
HAL Id: hal-02647624
https://hal.inrae.fr/hal-02647624

Submitted on 22 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Prediction of soil organic and inorganic carbon contents
at a national scale (France) using mid-infrared

reflectance spectroscopy (MIRS)
Clovis Grinand, Bernard G. Barthès, Didier Brunet, Ernest Kouakoua, D.

Arrouays, Claudy C. Jolivet, Giovanni Caria, Martial Bernoux

To cite this version:
Clovis Grinand, Bernard G. Barthès, Didier Brunet, Ernest Kouakoua, D. Arrouays, et al.. Prediction
of soil organic and inorganic carbon contents at a national scale (France) using mid-infrared reflectance
spectroscopy (MIRS). European Journal of Soil Science, 2012, 63 (2), pp.141-151. �10.1111/j.1365-
2389.2012.01429.x�. �hal-02647624�

https://hal.inrae.fr/hal-02647624
https://hal.archives-ouvertes.fr


1 

 

Prediction of soil organic and inorganic carbon contents at a national scale 

(France) using mid infrared reflectance spectroscopy (MIRS) 

 

CLOVIS GRINAND a, BERNARD G. BARTHÈS
 a, DIDIER BRUNET

 a, ERNEST KOUAKOUA
 a, 

DOMINIQUE ARROUAYS
 b, CLAUDY JOLIVET

 b, GIOVANNI CARIA
 c

 & MARTIAL BERNOUX
 a 

 

aIRD, UMR Eco&Sols (Montpellier SupAgro-CIRAD-INRA-IRD), 2 place Viala, bât. 12, 

34060 Montpellier Cedex 2, France 

bINRA, US 1106 InfoSol, 2163 avenue de la Pomme de Pin, CS 40001, Ardon, 45075 Orléans 

Cedex 2, Franc. 

cINRA, US 010, Laboratoire d’analyses des sols, 273 rue de Cambrai, 62000 Arras, France 

Correspondence: B.G. Barthès. Email:  bernard.barthes@ird.fr 

 

Summary 

This work aimed to evaluate the potential of mid-infrared reflectance spectroscopy (MIRS) to 

predict soil organic and inorganic carbon contents with a 2086-sample set representative of 

French topsoils (0–30 cm). Ground air-dried samples collected regularly using a 16 × 16-km 

grid were analysed for total (dry combustion) and inorganic (calcimeter) carbon; organic 

carbon was calculated by difference. Calibrations of MIR spectra with partial least square 

regressions were developed with 10–80% of the set and five random selections of samples. 

Comparisons between samples with contrasting organic or inorganic carbon content and 

regression coefficients of calibration equations both showed that organic carbon was firstly 

associated with a wide spectral region around 2500–3500 cm−1 (which was a reflection of its 

complex nature), and inorganic carbon with narrow spectral bands, especially around 

2520 cm−1. Optimal calibrations for both organic and inorganic carbon were achieved by 

using 20% of the total set: predictions were not improved much by including more of the set 

and were less stable, probably because of atypical samples. At the 20% rate, organic carbon 

predictions over the validation set (80% of the total) yielded mean R², standard error of 

prediction (SEP) and RPD (ratio of standard deviation to SEP) of 0.89, 6.7 g kg−1 and 3.0, 

respectively; inorganic carbon predictions yielded 0.97, 2.8 g kg−1 and 5.6, respectively. This 

seemed appropriate for large-scale soil inventories and mapping studies but not for accurate 

carbon monitoring, possibly because carbonate soils were included. More work is needed on 

organic carbon calibrations for large-scale soil libraries. 
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Introduction 

All countries are required to provide regular greenhouse gas inventories. Among them, 

countries with a quantified emission reduction objective (Annex B countries of the Kyoto 

Protocol to the United Nations Framework Convention on Climate Change) should produce 

estimates on a regular basis, including agriculture and forestry activities by using the 2006 

Intergovernmental Panel on Climate Change guidelines (IPCC, 2006). While gross fluxes of 

methane (CH4) and nitrous oxide (N2O) are directly computed, carbon dioxide (CO2) fluxes 

are derived from the mass-balance approach, from differences over time of variations in 

biomass carbon and soil organic carbon stocks. Annex B countries need, therefore, to 

implement systems to quantify soil organic carbon and changes in content. Soil carbon 

estimates over large areas, at national, continental or global scales (Bernoux et al., 2002; 

Batjes, 1996), have been proposed on the basis of classical digital maps linked with carbon 

estimates per map unit, using either soil classification (Batjes, 1996), vegetation or biome 

delineation (Woomer et al., 2004), or a combination of both (Bernoux et al., 2002). Other 

spatial estimates involve the interpolation of punctual data using either splines or 

geostatistical approaches (Bernoux et al., 2007). Saby et al. (2008) calculated that the number 

of sites needed to detect a 1% relative change in soil organic carbon stock (in MgC ha-1) could 

reach 1 000 000 sites at the European scale. These calculations involve the organic fraction of 

soil carbon; inorganic soil carbon, which consists mainly of carbonates, is little involved with 

CO2 exchanges. Soil organic carbon is often calculated by difference between total carbon 

and inorganic carbon, the latter being analysed separately. Soil inorganic carbon content 

provides important information on mineralogy and soil chemical functioning involving pH or 

exchangeable cations. Thus both organic and inorganic soil carbon fractions are worth 

determining, but conventional procedures are costly and time consuming and not compatible 

with the implementation of large monitoring networks. Such networks have to be re-analysed 

regularly. There is thus an urgent need for time- and cost-effective methods that would 

provide accurate estimates of soil organic and inorganic carbon, in order to enable such 

networks. 

