H3K27me3 signal in fie

showed an atypical distribution pattern over genes and the marked

genes were on average larger and slightly closer to transposable

elements (Figure S5, Table S2). Notably, the most prominent

signal in the mutant was found over heterochromatic regions, i.e.

repeat-regions and transposable elements although H3K27me3 is

typically excluded from these locations (Figure 2A, Figure S5B)

[29]. Such an apparent re-localization of H3K27me3 signal to

heterochromatic regions has also been seen on immuno-localiza-

tion level in other mutants in PRC2 components [27].

To test the H3K27me3 signal found in wild type and fie tiling

arrays, we performed locus-specific qPCR on our ChIP-derived

DNA-material. We analyzed seven gene loci and corroborated a

H3K27me3 signal in wild type and its absence in fie (Figure S6A,

S6D). Moreover, we could detect in qPCR experiments only a

slight increase in H3K27me3 over heterochromatic regions in fie

in contrast to the array signal (Figure S6A, S6E, S6F). In any case,

the signal over heterochromatic regions was much below the level

of H3K27me3-positive genic regions in wild type. These findings

suggest that the antibody recognizes additional epitopes besides

the H3K27me3 mark, preferentially in the absence of the proper

antigen. A weak signal may get artificially enhanced in ChIP-on-

chip experiments due to the global amplification procedure that is

not applied in gene-specific ChIP-qPCR experiments.

To investigate the specificity of the antibody, we performed

peptide competition assays. Nuclear protein extracts isolated from

wild type showed a strong signal in Western blots while no band

corresponding to the H3K27me3 mark could be detected in

homozygous fie mutants under standard conditions (Figure 3A).

However, when over-exposed or under less stringent conditions a

faint signal also became visible in fie (Figure 3A, 3B). Using

increasing peptide concentrations of up to 10 mg of H3K27me2

and H3K27me1 peptides, a gradual decrease in signal strength

was observed in the case of H3K27me2 and H3K27me1 in the fie

mutant, with the mono-methylated peptide being the most

effective (Figure 3C). As the signal was strongly reduced by the

Table 1. Segregation analysis.

Genotype of the progeny in percent1,2

Cross3 FIE-WT fie +/2 fie 2/2 CDK-WT cdk +/2 N7

WT x fie 50.0 50.0 n.a.4 n.a. n.a. 40

fie x WT 100.0 0.0 n.a. n.a. n.a. 48

fie-cdk x fie 53.361.3 46.761.3 0.0 n.d.5 n.d. 448

fie x fie-cdk 28.864.6 62.463.2 8.862.4 n.d. n.d. 757

fie-cdk x
fie-cdk

35.2610.1 58.069.0 6.861.6 n.d. n.d. 428

WT x cdk n.a. n.a. n.a. 91.160.8 8.960.86 90

cdk x WT n.a. n.a. n.a. 53.962.4 46.162.4 91

fie cdk x cdk n.d. n.d. n.a. 34.4 65.6 32

cdk x fie cdk 51.5 48.4 n.a. 51.8 48.2 56

1 Genotypes are given in % of the total germinated seedlings.
2 Standard deviation is given in case more than one individual cross has been
analyzed.
3 The female partner of the cross is always indicated first. Crosses have been
performed with either wild type lines or plants heterozygous for fie and/or
cdka;1, referred to as fie and cdk, respectively.
4 n.a. = not applicable.
5 n.d. = not determined.
6 Consistent with previous studies, the transmission of cdka;1 from the paternal
side was found to be approximately 9% indicating successful wild-type like
double fertilization. These cases of double fertilization would lead in crosses
with fie as a female partner to over-proliferation of the endosperm and seed
abort.
7 Number of plants analyzed.
doi:10.1371/journal.pgen.1002014.t001

plant (right) of the same age is much smaller (arrow). (F) 3 month-old fie mutant that has transformed into a callus-like structure. Examples of
transformed and/or misplaced organs and cells in fie mutants (G–L). (G) Flower-like organs. (H) Leaves (arrow) develop from roots, which are able to
transform into offshoots (I, arrow). (J) Somatic embryos are formed in high frequency. (K) Root hairs form at shoot tissue. (L) Leaf hairs (arrow) grow
out from roots. Sugar-dependent lipid accumulation in WT and fie (M-O). Wild-type and fie mutant seedlings were stained with fat-red to visualize
lipid accumulation at 5 DAS (M) or at 8 DAS (N). Whereas at early stages there is still a clear staining visible in wild type (M, left side), there is only a
faint fed red signal detectable at 8 DAS (N, left). In contrast, fie shows strong staining in cotyledons and roots at both time points (M,N, right side). The
lipid accumulation in fie is dependent on sugar, as mutants germinating on sugar-free medium show a strong reduction in staining (O).
doi:10.1371/journal.pgen.1002014.g001
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peptides the cross-reactivity of the antibody might account to a

large extent for the remaining H3K27me3 signal in our Western

and ChIP-experiments. Moreover the H3K27me3-peptide could

not deplete the signal further in fie as would be expected when the

mutant is already largely devoid of any H3K27me3 (Figure 3B). In

contrast, the trimethylated peptide effectively reduced the signal in

wild type to a level comparable to the detection level in fie whereas

the H3K27me2- and H3K27me1-peptides did not show any

obvious effect in wild type samples up to concentrations of 10 mg

(Figure 3B, 3D). Thus, we conclude that the remaining signal in fie

is not H3K27me3 but to some extent H3K27me2 and more

pronounced H3K27me1 demonstrating a slight cross-reactivity of

the antibody. Given that H3K27me1 is found mainly over

heterochromatic regions in Arabidopsis wild-type plants [30], we

conclude that a cross-reactivity of the H3K27me3 antibody with

H3K27me1 accounts for the gain in signal over repeat-regions and

transposable elements in the fie mutant.

Genes involved in plant reproduction are particularly up-
regulated in homozygous fie mutant seedlings

To unravel the transcriptional consequences upon the loss of

PRC2 function we compared genome-wide expression levels of

homozygous fie mutants with wild type at two different time points.

At 7 DAS, no major transformations were observed, yet the plants

could be unambiguously and reproducibly identified as homozy-

gous fie mutant plants due to their aberrant root growth and

subsequent genotyping (Figure 1). At the second time point at 20

DAS, substantial morphological transformations were clearly

visible.

Within our reference set (Table S3), a total of 1115 genes were

significantly up-regulated at 7 DAS and 1735 genes at 20 DAS in

fie versus wild-type plants (Bonferroni P-value #0.05, see Material

and Methods). Conversely, we also found genes to be significantly

weaker expressed in fie versus wild type: 1308 and 1843 genes at 7

DAS and 20 DAS, respectively (Bonferroni P-value #0.05; Figure

S7’). Next, we compared the expression data with our PRC2 target

gene set. Only a fraction of all identified PRC2 target genes

became up-regulated in fie mutants, indicating that PRC2 is not

the only repressive system and/or besides the revelation of the

repression activators are required for gene expression (Figure S7).

Still, our data are consistent with the concept that H3K27me3

mark is associated with inhibition of gene expression since the

overlap of the group of up-regulated genes at 7 DAS and 20 DAS

with the group of H3K27me3 marked genes is larger than

expected by random (7 DAS and 20 DAS: representation factor

(rf) = 7.1, p,1.0e299 *; 7 DAS and H3K27me3: rf = 1.6,

p,1.8e221; 20 DAS and H3K27me3: rf = 1.1, p,0.009; Figure

S7). Conversely, for down-regulated genes at 7 DAS we see the

opposite effect, i.e. the overlap of both gene sets is smaller than

expected at random (7 DAS and 20 DAS: rf = 7.5, p,1.0e299; 7

DAS and H3K27me3: rf = 0.6, p,1.3e213; 20 DAS and

H3K27me3: rf = 0.9, p,0.122; Figure S7).

