

Organ-specific responses of tomato growth and phenolic metabolism to nitrate limitation

Romain Larbat, Jacques Le Bot, Frederic Bourgaud, Christophe Robin,

Stephane Adamowicz

▶ To cite this version:

Romain Larbat, Jacques Le Bot, Frederic Bourgaud, Christophe Robin, Stephane Adamowicz. Organspecific responses of tomato growth and phenolic metabolism to nitrate limitation. Plant Biology, 2012, 14 (5), pp.760 - 769. 10.1111/j.1438-8677.2012.00564.x. hal-02647768

HAL Id: hal-02647768 https://hal.inrae.fr/hal-02647768v1

Submitted on 24 Aug 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ORIGINAL ARTICLE

Organ-specific responses of tomato growth and phenolic

metabolism to nitrate limitation

R. Larbat^{1*}, J. Le Bot², F. Bourgaud¹, C. Robin¹ and S. Adamowicz²

¹ UMR Nancy-Université(INPL)-INRA Agronomie et Environnement Nancy-Colmar 1121,

ENSAIA, 2 Av. Forêt de Haye, F-54500 Vandoeuvre, France

² INRA, UR 1115 Plantes et Systèmes de Culture Horticoles, F84914 Avignon, France **Running title**: Organ specific responses to nitrate limitation

* For correspondence. Phone: +33383595863 Fax: +33383595799 E-mail: romain.larbat@ensaia.inpl-nancy.fr

Key words: chlorogenic acid, cultivars, kaempferol rutinoside, nitrogen limitation, phenolics, plant defense, plant growth, rutin, tomato, *Solanum lycopersicum*.

ABSTRACT

1 Phenolic compounds are secondary metabolites involved in plant's innate chemical defenses 2 against pests and diseases. Their concentration is variable between plant tissues and depends 3 also on genetic and environmental factors, such as the availability of nutrient resources. This 4 study examines the specific effects of low (LN) compared to high (HN) nitrogen supply on 5 organ (root, stem and leaf) growth and accumulation of major phenolics (chlorogenic acid – 6 CGA; rutin; kaempferol rutinoside - KR) in 9 hydroponically-grown tomato cultivars. LN 7 limited shoot growth but did not affect that of roots. LN increased the concentration of each 8 individual phenolic in all organs. The strength of the response was organ dependent dependent, 9 roots being more responsive than leaves and stems, respectively. Significant differences were 10 observed between genotypes. Nitrogen limitation did not change the phenolic content in 11 shoots whereas it stimulated accumulation in roots. The results show that this trade-off 12 between growth and defense in LN environment can be discussed within the framework of the 13 growth differentiation balance hypothesis (*i.e.* GDBH), but they point out the need to integrate 14 all plant organs in future modeling approaches regarding the impact of nitrogen limitation on 15 primary and secondary metabolisms.

INTRODUCTION

16 Plant secondary metabolites represent a large range of molecules mainly involved in (plant × environment) interactions. Among them, phenolic compounds constitute a major class widely 17 distributed in the plant kingdom. Even though all their biological functions are not yet fully 18 19 understood, phenolics are reported to participate in several aspects of (plant × environment) 20 interactions notably in the innate chemical defense strategy against pathogens (Dixon and 21 Paiva, 1995; Treutter, 2006). Defense-wise, these quantitative metabolites appear to be dosage 22 dependent *i.e.* their activity relies on their local concentration. From these findings, it may be 23 inferred that all practices optimizing their accumulation in plants, may also provide new 24 agronomic leverage for integrated pest management strategies seeking lower pesticide use in 25 crop protection.

26 Phenolic concentrations in plant tissues are affected by both genotypes (Hanson et al., 2004) 27 and environmental factors (i.e., light, nutrient availability, temperature, see: Larsson et al., 1986; Wilkens et al., 1996 a,b; Koricheva et al., 1998; Løvdal et al., 2010). Changing growth 28 29 conditions, in particular nitrogen (N) availability, have been shown to affect phenolic 30 concentrations in plant tissues. Indeed, N limitation enhances leaf phenolics (Lea et al., 2007; 31 Bénard et al., 2009; Le Bot et al., 2009) and promotes resistance to specific pathogens 32 (Hoffland et al., 2000; Leser and Treutter, 2005; Matros et al., 2006). At a broader scale, increased N-nutrient use efficiency is a key-point in the concept of ecological intensification 33 34 (for a review, see Doré et al., 2011). Limiting the use of N may have environmental benefits 35 through decreasing greenhouse gas emission, reducing agriculture dependency on fossil fuels, 36 preventing health and environmental disorders without decreasing productivity. Limiting the 37 use of N participates in sound environmental issues, as well as decreasing greenhouse gas 38 emission, reducing agriculture dependency on fossil fuels, preventing health and