Several methods have recently been proposed for cost-effective estimates of soil carbon. 

Cremers et al. (2001) tested the laser-induced breakdown spectrometry (LIBS), which is 

based on atomic emission spectroscopy. Other spectroscopic methods for characterizing soil 

carbon include the analysis of light diffusely reflected by samples in two neighbouring 

electromagnetic domains, namely the near infrared (0.8–2.5 µm) and mid infrared (2.5–

25 µm) ranges. Often this has involved near infrared reflectance (NIR) spectroscopy (NIRS; 
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Chang et al., 2001; Barthès et al., 2006; Brunet et al., 2007a), and more recently, visible and 

NIR (VisNIR, 400–2500 nm) spectroscopy (VisNIRS; Shepherd & Walsh, 2002; Brown et 

al., 2005, 2006; Brunet et al., 2008). A particular interest in VisNIRS, NIRS and MIRS is 

their capability to do rapid measurements (about one sample per minute or less), with no 

consumables or hazardous reagents required, and for limited expenses. Recent reviews 

highlighted the huge potential of diffuse infrared reflectance spectroscopy for agricultural 

applications regarding soil fertility assessment, and considered it to be an alternative to 

traditional soil analyses (Du & Zhou, 2009; Reeves, 2010). The potential of infrared 

spectroscopy has been tested for decades in a wide range of settings, from field to global 

scales (Brown et al., 2005). It has gained recent interest because of the increasing need for 

soil data in environmental studies, for digital soil mapping (Grinand et al., 2008), or climate 

change mitigation (Feller & Bernoux, 2008). For two decades NIRS has mainly been used as 

a quantitative tool, to relate spectra to carbon concentrations statistically; whereas MIRS has 

long been used for qualitative studies and spectral interpretation (McCarty et al., 2002; 

Reeves, 2010). Indeed, the MIR region includes fundamental vibrations of chemical bonds 

mainly, which allows visual discrimination of spectral features (peaks); by contrast, the NIR 

region includes overtones and combinations, which results in much overlapping and few 

features (Shepherd & Walsh, 2002). Recently, MIRS has also been used for quantitative 

characterization of soil properties (Janik & Skjemstad, 1995; Janik et al., 1998; Zimmermann 

et al., 2007), which can thus be performed using different spectral domains through field, 

laboratory, airborne or satellite measurements (Stevens et al., 2008). Quantitative 

spectroscopy most often requires calibration: this is usually a multivariate regression 

procedure that expresses a given property, determined by a conventional method, as a 

function of absorbance at all or selected wavelengths of the spectral region considered. The 

calibration equation can then be used to predict that property on new samples from their 

spectra only, provided that the calibration model has sufficient accuracy. Most determinations 

of organic and inorganic carbon by NIRS (Chang et al., 2001; Shepherd & Walsh, 2002; 

Barthès et al., 2006) and MIRS (Janik et al., 1998; McCarty et al., 2002) were accurate 

(R² > 0.9) and had a standard error close to the usual standard error for laboratory 

measurements (around 1 g kg-1 for organic carbon). However, prediction accuracy was often 

less for heterogeneous sample sets, such as those collected from large regions, than for more 

homogeneous sets, originating from only a few hectares (McCarty et al., 2002; Brunet et al., 

2007a). 
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The objective of the present paper was to evaluate the accuracy of MIRS predictions of soil 

organic and inorganic carbon contents at a country scale, using a national library including 

about 2000 samples representative of top-soils from France. The 0–30 cm soil depth is that 

most affected by agricultural practices such as tillage, and is thus considered in most models 

of soil organic matter dynamics from plot to national levels (Milne et al., 2007). In addition, 

this depth corresponds to the minimum requirement for carbon estimates at national scales 

according to the IPCC guidelines (IPCC, 2006). 

 

Materials and methods 

Soil samples 

Soil samples were taken from the French Réseau de Mesures de la Qualité des Sols (RMQS). 