To evaluate the PRC2 targets that are up-regulated, potentially

in direct response to the loss of H3K27me3, we examined which

gene ontology (GO) categories are overrepresented among the up-

regulated genes that lost H3K27me3 in fie mutants using the

BINGO analysis software [31]. Most overrepresented GO

categories in the classification system biological function relate to

reproduction with two distinct subcategories: Flower- and seed

development (Figure 4, Figure S8). Besides reproduction, a few

additional small categories were overrepresented such as abscisic

acid (ABA) signaling and lipid-transport and –sequestering.

However, a closer analysis of the corresponding genes revealed

that they are also linked with reproduction, in particular seed

development (see below).

PRC2 function in flower and seed development
H3K27me3 appears to be a key repressive mechanism for the

expression of many genes controlling different aspects of flower

development and consistent with this, homozygous fie mutants are

very early flowering, i.e. as early as 10 DAS and produce ectopical

flowers, e.g. on roots. A similar early flowering phenotype has been

found in mutants with compromised PRC2 activity [5,6,32], and

has been related to the early deregulation of LEAFY (LFY),

AGAMOUS (AG) and PISTILLATA (PI), which starts as early as

the embryonic stage. Our analysis identifies several additional

genes controlling flower development as PRC2 targets that are

significantly up-regulated in fie mutants, including genes involved

in the establishment of a floral meristem (e.g. FLC, AGL24, LFY,

FUL and CAL), genes involved in promoting a determinate floral

meristem (e.g. ULT1, PAN, LFY) and genes involved in organ

identity specification (e.g. AP3, SEP3, LFY, PI) (Figure S9). The

results of our microarray experiments could be validated by qRT

PCRs confirming the significant up-regulation of 5 genes (AP3,

CRC, FLC, PI, SEP3). In addition, 2 genes that were only slightly

(but not significantly) up-regulated in our microarray experiment

were also found to have significantly elevated expression levels in

the qRT PCR on fie mutant material (AG, AP1), whereas the

flowering regulator FWA shows neither upregulation in the array

nor in qRT-PCR experiments (Table S4).

The second principal category of PRC2 target genes that

became up-regulated in fie mutants are genes functioning in late

seed development (Figure 4, Figure S8, Figure S10). Among the

PRC2 targets that are up-regulated in fie we find genes acting at

different hierarchical levels in late seed development, from master

regulators (e.g. AGL15, LEC2, ABI3, FUS3) and more specific

modulators (e.g. WRI, FLC) over genes promoting ABA and/or

inhibiting GA signaling (e.g. ABI4, DOG1, CHO1, SOM, SPL8)

down to target genes such as storage compounds (e.g. CRU3,

CRA1, LEAs, oleosins) (Figure 5).

The up-regulation of many important seed regulatory genes

raised the hypothesis that fie seedlings, albeit macroscopically

resembling wild type seedlings, display seed phase characteristics.

To test this, we first analyzed the lipid content using the dye Fat

Red that stains for triacylglycerol-lipids in red color. Whereas wild-

type seedlings displayed a sharply decreasing lipid content from 5

to 8 DAS, fie mutants showed an intense red color indicating a

high lipid content that is typical for late seed maturation stages in

wild type (Figure 1M, 1N).

To test whether the failure to repress late seed genes during the

seed maturation process interferes with germination, we per-

formed seed germination assays of clf-swn and fie mutants in

Figure 2. Genome-wide distribution of H3K27me3 and H3K4me3 marks. Genome browser view of Chromosome 4 with the H3K27me3
profile in wild type (first panel) and fie (second panel), boxed annotation of genes in blue (coding region) and grey (introns) (third row), boxed
annotation of transposable elements and other heterochromatic regions in brown and orange (transposable element genes) (forth row), the
H3K4me3 profile in wild type (fifth panel) and in fie (sixth panel). Enrichment in H3K27me3 or H3K4me3 marks is shown in green bars. (B) and (C) are
close-ups and show the major loss of H3K27me3 in fie whereas H3K4me3 distribution is basically unchanged. Raw data have been deposited at GEO
database (GSE24163, http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24163).
doi:10.1371/journal.pgen.1002014.g002
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comparison with wild-type plants. Whereas all wild-type seeds

germinated within 2 DAS, both clf-swn and fie mutants show

delayed germination (Figure 6A). Eventually, over 90% of clf-swn

mutants germinated around 4 DAS. In contrast, approximately 40

percent of the homozygous fie mutants stayed dormant for the

course of the entire experiment (20 days), as revealed by dissecting

dormant seeds and genotyping of the embryos.

Dissected dormant embryos were then allowed to develop on

agar plates. As a reference wild-type embryos were isolated from

seeds 24h after imbibition. Initially, dormant fie embryos are

indistinguishable from wild type embryos (Figure 6C, 6F) and

around 1/4 of these fie mutants started to develop in a similar

manner as wild type, showing root- and root hair formation,

unfolding and greening of the cotyledons and the accumulation of

anthocyanin (Figure 6C–6H). However the remaining 3/4 of fie

embryos stayed dormant for a period of several days. Some of

these finally could break dormancy and started to develop

although proliferation was extremely delayed (Figure 6L–6N).

Notably, heterozygous cdka;1 mutants behaved like wild type seeds

consistent with the previous finding that cdka;1 mutants are

sporophytically recessive. Similarly, double heterozygous cdka;1-fie

mutants also did not show any germination defects demonstrating

that the observed dormancy phenotypes are due to the loss of

PRC2 function.

Figure 4. Overrepresented gene ontology categories in the set of H3K27me3 targets that are up-regulated in fie. BiNGO (the Biological
Network Gene Ontology tool) analysis representing over-represented categories of the ontology Biological Process among the genes that are marked
by H3K27me3 in the wild type (20 DAS) and are significantly up-regulated in 7 DAS fie mutant seedlings. The size of the nodes is proportional to the
number of genes in the test set which are annotated to that node. Colored nodes are significantly over-represented, with a color scale ranging from
yellow (p-value = 0.05) to dark orange (p-value = 5.00E-7). Statistical testing was as described by Maere et al. (2005) [31].
doi:10.1371/journal.pgen.1002014.g004

Figure 3. Western blot detection of the H3K27me3 mark. Western blot analysis of H3K27me3 in wild type and fie mutants. (A) Comparison
between wild type and fie nuclear extracts revealed major loss of H3K27me3-signal in the mutant; however, after over-exposure (OE) a faint signal
becomes visible in fie mutants. Detection of histone H3 was used a loading control. (B) Under less stringent conditions a weak signal in fie is
detectable by the H3K27me3 antibody. Pre-incubating the antibody with a surplus of H3K27me3 peptides, reduces the signal intensity to only of faint
band in wild-type extracts that roughly matches the intensity of the remaining signal seen in fie mutants. Detection of histone H3 was used as
loading control. (C) Peptide competition assay using H3K27me3 antibody with increasing concentrations of H3K27me1- and H3K27me2-peptide in fie
mutant resulted in a strong reduction of the remaining signal detected by the H3K27me3 antibody. (D) Both peptides could not reduce the
H3K27me3 signal in wild-type extract indicating that the antibody works properly given that sufficient antigen is provided.
doi:10.1371/journal.pgen.1002014.g003
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Germination is associated with a low ABA to gibberellic acid (GA)

ratio [1]. Intriguingly, the development of some of the dissected,

initially dormant fie seedlings resembled the development of wild–

type plants that germinated on high concentration of ABA, lacking

proper greening of aerial tissue, root formation and expansion of true

leaves (Figure 7I–7J, 7L–7M). However, applying high dosage of GA

did not lead to higher germination rates of fie mutants (Figure 7B),

suggesting that the primary defect in the class of non-germinating fie

seeds is dormancy release and not the germination itself.