environmental disorders without decreasing productivity. In this framework, the enhancement 39 40 of plant phenolic concentration via reduced N fertilization could benefit the agrosystems 41 conducted under integrated pests management (IPM) strategies to lower pesticide use in crop 42 protection. However its feasibility remains to be assessed, because N limitation rapidly alters crop yield and affects plant primary metabolism (Urbanczyk-Wochniak and Fernie, 2005). A 43 44 more comprehensive understanding of the relationships between growth (primary 45 metabolism) and defense (secondary metabolism), accounting for the impacts of environment 46 and genetics, is required for the design of sustainable production systems less harmful to the environment and saving on N inputs (Jarvis, 1992; Brown, 2002). 47

48 Regarding the impact of environmental conditions, in particular nutrient availability, several 49 plant defense hypotheses have been proposed to explain the changes of secondary compound 50 concentrations in plant tissues. The most famous one is the growth-differentiation balance 51 hypothesis (GDBH, Loomis 1932; Herms and Mattson, 1992). GDBH is based on a trade-off 52 for allocation of plant resources to primary metabolism (accounting for plant growth) and 53 secondary metabolite production (beneficial to defense). According to GDBH, any resource 54 that restricts plant growth more than carbon fixation (photosynthesis) favors consequently the 55 accumulation of secondary metabolites. Considering N availability, most experimental results 56 on phenolic compound concentrations corroborate the GDBH, higher concentrations being 57 measured under low N supplies (Stout et al., 1998; Stewart et al., 2001; Glynn et al., 2007). 58 However, it must be noted that almost all studies focused on leaves, data on roots and stems 59 being scarce. Nitrogen availability has different effects on organ development. For example, 60 low N availability reduces much more the growth of shoots than that of roots (Adamowicz 61 and Le Bot., 2008). Thus, from the GDBH viewpoint, one could expect plants to express specific phenolic accumulation profiles in each organ rather than a generic response to N, 62 63 accounting for the observed spatial variability of metabolites location in tissues.

64 The genetic variability of tomato fruit phenolic composition has been recently reviewed 65 (Slimestad and Verheul, 2009) but the study ignored the vegetative organs. To our knowledge, there is no study reporting on the impact of (genotype \times nitrogen) interactions on tomato 66 67 growth and phenolic accumulation at the organ level, although such information is important 68 to rank cultivar (cv) performances under low N nutrition. Furthermore, this knowledge is 69 essential to develop integrated crop management (ICM) strategies for growing tomato, since 70 the selection of suitable genotypes is one of the simplest methods for reducing the 71 management procedures and the negative environmental impacts during the growing season.

72 Amongst the difficulties to compare cultivars, plant physiologists are particularly concerned 73 with the capacity of growing plants at high densities, on reduced space and over short time 74 periods. Patio tomatoes, in particular cultivar Micro-Tom, have the small size required for a 75 suitable biological model and they are increasingly used in molecular biology and physiology 76 studies on tomato plants (Marti et al., 2006). Micro-Tom possesses distinctive mutations (i.e. 77 dwarf, brassinosteroid-related and self-pruning) rendering debatable its status of "model 78 system" but Campos et al. (2010) recently argued that they do not interfere with normal 79 behaviours. They took advantage of this cultivar to study plant-pest interactions (Campos et 80 al., 2009). Nevertheless, due to its extremely compact size, studies dealing with (growth x 81 nitrogen) interactions are likely to exhibit low responses. Therefore, there is an important need 82 for a comparative study with other dwarf cultivars to explore the genetic variability of these 83 "model systems" in their responses to nitrogen nutrition.

The main objective of our work was to test the hypothesis that N availability impacts differently the relationship between growth and phenolic compounds accumulation at organ level. The second objective was to characterize the broadness of this response using 9 "patio tomato" cultivars, 6 being determinate (growth stopping after fruiting) with a large range of plant size and 3 indeterminate (continuous growth), in order to rank the cultivars and choose 89 an appropriate "model system" for future studies. The tomato plants were raised from seeds 90 and grown hydroponically in a greenhouse on full nutrient solutions containing two tightly 91 controlled N concentrations known to limit (LN) or not (HN) the growth of commercial 92 tomato plants (Adamowicz and Le Bot, 2008). Growth and phenolics were measured in the 93 three main vegetative organs (leaves, stems and roots) of 28 day-old plants. The analyses 94 focused on three major phenolics reported or suspected to contribute to tomato plant defense: a caffeic acid derivative, chlorogenic acid (CGA, Ikonen et al., 2001) and two flavonoids, 95 96 rutin (Baidez et al., 2007) and kaempferol rutinoside (KR, Mirnezhad et al., 2009).