This is a national soil quality monitoring network, the first sampling campaign of which took 

place from 2002 to 2009. This network involves observations of soil properties on a 16 × 16-

km regular grid across the French metropolitan territory (550 000 km2), and was designed to 

represent climate, soil and land use diversity over the territory. The inventory will eventually 

consist of observations from 2 200 sites, but samples from 2 086 sites were available at the 

time of the study. The sites were selected at the centre of each 16 × 16-km cell (Jolivet et al., 

2006). At each site, 25 individual core samples were taken from the top-soil (0–30 cm) using 

an unaligned sampling design within a 400-m2 square area. A systematic unaligned sample 

design combines features and advantages of both simple random and systematic sample 

designs, and a single sample plot is assigned to a randomly selected location within each cell 

of the systematic grid. This approach avoids the periodicities of systematic approaches, gives 

good coverage over an area, is efficient, and deals with most distributions (Caeiro et al., 

2003). Core samples were bulked to obtain one composite sample for each site, which was 

then air-dried, gently crushed and sieved to pass a 2-mm mesh. 

 

Conventional determination of soil organic and inorganic carbon contents 

Soil organic carbon content was calculated as the difference between total carbon and 

inorganic carbon contents. Total carbon content was determined by Dumas combustion 

analysis with an elemental analyser (Thermo Fisher Scientific CHN NA2000, Waltham, MA, 

USA), on about 25–30-mg aliquots of finely ground (< 0.25 mm) air-dried soil samples, 

sealed into tin capsules, according to the standard French procedure NF ISO 10694 (AFNOR, 

1995a). 
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Soil inorganic carbon content was calculated as 0.12 × soil carbonate content. Carbonate 

content was determined on finely ground (< 0.25 mm) air-dried soil samples using a Bernard 

calcimeter, according to the standard French procedure NF ISO 10693 (AFNOR, 1995b). The 

carbonate content was calculated after calibration with a pure calcium carbonate standard and 

was expressed as equivalent calcium carbonate content. 

Distributions of both organic and inorganic carbon contents were characterized by their 

minimum, maximum, mean, median, standard deviation and skewness; the latter is defined as 

the third standardized moment: 

skewness = 
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where n is the set size, x  the mean and SD the standard deviation. 

 

Spectrum acquisition and pre-processing 

Aliquots of about 0.5 g of < 0.2-mm ground sample were placed in a 17-well plate and 

scanned from 4000 to 400 cm-1 ( 2500–25 000 nm) at 4 cm-1 resolution, using a Nicolet 6700 

Diffusive Reflectance Fourier Transform Spectrophotometer (Thermo Fisher Scientific 

Instruments, Madison, WI, USA). Thirty-two co-added scans per sample were performed then 

averaged, and spectra were recorded as absorbance, which is the log transform of the inverse 

of reflectance. Spectrum acquisition lasted about one minute per sample. 

Data processing was performed using The Unscrambler 9.7 software (CAMO Technologies, 

Woodbridge, NJ, USA) for spectrum transformation and the R-Stat software (R Development 

Core Team, 2005) for partial least square (PLS) regression (PLSR) and validation. Several 

usual spectrum pre-processing methods such as first and second derivatives, standard normal 

variate (SNV) transform or multiplicative scatter correction (MSC) were tested but did not 

usefully improve predictions. The only beneficial spectrum transformations were the removal 

of 10 wavelengths at both spectrum ends and smoothing over a five-point segment, which 

helped reduce noise: this process was applied for subsequent analyses, either qualitative or 

quantitative. Limited benefit of MIR spectrum pre-processing was also reported by Minasny 

& McBratney (2008). 

Principal component analysis was carried out on spectral data and showed that the two first 

components accounted for 84% of total variance. 
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Calibration and validation 

Outlier identification was carried out on the response variables (organic and inorganic carbon 

content) to remove extreme values that might over-influence calibration models. An arbitrary 

threshold defined by the mean plus eight times the standard deviation was used to identify 

these outliers. This led to the removal of two samples for organic carbon; no samples were 

removed for inorganic carbon. 

Partial least square regression was used to fit sample spectra to conventional measurements of 

soil organic and inorganic carbon contents. It is a well-suited and widely used multivariate 

technique in quantitative spectroscopy. It can handle collinearity that affects infrared spectra 

by transforming absorbance values with respect to the response variable (organic or inorganic 

carbon content) in order to reduce the information from hundreds of variables to a few 

orthogonal factors. Ten-fold cross validation was performed to calculate the standard error of 

cross validation (SECV). This commonly used model setting was needed because of the large 

number of calibration samples, and enables grouping without altering the predictive ability of 

the cross-validated models. The minimum SECV was used to select the optimal number of 

PLS factors to retain for building the prediction model. Then calibration was performed on the 

whole calibration set, whereas the cross-validation results referred to a pooled combination of 

the results obtained from the samples left out during the cross validation procedure. Finally 

the prediction models were tested on the validation set, which included samples not used for 

model development. The number of samples used for calibration and validation is presented 

in the following section. 