Overrepresentation of PRC2 target genes in particular
gene families

Among the up-regulated genes in fie controlling seed and flower

development certain gene families appeared to be overrepresent-

ed, e.g. transcription factors, consistent with previous studies

showing that those are in particular marked by H3K27me3

(Table 2) [7,29,33]. To get a more detailed picture, we tested

whether all transcription factor families are equally subject to

regulation by PRC2 (Figure S11A, S11B). Approximately 2/3 of

all transcription factor families have members that are marked by

H3K27me3 at 20 DAS. Notably, one of the largest transcription

factor families within our reference set in which none of the

member was found to carry H3K27me3 was the group of AUXIN

RESPONSIVE FACTORS (ARFs) that mediate auxin signaling

(Table S3). However, at a more general level, we found that other

genes involved in the auxin signal transduction network are targets

of PRC2 regulation, for instance several IAAs and PIN auxin

transport facilitators (Table S1).

Figure 5. PRC2 represses seed maturation and dormancy genes in the seedling. All genes provided in this model have been identified as
H3K27me3 targets and were significantly up-regulated in fie mutants. They include master regulators of seed development such as AGL15, LEC2, ABI3, FUS3,
further downstream regulators such as WRI, integrators of environmental signals such as FLC and finally genes involved in seed storage and desiccation
tolerance. * For detailed information which members of the oleosins (oil body coat proteins) and LEAs (late embryogenesis abundant proteins) are affected
see Table S5. For LEC2 the up-regulation was only observed in qRT-PCR (Table S4). We find here that the ABA and GA hormonal signaling pathways that play
a pivotal role in the transition form seed to seedling are under PRC2 control since genes playing a positive role in ABA signaling as well as genes with a
negative role in GA signaling are H3K27me3 marked in wild type and up-regulated in fie. Large letters stand for high and small for low ABA and GA levels,
respectively. Abscisic acid (ABA), Gibberellic acid (GA), AGAMOUS-Like 15 (AGL15, AT5G13790), LEAFY COTYLEDON 2 (LEC2, AT1G28300), ABA INSENSITIVE 3
(ABI3, AT3G24650), FUSCA 3 (FUS3, AT3G26790), WRINKLED1 (WRI, AT3G54320), FLOWERING LOCUS C (FLC, AT5G10140), CRUCIFERIN 3 (CRU3, AT4G28520),
CRUCIFERINA (CRA1, AT5G44120), SEED STORAGE ALBUMIN 1 (2S1, AT4G27140), SEED STORAGE ALBUMIN 2, (2S2, AT4G27150), HYDROXYSTEROID
DEHYDROGENASE 1 (AtHSD1, AT5G50600), Peroxiredoxin 1 (PER1, AT1G48130), ABA INSENSITIVE 4 (ABI4, AT2G40220), DELAY OF GERMINATION 1 (DOG1,
AT5G45830), CHOTTO 1/AINTEGUMENTA-LIKE 5 (CHO1/AIL5, AT5G5739), SOMNUS (SOM, AT1G03790), SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8
(SPL8, AT1G02065), AT-hook protein of GA feedback 1 (AGF1, AT4G35390), GIBBERELLIC ACID METHYLTRANSFERASE 2 (GAMT2, AT5G56300).
doi:10.1371/journal.pgen.1002014.g005
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Figure 6. Dormancy and germination phenotypes. (A) Both, homozygous fie and homozygous clf-swn mutants, show a similar delay in
germination initially. However, clf swn germinates to 100% whereas 40% of fie seeds stay dormant within at least two weeks on plates. (B) Application
of GA does not enhance the germination rate of fie mutant seeds. (C–N) Phenotypical comparison of wild type (C–E, I–K) and fie mutants (F–H, L–N).
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Among transcription factor families that are marked with

H3K27me3, the fraction of PRC2 targets varies substantially. A

particular high proportion of PRC2 targets ($60%) were found in

MIKC subclass of MADS transcription factors, in the WOX-class,

the HD-Zip-IV Homeobox class and in the C2C2-Dof and C2C2-

YABBY zinc finger classes, for the latter even all 6 members were

found to be PRC2 targets. The transcription factor subfamily with

the most (in absolute numbers as well as in percentages) PRC2

targets that also showed transcriptional up-regulation in fie is the

MIKC class, among which we find central regulators of seed and

flower development (Figure S11, Table S1, Table S5) [34].

In addition to transcription factors, a few other gene families

were overrepresented among the PRC2 targets that are up-

regulated in fie; the most prominent are oleosins and LATE

Figure 7. The set of H3K4 trimethylated genes changes only marginally between wild type and fie and is under-represented among
H3K27me3 targets. VENN Diagram representing the number of genes marked by H3K27me3 in wild type (green) and H3K4me3 in wild type
(purple) and fie (pink). The mutual overlap of the H3K4me3 targets in wild type and fie is larger than expected for two independent sets, while the
overlap of the H3K4me3 marked genes with the H3K27me3 marked genes is significantly smaller (wild type H3K4me3 and fie H3K4me3: rf = 1.9,
p,1.0e299* wild type H3K4me3 and wild type H3K27me3: rf = 0.2, p,1.0e299*; fie H3K4me3 and wild type H3K27me3: rf = 0.2, p,1.0e299*).
P-values marked by an asterisk (*) were below the calculation limits of the software (highly significant).
doi:10.1371/journal.pgen.1002014.g007

(C–H) Time series of post-embryonic development for dissected wild type (C–E) and fie (F–H) till day 3 after isolation. Initially, fie embryos isolated
from dormant seeds (F) are undistinguishable from wild type embryos dissected 24h after imbibition (C). (D) Wild type embryos start to grow within
24h after the transfer to media. (E) Unfolding as well as greening of the cotyledons, root growth and root hair formation as well as anthocyanin
accumulation takes place within 3 days. (G–H) Around J of the fie seedlings break dormancy and display a similar developmental program as wild
type from day 1 (G) to day 3 (H) after dissection. (I–K) Effect of ABA on wild type seedling growth. (I, J) Wild-type seedlings germinated on ABA-
containing media are strongly affected in growth, appear yellowish, are delayed in greening and do not produce roots. (K) After the transfer from ABA
plates to normal media, wild-type plants recover within 24h, e.g. they green, and show completely normal development further on. (L–N) The
majority (around L) of the dissected fie mutant embryos do not develop similar to wild type, but resemble wild type plants germinated on high
levels of exogenous ABA. (M,N) Typically, a strong delay in growth and greening with yellowish cotyledons and defects in root- and root hair growth
and stunted leaves is observed, though the overall body plan is not affected (N) Greening is seen only after 10 days. (L) In some cases the mutant
does not develop seedling traits at all.
doi:10.1371/journal.pgen.1002014.g006
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EMBRYONIC ABUNDANT PROTEIN genes (LEAs). Oleosins

are structural components of oil bodies and were found to be

expressed preferentially in seeds or the tapetum layer of

developing anthers [35] (Figure 5, Table S5). 11 of the 17 oleosin

genes in our reference set are H3K27me3-marked and 8 are in

addition up-regulated in fie (Table 2), which matches the

observation of storage lipid accumulation in fie (Figure 1M, 1N).

This is a strong overrepresentation since from all genes in our

reference set, we find not more than 21% marked by H3K27me3

and only 2% being up-regulated in fie as well.

Another gene family that is highly overrepresented in the class

of up-regulated PRC2-targets are LEAs, most of which are

expressed in seeds. Of 54 LEAs covered by our reference set, we

find 27 (50%) H3K27me3-marked and 16 (30%) being in addition

up-regulated in fie. Interestingly, we found 7 (13%) of the LEAs

down-regulated in fie and with a single exception these are not

H3K27me3 targets and show a non-seed specific expression

(Table S5, Figure S10) [36,37].