MATERIALS AND METHODS

97 Plant material and growth conditions

98 Six growth-determinate (det, coded A-F, Table 1) and 3 growth-indeterminate (ind, coded G-99 I, Table 1) patio tomato (*Solanum lycopersicum* L.) cultivars (cvs) were sown in a NFT 100 (nutrient film technique) system set in a growth room with the following constant day-night 101 conditions: air temperature (T) 20°C, humidity (H) 80%, photoperiod 12h. The six 102 determinate patio tomato were chosen in order to cover a large range of plant sizes (Tab. 1).

103 Plantlets were transferred to a glasshouse located in Avignon (France, 43°56'58"N; 4°48'32"E) on April 17th 2009, 10 days after sowing (DAS), with the following conditions: 104 105 heating when T \leq 18°C, ridge opening when T \geq 25°C, mist spraying when H \leq 55%. The 106 glasshouse was whitewashed to ease T control. Plantlets were selected for homogeneity 107 according to the length of their first true leaf. Roots were then rinsed with a nitrate-free 108 solution prior to plant transfer to a NFT system. Plants were arranged in fully randomized 109 blocks with two N regimes, limiting N nutrition (LN) and high N nutrition (HN). Because we 110 expected large differences in plant development and N demand, determinate and indeterminate cultivars were planted in separate blocks (8 and 4 blocks, respectively) withlarger plant spacing for indeterminate cultivars.

Two plants per cultivar and nutrition<u>treatment</u> were randomly allocated to blocks in order to perform a harvest before fruiting and another at fruit maturity. Only the 1st harvest was analyzed and reported in this paper, since the development of some cultivars provoked mutual shading with artifactual growth effects rendering the 2nd harvest not exploitable.

117 Hydroponic setup

118 Separate solution tanks were used for determinate and indeterminate cultivars. They were 119 located in an underground laboratory where automatic devices maintained 1) solution 120 temperatures at 25°C; 2) solution volumes (optical level sensors LLE 102000; Honeywell, 121 Morristown, USA) at 0.5 m³ (LN det), 0.3 m³ (LN ind and HN det) and 0.08 m³ (HN ind) by 122 additions of deionized water; 3) pH at 5.0 by automatic additions of H_2SO_4 ; 4) [NO₃⁻] by 123 automatic injection (precision syringe drive PSD2, Hamilton company, Reno Nevada) of a stock solution containing (mol m⁻³) 1000 NO₃⁻, 408 K⁺, 204 Ca²⁺ and 92 Mg²⁺, thus ensuring 124 125 major cation repletion. Nitrate concentration was measured by automatic on-line UV 126 absorption spectrometry (double-beam UVmc2; SAFAS, Monaco) derived from the method 127 of Vercambre and Adamowicz (1996). Volume, pH and [NO₃-] analyses and corrections were 128 performed hourly and [NO₃⁻]-using the Totomatix system described previously (Adamowicz 129 et al., 2011). [NO₃⁻] never drifted more than 5% from set values. Periodic phosphate analyses 130 were performed manually (vanadomolybdate colorimetry) and the set concentration was 131 restored by addition of potassium phosphate buffer (pH 5.0).

132 The NO₃ uptake rate (*U* in mmol N h⁻¹ per plant) was calculated hourly between times *t* and 133 t+1 by the automatic laboratory using the following variables: *C*, measured [NO₃⁻] (mol m⁻³);

134 *I*, injected stock NO₃ (mol per tank); *V*, volume (m^3 per tank); *n*, number of plants.

135
$$U = \frac{V_t \cdot C_t - V_{t+1} \cdot C_{t+1} + I_t}{n} \cdot 10^3$$

136 *V* was calculated as the difference between the set value and the water volume added to137 restore the tank level.

138 Nutrition and treatments

139 The nutrient solutions were made up with deionized water and pure salts. Major ions were at the following concentrations (mol m⁻³): K⁺, 3; Ca²⁺, 3.5; Mg²⁺, 1.5; H₂PO₄⁻, 1; we used sulfate 140 to balance nitrate charges so that $[NO_3^-] + 2 \times [SO_4^{2-}] = 12 \text{ mol m}^{-3}$. Trace elements were given 141 as Kanieltra (formula 6 Fe, Hydro Azote, France) 0.1 L m⁻³ and EDTA-Fe 43 mmol m⁻³. 142 [NO₃⁻] were 0.3 mol m⁻³ (germination) and 3.0 mol m⁻³ (HN) which is non-limiting for tomato 143 growth in NFT (Adamowicz and Le Bot, 2008). LN [NO3-] was adjusted periodically in order 144 145 to maintain $U_{LN}/U_{HN} \approx 1/3$. Thus, initially (10 DAS), LN [NO₃⁻] was set to 0.005 mol m⁻³ and 146 from 16 to 28 DAS it ranged from 0.007 to 0.030 (det) and from 0.005 to 0.040 (ind). At 147 harvest, the cumulative NO₃⁻ uptake of LN plants was 33% (det) and 36% (ind) that of HN 148 plants. During the whole period, U_{LN} was never null (Fig. 1) and we did not observe any 149 symptom of N deficiency.