The ability of the MIRS-PLSR method to predict organic and inorganic carbon was evaluated 

by using parameters commonly used in quantitative infrared spectroscopy. For each data set, 

coefficient of determination (R2; Equation 1) and standard error between MIRS predictions 

and conventional measurements were calculated. The former measures the proportion of the 

total variance accounted for by the model, and was presented for the validation set only. The 

latter is the standard deviation of the difference between measured and predicted values, 

expressed in g kg-1, and was presented for calibration (SEC), cross validation (SECV), and 

validation (standard error of prediction, SEP; Equation 2). Prediction accuracy on the 

validation set was also evaluated using the ratio of standard deviation to SEP (denoted RPD; 

Equation 3) and the ratio of SEP to mean reference value over the validation set (relative SEP, 

denoted %SEP; Equation 4). A good prediction result is assumed to have small standard error 

and large R2 and RPD. As regards the predictions of soil properties using infrared 

spectroscopy, values proposed by Chang et al. (2001) have often been considered: models 
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with RPD below 1.4 have no predictive ability, those with RPD between 1.4 and 2.0 are 

acceptable and improvable, and those with RPD above 2.0 have excellent predictive ability. 

The equations are: 
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RPD = SD / SEP,         (4) 

and  %SEP= SEP / mean,          (5) 

where xi is the conventional measure and yi the MIRS prediction for the ith sample, n the 

number of samples and SD the standard deviation. 

 

Calibration set size and selection 

The effect of the calibration set size on prediction was tested by increasing the proportion of 

calibration samples from 10% to 80% of the total set, the remaining fraction being kept for 

validation. This test was referred to as sampling intensity analysis (Grinand et al., 2008). 

Regression was performed five times using different random iterations for the selection of 

calibration samples, in order to assess prediction robustness and reproducibility, which are 

two important criteria to build up a calibration model. Despite the well-known fact that the 

calibration set has to be representative of the total set, there are still issues in the way to select 

it. Random sampling has been reported to produce varying results in heterogeneous sample 

populations (Islam et al., 2003; Brunet et al., 2007a) but has not been extensively studied yet 

(Brown et al., 2005). Here the minimum, maximum and mean model parameters (such as 

SECV, SEC, R², etc.) have been mentioned to provide information on the extent of predictive 

ability and on significant differences between models. 

 

Results and discussion 

Reference carbon data 

The soils used in this study were collected from a large geographical area, which covers a 

wide range of soil units and represents most of the soil types of France. According to the 

French soil classification, 33 soil reference groups were sampled, with a dominance of 

Brunisols (Cambisols according to IUSS Working Group WRB, 2006; 27% of the sample 

set), calcareous soils (Calcosols, 22%) and Luvisols (16%). As a result of the large variety of 
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soil samples studied, variations in organic and inorganic carbon contents were huge, as 

measured using conventional procedures (Table 1). Organic carbon ranged from 0.6 to 

170 g kg-1 after removal of outliers (up to 250 g kg-1), averaged 25.6 g kg-1 and standard 

deviation was 78% of the mean. Inorganic carbon ranged from 0 to 104 g kg-1, averaged 

6.4 g kg-1 and standard deviation was 250% of the mean. The calcium carbonate content of 

1108 samples was below the 1 g kg-1 detection limit, thus the median equalled 0 g kg-1. 

Distributions of both organic and inorganic carbon were positively skewed (skewness was 

around 3 for both), with more small than large values, thus medians were smaller than the 

means, especially for inorganic carbon. Correlation between organic and inorganic carbon 

contents was not significant (R = -0.01, P = 0.59). 

 

Semi-qualitative spectrum analysis 

Spectral measurements and laboratory results were first used in a qualitative way to identify 

peaks or absorption regions that characterized carbon fractions. Spectral regions associated 

with organic carbon variations were identified by testing the significance of difference in 

mean absorbance at each spectral data point between organic carbon-rich (> 50 g kg-1) and -

poor (< 10 g kg-1) samples from Cambisols (the soil class with the largest number of 

samples), using a Student t-test (P < 0.001). A similar procedure was carried out for inorganic 

carbon (> 6.0 and < 1.2 g kg-1, which corresponds to > 50 and < 10 g calcium carbonate kg-1) 

in the class of Calcosols. 

The difference in mean absorbance between organic carbon-rich and -poor top-soils from 

Cambisols was significant for a wide region between 3550 and 2080 cm-1, and for bands 

around 1660 and 1150 cm-1 (Figure 1a). Organic matter is a complex mixture of compounds, 

containing various proportions of chemical groups that are nearly all infrared active (Janik et 

al., 1998). Thus organic carbon cannot be identified with clearly separated peaks but as a 

whole spectral region with overlapping bands. 