Crosstalk in chromatin regulation
In Drosophila the function of the Polycomb complex Group (PcG)

is counteracted by the action of the trithorax Group (trxG) [7]. In

Arabidopsis, the role of TRX has been assigned to ATX1, ATXR7/

SET DOMAIN GROUP25 (SDG25), PICKLE (PKL)/PICKLE-

RELATED 2 (PKR2) and ULTRAPETALA 1 (ULT1) [38–42].

Our data showed that ULT1, ULT2 and PKR2 are PRC2 targets and

at least ULT1 and ULT2 were substantially up-regulated at 7 and 20

DAS (Table S3). ULT1 has been shown to act as an anti-repressor

(i.e. limiting H3K27me3 deposition) and as an activator of the flower

regulator AG by mediating Lysine 4 H3 trimethylation [42]. To test

whether the loss of H3K27me3 is accompanied with a gain in

H3K4me3, as suggested by our finding of a possible negative feed-

back of PRC2 on ULT1/ULT2 activation, we analyzed the genome-

wide distribution of H3K4me3 in wild type and fie.

Consistent with previous studies [43], we found that in wild-type

plants a large number of genes (approximately 1/3 of the genome)

are marked with H3K4me3 at 20 DAS (Figure 2, Figure 7).

However, the number of genes that are marked by both H3K27me3

and H3K4me3 is significantly smaller than expected for an

independent distribution, as was observed previously [43]

(Figure 7). This indicates repulsion of these two marks in accordance

with the model that H3K27me3 and H3K4me3 signifies repressed

and activated genes, respectively. None-the-less, a small set of 501

genes was identified as marked by both histone modifications.

In our ChIP-chip experiments we found only a slight increase in

number of genes that carry the H3K4me3 mark in fie in

comparison to wild-type plants (13945 vs. 13211 genes) and we

do not see an elevated level of H3K4me3 in Western blot analyses

(Figure S6C). Thus, genes that loose H3K27me3 do not in general

gain H3K4me3 in fie (Figure 7, Table S3). On the other hand,

gene up-regulation in fie is positively correlated with loss of

H3K27me3 and gain in H3K4me3. The global proportion of

genes with elevated expression in fie at 7 DAS is 4.5% while the

percentage of up-regulated genes reaches 28% amongst those that

loose H3K27me3 and concomitantly gain H3K4me3 (Table 3). In

addition, for certain gene families, such as the MIKC group of

MADS transcription factors, the WOX group of Homeobox genes

and the oleosins, we find those genes that gain H3K4me3 in

addition to the loss of H3K27me3 to be among the most highly

up-regulated for these specific classes (Table 3, Table S5).

Thus, our data supports the view that H3K4me3 and

H3K27me3 are mutually exclusive marks though in general a

loss in H3K27me3 is not sufficient to gain H3K4me3. However, a

tightly linked interdependency between both antagonistic marks is

operating for a relatively small group of genes including members

of the MIKC class of major developmental regulators [42,44,45].

Our finding that the PRC2-antagonizing TRX-function genes

ULT1/ULT2 are themselves targets of PRC2 and consequently

up-regulated in fie, provides a possibility for the molecular

implementation of such an interconnected control mechanism.

Discussion

Here we have generated homozygous fie mutant plants overcoming

a block in the analysis of PRC2 activity in the flowering plant

Arabidopsis. Our approach relies on bypassing of double fertilization

and circumventing the requirement for FIE during endosperm

development. This has allowed us to study the genomic and

developmental consequences of the complete loss of PRC2 activity

during embryo and subsequent sporophyte development.

Genomic perspective
Several lines of evidence indicate that PRC2 in plants is indeed

essential for depositing H3K27me3 marks similar to its function in

animals. First, our ChIP-on-chip experiments showed that there is

no or only a very weak H3K27me3 signal in fie and that the

remaining signal shows properties that differ from the typical

H3K27me3 mark. Second, at least 3 heterochromatic regions that

Table 2. Overrepresentation of in wild-type H3K27me3
marked and in fie up-regulated genes in specific gene classes.

All TF MADS MIKC LEAs Oleosins

Total 1839 108 39 56 18

In reference
set ( = 100%)

24901 1771 91 37 54 17

H3K27me3 WT 20.8% 34.4% 60.4% 86.5% 50.0% 64.7%

Down in fie 9.7% 8.4% 1.1% 2.7% 11.1% 0.0%

Up in fie 9.2% 9.9% 19.8% 40.5% 44.4% 70.6%

Up in fie,
H3K27me3 WT

2.2% 4.1% 16.5% 40.5% 29.6% 47.1%

The percentage of H3K27me3 marked and/or deregulated genes is shown for
the entire reference set (column All) and different subgroups of genes, namely
transcription factors (TF), family of MADS transcription factors (MADS),
subfamily of MADS-MIKC transcription factors (MIKC), family of late
embryogenesis abundant proteins (LEAs), family of oil body coat proteins
(oleosins).
doi:10.1371/journal.pgen.1002014.t002

Table 3. The percentage of up-regulated genes in fie
mutants is positively correlated with loss of H3K27me3 and
gain in H3K4me3.

Reference
set

Up in fie, 7 DAS
(% of reference)

Up in fie, 20 DAS
(% of reference)

All 24901 4.5 7.0

Loss H3K27me3
in fie

5175 7.0 7.7

Gain H3K4me3
in fie

1613 12.9 14.7

Loss H3K27me3
and gain
H3K4me3 in fie

296 28.0 27.7

doi:10.1371/journal.pgen.1002014.t003
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showed H3K27me3 signal in fie in ChIP-on-chip experiments did

not show a substantial level of enrichment in gene specific ChIP-

qPCR assays. Third, the little residual signal of H3K27me3 in fie

mutants can be further reduced in peptide competition assays with

peptides that harbor H3K27me2 or H3K27me1 epitopes. Finally,

H3K27me3 peptide is not effective in reducing the signal in fie

further, as would be expected when the remaining signal were

H3K27me3. Conversely, the H3K27me3 peptide could reduce

the antibody signal in wild type to the signal strength found in fie.

Based on the by large mutually exclusive distribution of

H3K27me3 and H3K4me3, we asked if genes which lost

H3K27me3 in fie would in turn acquire H3K4me3. Such a

reciprocal regulation has been found for AG and FLC in Arabidopsis

[42,44,45]. Indeed, we could confirm that AG and FLC, both

members of the MIKC transcription factor class, gain H3K4me3

in the absence of FIE. Moreover, 7 other MIKC transcription

factors that represent important regulators during development

showed a similar response. It was recently shown that the SAND

domain protein ULTRAPETALA1 (ULT1) mediates the switch

from H3K27me3 to H3K4me3 at the AG locus [42]. Interestingly,

we found that ULT1 itself is under the control of PRC2, as it is

marked by H3K27me3 in wild type and shows strong up-

regulation in fie. This might explain the switch from H3K27me3 to

H3K4me3 as seen for a remarkable number of the MIKC

transcription factors. In animals the maintenance of trimethylated

H3K4 was shown to require permanent TRX activity to

counteract PRC2, as the repressive H3K27me3 state seems to

be the default state for genes that are regulated by both

antagonizing HMTase machineries [9]. However, global changes

in H3K4me3 levels were not observed in fie, and the change from

H3K27me3 to H3K4me3 was restricted to about 5.5% of the

genes marked by H3K27me3.

We also identified a small group of potentially bivalently

labeled genes (1.8% of reference set), i.e. harboring the activating

H3K4me3 and the repressive H3K27me3 mark. The concom-

itance of both tags is found in more than 10% of all genes in

human and mouse embryonic stem cells and Xenopus tropicalis

embryos, and is thought to maintain the target genes in a ‘‘poised

state’’, resulting in transcriptional silencing but allowing for fast

reactivation upon commitment to differentiation [46–50].

Bivalency has to our knowledge only been found for the AG

and FT loci in Arabidopsis and its existence is also unclear for

Drosophila [44,51,52]. However, we showed here that in contrast

to Drosophila and mouse, Arabidopsis does not require the PRC2

to establish a normal body organization (see below). This ren-

ders it unlikely that animals and plants are using the same

epigenetic mechanisms to set up the body plan, at least during

embryogenesis.

Developmental perspective
The observation that the plant body plan can be established

without PRC2 function is an unexpected result not only because

PRC2 function is essential in animal embryogenesis but also

regarding the strong postembryonic phenotype of clf-swn double

mutants or fie mutants with a partially complementing FIE

transgene [5,6]. The overall correct body plan of fie embryos and

early seedlings suggests that there is a tight network of intercellular

communication presumably maintaining positional cues in the

plant embryo. Indeed, research in the last decade has unraveled

several patterning mechanisms in the plant embryo, for instance

polar auxin distribution and non-cell-autonomously acting tran-

scription factors [53,54].

However, after body-plan formation, PRC2 function is key for the

correct phase transition from embryonic to vegetative growth. Much

progress has been made in the understanding of chromatin regulation

and in particular the function of PRC2 during the phase transition

from vegetative growth to flowering (for review see [55–57]). In

contrast, the view that chromatin regulation is important for

controlling the switch from mature seed to seedling is only now

emerging (for review see [58,59]), and the involvement of PRC2 in

late seed development has been unclear beyond the finding that many

genes implicated in seed maturation are labeled by H3K27me3 (for

review see [58,60,61]). Defining the role of PRC2 during seed

maturation has been obscured due to a prominent function of PRC2

earlier in seed development, i.e. for endosperm growth and

differentiation. The combination of our genetics and genomics

studies demonstrate that PRC2 is one of the major control systems of

this phase change by shutting down the entire cascade of maturation

genes from master regulators to a wide range of downstream targets

before or at germination (see Figure 5). Moreover, our data suggest

that the PRC2 mediated phase transition from seed- to seedling stage

takes place primarily at the level of the embryo, as seeds with

homozygous fie mutant endosperm but heterozygous mutant embryo

germinate like wild type.

A wealth of genetic and physiological experiments has

demonstrated that seed development is under the tight control of

plant hormones and that GA triggers while ABA inhibits seed

germination (for review see [1]). High ABA and low GA levels are

characteristic for maturing seeds allowing the establishment of

seed dormancy, while this relationship is inverted at germination.

PRC2 action in the maturing seed seems to sustain the

antagonistic action of the two plant hormones ABA and GA by

inhibiting positive regulators in ABA and negative players in GA

signaling. For example, the PRC2 target SOMNUS (SOM), a

CCCH-type zinc finger protein, down-regulates GA and up-

regulates ABA levels. SOM expression is seed specific and our

finding that it is a PRC2 target and up-regulated in fie suggests that

in wild type down-regulation of SOM is maintained by H3K27me3

to allow for high GA and low ABA levels in the germinating seed.

Besides the regulation of the ABA-GA signaling pathway, we

also found that DELAY OF GERMINATION 1 (DOG1), a

major regulator of seed dormancy [62], is a H3K27me3 target and

significantly up-regulated in fie seedlings. Interestingly, it was

recently shown that DOG1 is also regulated by HISTONE

MONOUBIQUITINATION1 (HUB1), a C3HC4 RING finger

protein required for histone H2B monoubiquitination [63].

In this context it will be interesting to examine if dormancy

control is generally regulated at the level of chromatin, as for

example different Arabidopsis accessions from diverse environmen-

tal origins show dramatic differences in seed dormancy [64]. Since

PRC2 function in the perception of cold via the repression of the

flowering inhibitor FLC is well established for the transition to the

generative phase [57], it is tempting to speculate that a similar

mechanism functions to perceive this environmental stimulus in

the seed. The need of cold stratification in order to break seed

dormancy in many plant species [65] and the observation that FLC

plays a role in this process as well [66], might reveal a common

regulatory mechanism operating in the transition from vegetative

to generative phase as well as from embryonic to vegetative phase.

Interestingly another phase transition, the switch from game-

tophytic to sporophytic development was recently shown to be

regulated by PRC2 in moss, where PRC2 represses the

differentiation of the sporophyte [67,68]. The authors correlate

their observations with the transition from gametophytic to

sporophytic development in flowering plants that is as well

controlled by PRC2, as Arabidopsis fie mutants for example show

untimely development of the gametophytic endosperm without

fertilization [22,67,69,70].
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The reprogramming of gene activity is a mandatory step to allow

for cellular differentiation processes and the stable inheritance of

these differentiation states needs to be maintained for the integrity of

the organism. Plants in particular have to adapt to environmental

conditions and therefore need to change their developmental phase

accordingly, and the phase transition from embryo to seedling stage

can be considered as the earliest adaptive phase in plants. The origin

of seed dormancy in land plant evolution is regarded as a major step

in the successful establishment of flowering plants to sustain in non-

favorable conditions and its control by PRC2 is an exciting example

for the recruitment of an evolutionary conserved molecular machi-

nery to fulfill new functions.

Material and Methods

Plant material and growth conditions
Unless indicated otherwise, Col-0 was used as wild type for all

experiments. The cdka;1-1 (AT3G48750) allele has been previously

described (SALK_106809 [22]). The SALK_042962 line was used

as the standard allele for fie. As additional fie alleles the T-DNA

lines GK-362D08-016994 and GK-534F01-020364 were used

that both displayed the previously described typical fie mutant

phenotype. One previously described fie allele in WS-0 [71] was

sequenced and shown to carry a base-pair exchange mutation 59 of

the fourth splice acceptor site. The curly leaf (clf-28, SALK_139371,

At2g23380) and swinger (swn-4, SALK_109121, At4g02020) alleles

have been previously described [72,73]. All seeds were sterilized

using chloride gas and sown on 0.8% Phyto agar plates (K
Murashige & Skoog (MS) salts and 1% sucrose) and grown under

day neutral conditions (12h light 21uC, 12 h dark 17uC). After

germination, plants were transferred to either new plates for long-

term observation or to soil and grown in long day conditions (16 h,

22uC light; 8 h, 18 Cudark).

Germination assays and hormone treatment
To examine germination, seeds from plants that were grown

under the same growth conditions and stored for at least 3 months

were sterilized with Chloride-gas and stratified for at least 4 days at

4uC. Upon germination induction (light, 21uC), germination rate

was monitored for the following 6 days. After approximately 14

days the plants were analyzed with respect to their phenotype to

distinguish between mutants and phenotypically wild-type plants

and correlated with the day of germination. Dormant seeds were

dissected under a stereomicroscope using a fine needle and fine

forceps and subsequently genotyped by PCR. Gibberellic acid

(GA, gibberellin A3, Sigma) was dissolved in Ethanol (10 mM

stock solution) and applied to the MS-plates in concentrations

from 0.01 mM to 10 mM. The germination rate of fie mutants on

GA-plates was analyzed 10–14 days after stratification (DAS).

Abscisic acid (ABA, Sigma) was dissolved in Methanol (stock

concentration 10 mM) and used in final concentration of 1 mM.

Wild type germination on ABA-plates was monitored over time.

Lipid staining
Plants were first partially dehydrated in three steps (20%, 40%,

60% isopropanole solution), then incubated for 1 hour with Fat

Red solution (filtered 0.5% Sudan III in 60% isopropanole) and re-

hydrated again using the same dilution series in reversed direction.

Subsequently samples were additionally washed twice with water

and analyzed under a dissecting microscope.