In contrast, numerous small spectral regions differed significantly in mean absorbance 

between inorganic carbon-rich and -poor top-soils from Calcosols (Figure 1b). Among them, 

only two could be attributed to stretching or bending vibrations in carbonate molecules, 

around 2520 and 1800 cm-1, as mentioned by Du & Zhou (2009). Other regions differing 

significantly in absorbance according to inorganic carbon level could not be attributed to 

carbonates but more probably to soil properties that correlated negatively with inorganic 

carbon. This was particularly the case for regions around 1880 and 2000 cm-1, which relate to 

quartz (Du & Zhou, 2009).  
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In short, semi-qualitative analysis of spectra showed that absorption of both carbon fractions 

could be located in the MIR region. Nevertheless, though some carbon compounds have been 

assigned to specific spectral bands, broad spectral regions corresponding to C-O or C-C 

vibrations have to be taken into account to fully describe carbon contribution to MIR spectra. 

Thus a quantitative approach was needed to extract accurate information regarding each 

carbon fraction. The identification of chemical bonds that affected MIRS prediction of soil 

organic and inorganic carbon contents was also carried out by studying the coefficients of 

regression of these contents on absorbance spectra.  

 

Calibration intensity and model robustness 

The interest of diffuse reflectance spectroscopy for quantifying soil properties depends on the 

proportion of samples used for calibration; it also depends on the stability of predictions when 

different calibration sample selections are carried out. For organic carbon, mean validation 

RPD and R² increased with the proportion of samples used for calibration, markedly when the 

proportion increased from 10% to 20%, and then only slightly up to 80% (Figure 2a). 

Moreover, R² and RPD were less variable thus more stable when calibration used 20% or 30% 

samples; below and above these rates, results were more affected by the selection of 

calibration samples. Reduced stability at large calibration rates could be explained by samples 

that were atypical for one reason or another. When included in the calibration set, atypical 

samples would reduce overall calibration quality and thus that of the prediction (validation); 

and this was more likely to occur when calibration intensity increased. When not included in 

the calibration set, atypical samples were not predicted well individually (validation), but they 

did not affect the overall performance of the calibration, and this was more likely to occur 

when calibration intensity decreased. At a small calibration intensity (10%), it might be 

assumed that the calibration set was too small to be representative of the total set.  

With inorganic carbon, mean and standard deviation of validation R² were much less affected 

by the size of the calibration set (Figure 2b). In contrast, the proportion of calibration samples 

affected validation RPD more clearly, with a noticeable increase from 10 to 20% then again 

from 40 to 80%; it also affected the variability of validation RPD, with greater standard 

deviation when from 40 to 80% samples were used for calibration. Variations in validation 

RPD and in its variability with the size of the calibration set could be related to the very 

skewed distribution of conventional data for inorganic carbon, which resulted in large 

standard deviation (it was three times greater than the mean: Table 1). However, RPD values 

were always large (> 5) when compared with accuracy thresholds proposed for prediction 
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models of soil properties using diffuse reflectance (Chang et al., 2001); thus the influence of 

the size of the calibration set on RPD and its variability was not important. Using 20% of the 

samples for calibrating both organic and inorganic carbon could thus be considered 

appropriate for the sample set studied. This indicated that the national soil sample population 

under study was correctly represented by 20% of the samples. Soil and soil-use diversity is 

large over all of France but not to the point where a single sample of the total 2086 would 

represent only itself. 

Very few studies have addressed such questions. Shepherd & Walsh (2002) reported similar 

result for a very diverse set including about 1100 samples from seven countries and 10 soil 

orders in eastern and southern Africa. They observed that stable validation results for top-soil 

organic carbon could be achieved with 20% of the samples for calibration. They also noted 

that a global model might be more robust than local models in their ability to predict values 

for new samples even though geographically distinct samples were used in the calibration. 

Similarly, when discussing calibration sample size for a more homogeneous set including 

283 samples from six sites with similar soils in north central Montana (USA), Brown et al. 

(2005) observed an optimum when using 35% randomly selected samples for calibration. 

Increasing the calibration sample size did not result in meaningful increase in prediction 

accuracy and thus was not worthwhile. The results of the present study also suggested that 

optimal calibration set size for heterogeneous soil sample populations could be estimated at 

20 to 35% of the samples for organic carbon and inorganic carbon predictions. However, such 

calibration intensity cannot be considered appropriate for all soil sample sets: Brunet et al. 

(2007b) observed that optimal calibration sample size ranged between 50% and 75% for 

organic carbon for an extremely diverse set of 436 soil samples originating from about 

300 locations in 40 countries and representing 13 soil orders,. This strongly suggests that 

more work is needed to estimate optimal calibration sample size depending on the set 

diversity and the soil property considered. 

 

Quantifying soil inorganic carbon content at a national scale 

Calibration was built using 20% of the total number of samples (418 out of 2086), with five 

different random selections of calibration samples. For validation, R² was 0.97 and RPD 

averaged 5.6 and was greater than 5.3 whatever the replicate (Table 2). Thus MIRS prediction 

of inorganic carbon was excellent for the sample set considered, as also shown by the 

comparison between MIRS predictions and reference measurements presented in Figure 3b 

and in Figures 4c and 4d. Depending on the selection of calibration samples, variation in R² 
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was less than 0.01 and RPD ranged from 5.3 to 6.0, thus both were stable. Relative SEP 

nevertheless represented a large proportion of mean reference value for inorganic carbon (43 

to 48%), mainly because of the very skewed distribution of inorganic carbon reference data. . 