RNA–extraction and qRT–PCR
RNA extraction was performed using Qiagen-RNAesy mini-kit,

following the manufacturers instruction. RNA-concentration and

purity was tested using nanodrop-photometric quantification

(Thermo Scientific). RNA-integrity was verified by running 1 ug

of total RNA on 1.5% agarose TBE-gels to detect the 28S and 16S

rRNA bands. 2 mg RNA was treated with DNAseI (MBI Fermentas)

according to the manual to avoid contamination of genomic DNA

and subsequently processed to obtain cDNA using polyT-primer

and reverse transcriptase (Superscript III, Invitrogen) following the

manufacturers instruction. After reverse transcription RNA was

removed by RNAseH digest. For negative control, all steps were

followed in the same manner, except for adding the reverse

transcriptase. The resulting cDNA was used for Reverse Tran-

scription(RT)-PCR or quantitative Real Time-PCR (qRT-PCR)

using the Roche LightCycler 480 system. Oligonucleotides were

designed using either Primer3Plus-design tool (http://www.bioin

formatics.nl/cgi-bin/primer3plus/primer3plus.cgi) or QuantPrime

(qPCR primer design tool: http://www.quantprime.de/main, [74]

and used in final concentration of 0.25 mM each. Primers for qPCR

have been tested for efficiency of .90% and are listed in Table S6.

For qPCR at least two biological and three technical replicates were

processed and expression was calculated relative to ACT7

(AT5G09810). Several reference genes were tested in comparison

between mutant and wild type samples to confirm equal loading (see

Table S6).

Transcriptome assay
Microarray analysis was carried out at the Unité de Recherche

en Génomique Végétale (Evry, France), using the CATMA arrays

[75,76]. Two independent biological replicates were produced.

For each biological repetition and each time point, RNA samples

were obtained by pooling RNA from 100 wild-type and 100 fie

seedlings at stage 7 DAS and 10 wild type and 50 fie plants at 20

DAS, respectively. 7 DAS stage plants were cultivated on plates,

20 DAS material was grown on plates for 10 days, then transferred

to liquid media for another 10 days in day neutral conditions (12 h

light, 21uC; 12 h dark. 17uC). Total RNA was extracted using

Qiagen RNeasy plant mini kit according to the supplier’s instruc-

tions. The hybridization to the slides, and the scanning were

performed as described in Lurin et al. (2004) [77].

Normalization and statistical analysis were based on two dye

swaps (i.e. four arrays, each containing 24,576 GSTs and 384

controls) as described in Gagnot et al. (2007) [78]. The raw

P-values were adjusted by the Bonferroni method, which controls

the Family Wise Error Rate, (with a type I error equal to 5%) in

order to keep a strong control of the false positives in a multiple-

comparison context [79]. We considered as being differentially

expressed the genes with a Bonferroni P-value #0.05, as described

in Gagnot et al (2007) [78].

Microarray data from this article were deposited at Gene

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/), acces-

sion no. GSE19851, direct link: http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?token=djcjpeggkgsuirw&acc=GSE19851) and

at CATdb (http://urgv.evry.inra.fr/CATdb/; Project: RS08-

09_FIE) according to the ‘‘Minimum Information About a Micro-

array Experiment’’ standards.

Western blot and peptide competition assay
Nuclear enriched protein extracts were prepared after thor-

oughly grinding in liquid nitrogen of around 1 g of plant material.

All subsequent steps are carried out in the cold. The powder was

dissolved in 10 ml of Lysis buffer (45 ml Low Salt Wash buffer [see

below] + 0.5 ml TritonX-100 + 5 ml glycerol + 50 ml 100 mM

PMSF + 20 ml b-mercaptoethanol freshly prepared on ice),

vortexed and placed on a rotation wheel for 20 min at 4C. The

solution was filtered using 100 mm nylon mesh and centrifuged for
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20 min at 4000 rpm at 4uC, following resuspension of the pellet in

2 ml lysis buffer. The solution was transferred to a new 2 ml tube

and centrifuged for 20 min, 4000 rpm, 4uC. The resulting pellet

was resuspended in 200 ml 1XSDS loading buffer. Low Salt Wash

buffer: 20 ml 0.5 M HEPES pH 7.5 + 6 ml 5 M NaCl + 400 ml

500 mM EDTA + H2O up to 200 ml. 15% SDS-gel page was

performed according to standard protocols. After SDS page

proteins were blotted on Hybond-P PVDF membrane (Amersham

Biosciences) for 75 min, 140 mA in temperature controlled

condition. All membrane manipulation experiments where carried

out at room temperature (RT) when not stated otherwise.

Membrane was blocked using incubation with 4XBlockAce

(ABD Serotec) for 3 h. Throughout all experiments we used

Anti-H3 1:20,000 (Millipore, reference nr: 06-755) as loading

control, Anti-trimethyl-Histone H3 (Lys27) antibody (Millipore,

reference-nr: 07-449) in final concentration between 1:10,000 and

1:50,000, dissolved in 5%BSA in 1xTBST (1x TBS with 0.1%

TritonX-100) and Anti-trimethyl-Histone H3 (Lys4) antibody

(Millipore, reference nr: 07-473) at 1:5,000–1:10,000. The primary

antibody was incubated at 4uC over night. After washing 3 times

15 min with 1xTBST the secondary antibody (Anti-Rabbit

antibody, GE-Healthcare, reference-nr: NA934-100UL) was

applied at 1:50,000 in 5%BSA-1xTBST solution for 2 h. Washing

was either performed stringently with 3x 30 min or less stringently

3x10 min. For detection the two-component reagent Immobilion

Western Chemiluminiscent HRP substrate (Millipore) was used.

For peptide competition, first the sub-saturating antibody

concentration was determined. For anti-H3K27me3 this was at

a concentration of 1:50,000. Then increasing concentrations from

0.1–10 ug of H3K27me3, H3K27me2 and H3K27me1 peptide

(Millipore 12-565, 12-566, 12-567) were added to a 10 ml

antibody-solution and incubated under slight agitation for 4 h at

RT and an additional 1 h at 4uC before hybridizing on the

membrane. Subsequent hybridization and detection were per-

formed as described above.

ChIP-on-chip analysis
Chromatin immunoprecipitation (ChIP) experiments were done

as described previously [74], in two biological replicates, using the

following antibodies: H3K4me3, Millipore 07-473; H3K27me3,

Millipore 07-449. DNA recovered after ChIP and directly from

input chromatin was amplified using the Sigma GenomePlex

Complete Whole Genome Amplification (WGA) Kit as directed,

differentially labeled and hybridized in dye-swap experiments to a

custom-made Roche-NimbleGen whole-genome tiling microarray.

This microarray covers the entire forward strand of the Arabi-

dopsis genome sequence (TAIR8) at 175 nt resolution with

approx. 720K isothermal tiles (50–75 oligonucleotides). Following

ANOVA normalization, raw data were analyzed using a linear

regression mixture model (ChIPmix, [80]), which was adapted to

handle multiple replicates simultaneously (script available on

request). Lists of tiles reporting significant enrichment were

converted in sets of chromatin domains by combining adjacent

enriched tiles, allowing a maximal gap of 165 nucleotides. Only

domains of at least 400 nucleotides were considered for further

analysis. TAIR8 release was used for annotation of genes and

transposable elements.

Several loci were additionally tested for H3K27me3 and

H3K4me3 enrichment as compared to input. Input was diluted

1:100 prior to qPCR application. From the diluted input material and

from the ChIP-material 1 ml was applied for each triple replicate

reaction in the Roche Lightcycler 480 Real Time System using

Roche SYBR green reagent according to the supplier’s instruction

(Roche). Primers used for this assay are given in Table S6.

ChIP on chip data from this article were deposited at

Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/),

accession no. GSE24163, direct link: (GSE24163, http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24163).

Immunocytology
10–14 DAS wild type and fie seedlings were fixed and processed

as described previously [28], washed 365 min in 16 PBS before

pre-incubation with BSA. Diluted rabbit polyclonal a- trimethyl

H3K27 primary antibody (1:100, Millipore 07-449) was incubated

for 1 h at 37uC, washed 365 min in 16PBS and incubated with

diluted Alexa Fluor 488 conjugated goat anti-rabbit polyclonal

secondary antibody (1:200, Invitrogen (Molecular Probes) A-

11008) for 1 h at 37uC, washed 365 min in 16PBS and mounted

in 16PBS containing 1 mg/ml DAPI. Images were acquired using

an Axioplan 2 Carl Zeiss Microscope with a cooled AxioCam HRc

camera using a bandpass 515–565 nm emission filter (Carl Zeiss #
488010-9901-000) and a longpass 397 nm emission filter (Carl

Zeiss # 488001-9901-000) for visualization of AF488 and DAPI,

respectively. Fixed exposure settings for both florochromes were:

AF488, 196 ms, 402 ms and 1002 ms (overexposure); DAPI,

50 ms, 100 ms and 305 ms (overexposure).

Data analysis
For all analyses comparing array expression and ChIP chip data a

reference gene set of 24901 genes was defined that included those

genes for which data from both type of experiments were available

(Table S2). The Transcription factor classification was taken form

the Arabidopsis transcription factor database (AtTFDB) hosted on

the Arabidopsis Gene Regulatory Information Server (AGRIS,

http://arabidopsis.med.ohio-state.edu/AtTFDB). Venn diagrams

were generated using the VENN diagram generator designed

by Tim Hulsen at http://www.venndiagram.tk/ and http://

www.cmbi.ru.nl/cdd/biovenn/ (BioVenn [81]). The test for statis-

tical significance of the overlap between two groups of genes was

calculated by using software provided by Jim Lund accessible

at http://elegans.uky.edu/MA/progs/overlap_stats.html. A repre-

sentation factor (rf) is given and the probability (p) of finding an

overlap of x genes is calculated using a hypergeometric probability

formula. When p was below the calculation limits of the software

(highly significant) we noted p,1.0e299*. The representation

factor is the number of overlapping genes divided by the expected

number of overlapping genes drawn from two independent groups.

A representation factor .1 indicates more overlap than expected of

two independent groups, a representation factor ,1 indicates less

overlap than expected, and a representation factor of 1 indicates

that the two groups by the number of genes expected for

independent groups of genes. To determine which Gene Ontology

(GO) categories are statistically overrepresented among the

H3K27me3 targets that are up-regulated in fie, we used the

BINGO 2.3 plugin for Cytoscape (http://www.psb.ugent.be/cbd/

papers/BiNGO/Home.html). A custom annotation file was created

using the build in annotation file for GO biological process and our

reference set of 24901 genes. Other than that default parameters

were used.

Supporting Information

Figure S1 Mutant alleles used in this study. (A) Graphic

representation of the four different alleles that have been used in

this study. GABI 534 and GABI 362 are both T-DNA insertion

from the GABI-KAT collection with insertion sites in the 5th and

7th exon, respectively. EMS (G-A) has been previously described

and shows a point mutation in the splice acceptor site at the 59 end
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of exon 4 [83]. SALK 042 is a T-DNA insertion in exon 6 and is

used as the reference allele throughout our analysis. Arrows

indicate RT-PCR primer binding sites; arrowheads show the

position of the qRT-PCR primer-set. (B) RT-PCR analysis of FIE

expression in two replicates of wild type and the fie-SALK 042

mutant, respectively. The small subunit 5a of ribulose1,5 bispho-

sphate corboxylase (RBC) is used as a reference control gene and

shows comparable levels in expression between wild type and fie

whereas FIE is not detected in the mutant. Negative controls

without reverse transcriptase (RT) show no signal with both RBC

and FIE primer mix. Genomic DNA (gDNA) shows a remarkably

longer fragment in wild type but is undetectable in the fie-T-DNA

mutant most likely due to the large increase of the amplicon. (C)

Shows the results of the qRT-PCR analysis of fie-SALK 042

relative to the ACTIN 7 gene (ACT7). Expression is barely

detectable and remaining signal is 10,000 times or more reduced

in the mutant (two replicates are shown for both, wild type and

mutant).

(TIF)

Figure S2 Flow cytometrical analyses. Flow cytometry experi-

ments with wild type and fie plants at 20 DAS reveal lower ploidy

level in the mutant (A,B,D). Callus-like fie mutants at 3 months

contain mainly 2C and 4C nuclei (C) and are strongly reduced in

endoreplication (C,D).

(TIF)

Figure S3 Loss of H3K27me3 signal in fie mutants. Immuno-

histochemical visualisation of H3K27me3 in interphase nuclei of

wild type (WT) (A–C) and fie mutant seedlings (D–F). All samples

were treated equally and images were acquired with fixed

exposure settings. The first columns show DAPI staining of

interphase nuclei (A1–F1). No obvious difference was found in

nuclear morphology or chromocenter distribution between wild

type and fie. The AlexaFluor488 conjugated secondary antibody

was used to visualize H3K27 trimethylation. Column two

(antibody) shows normal exposure (196 ms) and column three

(antibody-OE) overexposure (1002 ms). (A–C) In wild type the

H3K27me3 signal is found in a widely dispersed pattern along the

entire chromatin and does not paint compacted heterochromatic

regions (A1-C1, A2–C2). (D–F) No antibody signal could be

obtained in fie nuclei using normal exposure settings (D2–F2).

Overexposure revealed a faint signal in some fie mutant nuclei (D3,

F3).

(TIF)

Figure S4 ChIP-on-chip experiments using an H3K27me3

antibody reveals overlapping gene classes in wild type and fie

mutants. VENN Diagram representing the number of genes detected

by an H3K27me3 antibody in ChIP-on-chip experiments. The red

circle represents data generated from 10–14 day old seedlings by

Zhang. et al (2007). Genes identified in this study from 20 DAS wild

type and fie mutants are shown in green and yellow, respectively.

Several lines of evidence indicate, that the genes detected in fie are not

H3K27me3 positive, but were labeled in fie due to cross-reactivity of

the antibody and the absence of the proper antigen.

(TIF)

Figure S5 Atypical H3K27me3 signal in fie. Examples of

H3K27me3 ChIP-chip signal in fie. (A–C) First upper panels

show H3K27me3 signal of wild type and fie, respectively. Lower

two panels represent genes (blue = exons, grey = introns) and

transposable elements (brown, orange = coding sequences). (A)

Shows signal of At1g02190, which is restricted to the very N-

terminal part whereas in wild type a typical signal distribution

covers the whole coding region, (see the two genes downstream of

At1g02190 as an example). (B) Often the signal in fie appears in and

close to heterochromatic region, where it is typically absent in wild

type. (C) Example of a gain with spotty appearance of H3K27me3

signal in fie at At1g96360.

(TIF)

Figure S6 ChIP-qPCR validation. (A) H3K27me3 ChIP qPCR

for 10 loci and (B) H3K4me3 ChIP qPCR for 6 loci from wild type

(wild type) and fie mutant material. The result is given in % of

ChIP-input. (A) For all genes H3K27me3 levels in fie drop to the

signal intensity of the negative control, i.e a gene that showed no

H3K27me3 mark in wild type (At5g13440). When performing

ChIP qPCR for specific heterochromatic loci (AtenSAT, VAN-

DAL4, ATGP1), which showed significant enrichment in our

ChIP-array (see E, F), we find a slight increase in signal strength in

fie, but the signal strength is clearly below H3K27me3-positive

genic loci. For most genes H3K4me3 is not changed between wild

type and fie. (B) Shows H3K4me3 ChIP qRT results in accordance

with our ChIP array and (C) shows a Western analysis for

H3K4me3. Histone H3 is used as a loading control in (C).