The mean reference value was small (6.4 g kg-1) because many samples included no 

carbonates; relative prediction error could not be considered as an appropriate indicator of 

prediction accuracy for variables for which the average value is much smaller than the 

maximum. Not surprisingly, the map of MIRS predictions of inorganic carbon (Figure 4c), as 

did that of conventional measurements (Figure 4d), showed that the soils richest in inorganic 

carbon were located on calcareous substrates, especially in the chalk Champagne (north-east), 

in the calcareous Prealps (south-east), in areas of Jurassic limestone along the Aquitain Basin 

(south-west) and along the Pyrenees (south). Soils developed from calcareous materials were 

completely decalcified under wet climates (Jura and northern Prealps, centre-east). 

Literature has also reported excellent predictions for inorganic carbon with diffuse reflectance 

spectroscopy. McCarty et al. (2002) achieved MIRS prediction of inorganic carbon with 

R² = 0.98, RPD = 9.0 and %SEP = 19% with a more intensive calibration (75%) over a 

diverse set of 237 soil profile samples originating from nine states from central US and having 

a fairly wide range in inorganic carbon (0–65 g kg-1).  Brown et al. (2005), studying a more 

homogeneous set with narrow range in inorganic carbon (0–26 g kg-1) and intensive 

calibration (70%), achieved VisNIRS prediction of inorganic carbon with R² = 0.94–0.96, 

RPD = 4.0–4.9 and %SEP = 19–24% depending on the selection of the calibration set (five 

replicates). Brown et al. (2006) also reported cross-validation R² = 0.83 (RPD and relative 

error could not be calculated) for a very large, diverse set originating from four continents and 

having a wide range in inorganic carbon (0–129 g kg-1). In contrast, somewhat disappointing 

VisNIRS cross validation of inorganic carbon was reported by Summers et al. (2011) for a 

fairly diverse but small top-soil sample set from South Australia with narrow range in 

inorganic carbon (0–51 g kg1; 75 samples, R² = 0.69, RPD = 2.1, %SECV > 100%). In the 

latter case the use of reflectance instead of absorbance could be a possible reason for less 

accurate predictions than in other studies. Considering only those studies that used 

absorbance, relative prediction error tended to increase and R² and RPD to decrease when the 

range in inorganic carbon increased.  
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Quantifying soil organic carbon content at a national scale 

Calibration for this used 20% of the total set size, with five replicates. For validation, R² and 

RPD averaged 0.89 and 3.0 and were greater than 0.88 and 2.7, respectively, whatever the 

replicate (Table 2). The SEP ranged from 6.3 to 7.2 g kg-1, representing 25 to 28% of the 

mean reference value. This indicated very good MIRS prediction of organic carbon for the 

sample set considered; however predictions were less accurate than for inorganic carbon. 

Examples of comparisons between measured and MIRS predicted organic carbon values are 

presented in Figure 3a and Figures 4a and 4b. The maps of MIRS predictions (Figure 4a) and 

conventional measurements (Figure 4b) of organic carbon were very similar, and strongly 

driven by climate and land use. The soils richest in organic matter were located in the 

mountains (Alps in the south-east, Pyrenees in the extreme south-west, Massif Central in the 

south-centre, Jura in the centre-east), in other cool regions extensively covered by forests and 

pastures such as Burgundy and Lorraine (centre-east), and in intensive livestock production 

areas such as Brittany and Normandy (north-west). In contrast, soils poor in organic matter 

were located in areas of large-scale crop cultivation such as the Parisian Basin (north-centre) 

and Aquitain Basin (south-west), and in vineyard areas such as along the Mediterranean coast 

(south-east). 

Others authors have reported MIRS prediction of organic carbon with PLSR. McCarty et al. 

(2002) found similar results for organic carbon prediction over a fairly heterogeneous sample 

set from central US (R² = 0.94, RPD = 4.1, %SEP = 26%) but used more samples for 

calibration (75%). Viscarra Rossel et al. (2006) using a leave-one-out cross validation 

achieved worse results for organic carbon for a very homogeneous set of 118 top-soil samples 

collected in an Australian field, with much smaller R² (0.73) and RPD (1.7) though relative 

standard error of cross validation was low too (11%). In contrast, Zimmermann et al. (2007), 

also using high calibration intensity (85%), found better results for organic carbon (R² = 0.94, 

RPD=4.1, %SEP=10%) for a diverse set of 111 top-soil samples representative of 

Switzerland. Comparable results have been achieved by using VisNIRS with PLSR. For 

instance, for a large and very diverse top-soil sample set with a large calibration intensity 

(67%), Shepherd & Walsh (2002) reported validation R² = 0.91 and %SEP = 19%. Brown et 

al. (2005) achieved validation R² = 0.81 and RPD = 2.2 when averaging five replicates over a 

smaller and more homogeneous set and with a large calibration intensity (70%). For a very 

large and very diverse set (3794 samples from four continents) and using boosted regression 

trees, Brown et al. (2006) obtained cross-validation R² values of 0.82. Thus comparison with 

published results suggests that the results of the present study were very satisfactory: the 
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accuracy of organic carbon prediction model was comparable to others for similarly 

heterogeneous soil sample sets but using much fewer samples for calibration. 

n the present study, large organic carbon values were noticeably under-predicted by MIRS. 

Studying a large and very diverse sample set with VisNIRS, Shepherd & Walsh (2002) 

attributed such poor predictions to possible errors in the laboratory analytical methods rather 

than to genuine lack of VisNIRS predictive power. Moreover, it is worth noting that in the 

present study organic carbon reference data were not measured but calculated by difference 

between total carbon and inorganic carbon, which caused error accumulation. As a 

consequence, the less than perfect MIRS predictions of organic carbon (R² = 0.89) might 

result from imperfect reference data. In contrast, inorganic carbon, for which reference data 

was by direct measurement, was much more accurately predicted, especially at large values. 

Other studies involving MIRS or VisNIRS predictions of organic and inorganic carbon 

similarly reported more accurate results for inorganic than for organic carbon. McCarty et al. 

(2002) measured organic carbon after soil acidification, which they acknowledged might 

remove some organic carbon. Brown et al. (2005) calculated organic carbon reference data by 

difference between total and inorganic carbon. Both procedures might result in some 

imprecision. In addition, McCarty et al. (2002) reported that carbonate absorption bands in 

the MIR domain could mask spectral features important for organic carbon calibration. As far 

as sample sets which include carbonated soils are considered, calibration models for organic 

carbon will not be completely satisfying because of either spectral perturbations by carbonates 

or imperfect reference data for organic carbon. 

 

Spectral regions of greatest relevance 

The chemical compounds that affected MIRS predictions strongly were identified by studying 

the coefficients of PLS regression of organic and inorganic carbon contents on absorbance at 

every wave-number (Figure 5). Regressions built using 20% or 100% samples yielded similar 

coefficients, which confirmed that 20% samples represented the total set properly. 

Some spectral regions contributed heavily to MIRS prediction of soil organic carbon content. 

Positively contributing regions were from 2700 to 3600 cm-1 and especially around 2920 cm-1, 

which has been assigned to aliphatic C-H stretch of carboxylic acids, humic acids and humin 

especially, and around 1230 cm-1, which has been ascribed to C-O stretch and O-H bending in 

humic acids and aromatic amines (Silverstein & Webster, 1998; Tan, 2003). These regions 

were comparable to those where absorbance was significantly greater for Cambisols rich in 

organic carbon than for those with small contents (Figure 1a). The region around 1880 cm-1, 
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attributed to quartz (Du & Zhou, 2009), had a heavy negative contribution to organic carbon 

prediction, which is consistent with the fact that sandy soils are poor in organic matter in 

general (Barthès et al., 2008). This region is one of the very few where absorbance was less 

for organic-rich Cambisols than for those organic-poor.  

Spectral regions that had major positive contribution to MIRS prediction of soil inorganic 

carbon content were (i) around 2520 and 1800 cm-1, which have been ascribed to carbonate 

(Du & Zhou, 2009; D'Acqui et al., 2010); (ii) around 1660 cm-1, assigned to asymmetric 

stretching of O-C-O in carbonate (Su & Suarez, 1997) but also to 2:1 clays such as 

montmorillonite (Du & Zhou, 2009); (iii) around 1080 cm-1, assigned to symmetric stretching 

of O-C-O in carbonate (Su & Suarez, 1997) but also to 1:1 clays such as kaolinite (Du & 

Zhou, 2009); and (iv) around 490 cm-1, ascribed to Fe-O bending vibrations (Russell, 1979), 

which might be related to iron oxide-rich residual clays that result from weathering of 

calcareous materials. The region around 1340 cm-1, which has been attributed to quartz 

(D'Acqui et al., 2010), had a substantial negative contribution to carbonate prediction, which 

is consistent with the fact that carbonated soils include little quartz. On the whole, regions that 

had large positive (or negative, respectively) contributions to carbonate prediction were those 

where absorbance was significantly larger (or smaller, respectively) for Calcosols rich in, than 

for Calcosols poor in, inorganic carbon (Figure 1b). 

 

Conclusion 

The present work demonstrated that MIRS yielded accurate predictions of top-soil organic 

and inorganic carbon contents at the scale of a medium-sized country (France), which has not 

been demonstrated so far. Analysis of variance between spectra of soils rich and poor in 

organic or inorganic carbon, as well as regression coefficients of calibration equations, 

showed that the MIRS signature of organic carbon involved a wide spectral band around 

2500–3500 cm-1 while that of inorganic carbon was related to some narrow bands, especially 

around 2520 cm-1. 