Examples for ChIP-chip results are shown in (D–F). The first two

panels show wild type and fie signal for H3K27me3, respectively,

the third panel shows TAIR8-representation of genes (blue =

exon, grey = intron) and transposable element loci (brown =

transposable elements, orange = transposable element coding

region). In (D) the lower two panels show H3K4me3 signal in wild

type and fie, respectively. Upon loss of H3K27me3 there is gain in

H3K4me3 in fie at the AG locus (D). The transposable elements

AT4TE27915 (ATGP1) (E) and AT4TE08945 (AtenSAT) (F)

show significant gain in contrast to ChIP-qPCR results (A).

(TIF)

Figure S7 Only a fraction of H3K27me3 targets are deregulated

in fie mutants. VENN Diagram representing genes significantly up-

regulated (A) and down-regulated (B) in fie after 7 and 20 DAS in

relation to the set of H3K27me3 marked genes in wild type. The

gene numbers are given with respect to the reference gene set

(24901 genes). The mutual overlap of the gene sets in A (up-

regulation) is larger than expected for the two independent groups

in all three cases (7 DAS and 20 DAS: representation factor (rf) =

7.1, p,1.0e299 *; 7 DAS and H3K27me3: rf = 1.6, p,1.8e221;

20 DAS and H3K27me3: rf = 1.1, p,0.009). The mutual overlap

of the gene sets in B (down-regulation) is larger than expected of

two independent groups for 7 DAS and 20 DAS, but smaller or as

expected of two independent groups for the other two cases (7

DAS and 20 DAS: rf = 7.5, p,1.0e299 *; 7 DAS and

H3K27me3: rf = 0.6, p,1.3e213; 20 DAS and H3K27me3:

rf = 0.9, p,0.122). P-values marked by an asterisk (*) were below

the calculation limits of the software (highly significant).

(TIF)

Figure S8 Overrepresented gene ontology categories in the set

of H3K27me3 targets that are up-regulated in fie. BiNGO (the

Biological Network Gene Ontology tool) analysis representing

over-represented categories of the ontology Biological Process among

the genes that are marked by H3K27me3 in the wild type (20

DAS) and significantly up-regulated in 20 DAS fie mutant

seedlings. The size of the nodes is proportional to the number of

genes in the test set which are annotated to that node. Colored

nodes are significantly over-represented, with a color scale ranging

from yellow (p-value = 0.05) to dark orange (p-value = 5.00E27).

Statistical testing was as described by Maere et al. (2005) [31].

(TIF)
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Figure S9 PRC2 targets involved in flower development. Genes

marked by H3K27me3 in the wild type and that are up-regulated

in fie mutants are colored in red (significant up-regulation seen on

CATMA array) or encircled in red (up-regulation only seen in

qRT PCR). Genes that are not up-regulated in fie but are

trimethylated at K27 in the wild type are labeled in orange.

Arrows indicate activation, bars indicate inhibition. Dotted lines

(C) or overlapping ovals (A–C) mark protein-protein interactions.

For a detailed description of the pathways depicted here see Liu

et. al (2010) and Irish (2010) [84,85]. (A) Establishment of a floral

meristem, modified after Liu et al. (2010) [85]. (B) Control of floral

meristem determinacy, modified after Irish (2010) [84]. (C) Floral

organ identity specification, modified after Irish (2010) [84].

(TIF)

Figure S10 Expression analysis of LEA proteins deregulated in

fie mutants. Heat map display of a Genevestigator analysis

(anatomy view) of the LEA genes that were differentially expressed

in fie mutants (www.genevestigator.com). The numbers of arrays

analyzed for the respective plant structures are given next to each

row. Wild type, non-stimulated high quality expression arrays

were selected. Only LEAs for which a unique probe in the

Genevestigator analysis could be found are displayed. The LEA

proteins were grouped regarding H3K27 trimethylation status in

wild type and deregulation in fie. Block 1 shows all genes that carry

a H3K27me3 mark in the wild type which are up-regulated in fie,

Block 2 represents genes up-regulated in fie, but for which no

H3K27me3 mark could be detected in wild type at 20 DAS and

block 3 represents genes that were significantly down-regulated in

fie, one of which carried a H3K27me3 mark in wild type (*).

Expression values displayed in the heat map are scaled to the

expression potential of each gene. The expression potential of each

gene is shown as a small green histogram below the heat map. The

darkest blue color represents the maximum level of expression for

a given gene across all measurements available in the database.

(TIF)

Figure S11 Differences in H3K27 Trimethylation and up-

regulation in fie among the different transcription factor families.

On the X-axis the different transcription factor (TF) families are

listed, the Y-axis displays the amount of TFs in absolute numbers

(A) or in percentage with respect to the reference set (B). Grey bars

represent the TFs found in the reference set, green bars the TFs

that are labeled by H3K27me3 and red bars the TFs that are

H3K27me3 marked and up-regulated in fie at 7 and/or 20 DAS.

The TF families are ordered by decreasing percentage of H3K27

trimethylated members

(TIF)

Table S1 H3K27me3 and H3K4me3 marked genes in wild type

and fie mutant seedlings. Lists of genes significantly enriched for

marks recognized by the H3K27me3 in wild type or the H3K4me3

antibody in wild type or fie mutants at 20 DAS. The raw data can

be downloaded from GEO accession viewer (GSE24163, http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24163).

(XLS)

Table S2 Disparity of H3K27me3 signal in wild type and fie

mutants. Wild type and fie show differences in signal strength and

in the properties of genes that were recognized by the H3K27me3

antibody in ChIP-on-chip experiments, suggesting that the signal

in fie is not a true H3K27me3 signal.

(DOC)

Table S3 List of the reference set of genes with expression data

and ChIP chip data generated in this study. Expression array raw

data were deposited at Gene Expression Omnibus (GEO-Nr:

GSE19851): http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

token=djcjpeggkgsuirw&acc=GSE19851 and at CATdb (http://

urgv.evry.inra.fr/CATdb/ project-number: RS08-09_FIE) The

raw data for the ChIP chip experiments is deposited at GEO (in

preparation).

(XLS)

Table S4 Quantification of RNA expression level by qRT-PCR.

Genes of different functional categories (flowering, meristem, root,

seed, or reference gene) were tested for expression by qRT-PCR in

wild type and fie mutants. Material from 2 different time points

was tested (7 and 20 DAS). The values in column 4–7 are given

relative to ACTIN7 (ACT7). Standard deviations (STDV) are given

in columns 8–10. The columns 11 and 12 of the table shows the

ratios between fie/wild type for 7 and 20 DAS as well as fie 7DAS

and fie 20DAS to compare the expression level differences between

mutant and wild type, as well as between the late and the early

time point in case of the fie mutant. The last four columns show the

results from the CATMA array in comparison.

(XLS)

Table S5 Expression and H3K27 and H3K4 Trimethylation

analysis of different gene families. Detailed analysis of AGL

transcription factors, WOX transcription factors, LEAs and

oleosins with respect to expression and ChIP-on-chip data

generated in this study. Gene families were taken from deFolter

et al. for AGL (2005), Graaff et al. for WOX (2009), Hundertmark

et al., Bies-Ethève et al. for LEAs (2008) and Kim et al. for

Oleosins (2002) [34–37,82].

(XLS)

Table S6 Oligonucleotide sequences used in this study. List of all

primer sequences for qRT-PCR, ChIP-qPCR and genotyping. For

each category, oligonucleotides are listed according to their AGI

(TAIR9), gene names are given in the second column. Amplicon

size is indicated for qPCR-primers. FWD = forward primer

sequence. REV = reverse primer sequence. For genotyping FWD

and REV primers will amplify wild type sequence, to amplify

T-DNA-specific sequence, the respective T-DNA LB-primer is

used in combination with FWD primer.

(DOC)

Acknowledgments

We would like to thank Hirofumi Harashima for advice in Western blot
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