Varying the proportion of samples used for calibration showed that 20% could be considered 

an optimal level for MIRS prediction of both organic and inorganic carbon contents, for a 

sample set representing the top-soil diversity of France. This calibration rate resulted in 

accurate and stable predictions: ranges of SEP, validation R² and RPD were 6.3–7.2 g kg-1, 

0.88–0.90 and 2.7–3.1 for organic carbon, and 2.6–2.9 g kg-1, 0.97 and 5.3–6.0 for inorganic 

carbon, respectively. The similarity between regression coefficients of calibration equations 

which used 20% and 100% of the total set confirmed that 20% was the optimal calibration 
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intensity for the studied set. This was an important result, which has not been established 

clearly so far. 

An important interest of MIRS (and other infrared spectroscopies) is that numerous soil 

properties such as nitrogen and clay contents, pH, cation exchange capacity, can be inferred 

from the same spectrum, as long as corresponding reference data are available for calibration. 

Moreover, once determined, calibrations can be used to make predictions with samples from 

new sampling campaigns (with a possible need for calibration strengthening through spiking; 

Guerrero et al., 2010), which makes diachronic studies easier. However, though MIRS is 

appropriate for large-scale soil inventories and for many environmental and mapping studies, 

the accuracy of MIRS predictions presented here did not seem to be good enough for 

monitoring soil organic carbon precisely. This might be attributed to the noticeable proportion 

of carbonated samples included in the sample set, as carbonates complicate spectral and 

conventional characterizations of organic carbon thus its calibration. More work is needed to 

improve organic carbon calibration in large-scale soil libraries including carbonated soils, for 

instance through sample set stratification or spectrally local calibrations. 
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Table 1. Descriptive statistics of the reference dataset (min is the minimum, max the 

maximum, and SD the standard deviation). 

 

Soil property Sample No Min Max Mean Median SD Skewness 

Organic carbon / g kg-1 2084 0.6 170.0 25.6 19.4 19.9 3.2 

Inorganic carbon / g kg-1 2086 0.0 103.9   6.4   0.0 16.0 3.1 

 

 

 

 

 

Table 2. Calibration and validation statistics for MIRS predictions of soil organic and 

inorganic carbon contents; min, max and mean refer to minimum, maximum and mean values 

measured for five random partitionings of calibration and validation sets; standard errors of 

calibration (SEC), of cross validation (SECV) and of prediction (SEP) are in g kg-1. 

 

Soil 

property 
 

Factors 

No 

Calibration  Validation 

Sample No SECa SECVa  Sample No SEPa R2b RPDc %SEPd 

Organic 

carbon 

Min 20 418 4.4 6.1  1666 6.3 0.88 2.7 0.25 

Max 24 418 6.3 8.0  1666 7.2 0.90 3.1 0.28 

Mean 23 418 5.1 6.9  1666 6.7 0.89 3.0 0.26 

            

Inorganic 

carbon 

Min 16 418 1.3 1.8  1668 2.6 0.97 5.3 0.43 

Max 24 418 3.1 4.1  1668 2.9 0.97 6.0 0.48 

Mean 20 418 2.1 2.9  1668 2.8 0.97 5.6 0.45 

 
aSEC, SECV and SEP are standard errors of calibration, cross validation, and prediction, 

respectively. 
bR² is the coefficient of determination over the validation set. 
cRPD is the ratio of SEP to standard deviation of the reference value over the validation set. 
d %SEP is the ratio of SEP to the mean reference value over the validation set. 
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Figure 1. Comparison of mean spectra (a) between Cambisols rich and poor in organic carbon 

(> 50 or < 10 g kg-1), and (b) between Calcosols rich and poor in inorganic carbon (> 6 or 

< 1.2 g kg-1; corresponding to > 50 and < 10 g calcium carbonate kg-1, respectively); grey 

regions indicate significant difference at P < 0.001 (Student t-test). 
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Figure 2. Validation R² and RPD (ratio of standard deviation to standard error of prediction) 

for (a) organic carbon and (b) inorganic carbon depending on the proportion of calibration 

samples (mean and standard deviation over five replicates). 
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Figure 3. Comparisons between reference measurements and MIRS predictions of (a) organic 

carbon and (b) inorganic carbon over the validation set (1666 samples for organic carbon and 

1668 for inorganic carbon, after random selection of 418 calibration samples; SEP is the 

standard error of prediction and RPD the ratio of standard deviation to SEP). 
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Figure 4. Maps of MIRS predictions (a, c) and reference determinations (b, d) of top-soil organic and inorganic carbon content (0–30 cm) in 

samples from across France; 20% randomly selected sites, located on the small map, were used for calibration. 
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Figure 5. Coefficients of regression of (a) organic and (b) inorganic carbon content on 

absorbance spectra, models being developed by using 20% or 100% of the samples from 

across France. 
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