150 Harvests and sample processing

Plants were harvested 28 DAS on a per block basis from 8.30 AM to 5.00 PM and stored in a
dark cold room (15 °C) during sample processing. Storage at 15 °C never exceeded 1h for a
given plant.

Morphological traits measurements included the plastochron index (Coleman & Greyson,
1976) base 2 cm, number of flowers <u>per plant</u>, stem height, and epicotyl diameter.

156 Roots, stems and leaves were separated and leaf area was measured (area meter LI-3000A, Li-

157 Cor, Lincoln, NE, USA). Roots were rinsed in deionized water and spin-dried (2 min at 2800

158 g). Plant parts were weighed, frozen in liquid N_2 and stored at -80°C until freeze-drying

(Lyovac GT-2, Steris, Germany). Dry samples were weighed (model AE 100S, Mettler
Toledo, Columbus, OH, USA), ground to a fine powder (ball mill MM200, Retsch, Haan,
Germany) and stored under dry air in a desiccator at room temperature.

162 Plant analyses

163 Extraction of phenolics was adapted from the procedure described in Le Bot et al. (2009). All 164 steps were carried out at 4 °C either in a cold chamber or on ice. The dry powder (50 mg) was 165 extracted once with 2 ml of 70% aqueous ethanol. Taxifolin solution (50 µl of a stock at 2 mg ml⁻¹ methanol) was added as an internal standard. The mixture was blended for 1 min and 166 167 homogenized for 30 min. After centrifugation (8 min, 12000 g), the supernatant was collected 168 and evaporated to dryness under vacuum. The residue was dissolved in 1 ml of 70% methanol 169 and centrifuged (10 min, 12000 g). The supernatant was collected and analyzed (50 µl) for 170 phenolic content and composition by HPLC according to Bénard et al. (2009). Samples were 171 analyzed on a HPLC system (LC20AD, Shimadzu Corporation, Japan) equipped with a diode 172 array detector (200-400 nm) and a Lichrospher RP-18 end-capped column (4×250 mm, 5 173 μm, Merck, Darmstadt, Germany) fitted with a Lichrospher RP-18 guard column (5 μm, 174 Merck). The mobile phase consisted of a binary solvent system of (A) water adjusted to pH 175 2.6 with orthophosphoric acid and (B) methanol. The gradient (from 3% to 60% of B in 180 min) was eluted at a flow rate of 0.5 ml min⁻¹ at room temperature. The good separation of the 176 177 compounds allowed quantifying rutin, chlorogenic acid, and kaempferol-rutinoside from peak 178 area calibrated against standards (rutin and CGA from Sigma, Saint Quentin-Fallavier, 179 France; KR and taxifolin from Extrasynthèse, Lyon, France).

180 C and N concentration in plant tissues were determined according to the Dumas method with
181 an elemental auto-analyser (Flash EA 1112 series, Thermo Fisher Scientific, Courtaboeuf,
182 France).

183 Statistical analysis

184 Determinate and indeterminate cultivars were separately compared by three-way analysis of 185 variance (cultivar and nutrition as fixed factors, blocks as random). The respective degrees of 186 freedom for determinate and indeterminate cultivars were: cultivar = 5 and 2, nutrition = 1 and 187 1, cultivar x nutrition = 5 and 2, blocks = 7 and 3, residuals = 77 and 15. Box-plots, Q-Q plots 188 and correlation between variance and mean assessed the data distribution and 189 homoscedasticity. The Log-transformation was necessary for homoscedasticity of some 190 variables (leaf area, dry biomasses, stem height and number of flowers, compound contents). 191 When the cultivar x nutrition interaction was not significant, the Tukey's test was used for 192 mean comparisons. Otherwise, the Student's test assessed the nutrition effect on each cultivar. 193 Computations were performed using the procedure lm in R software (R Project for Statistical 194 Computing, http://www.R-project.org) and statistical significance was set at p < 0.05.

RESULTS

195 Nitrogen effects on organ N content and growth

Organ N concentration significantly decreased under LN ($p < 10^{-9}$) in all tomato cultivars and organs, on average from 5.05 to 3.06 % DW in leaves, from 3.62 to 1.65 % DW in stems and from 4.76 to 2.73 % DW in roots (not shown).

199 Regarding growth, LN significantly decreased total DW of all determinate ($p < 10^{-9}$) and 200 indeterminate ($p < 10^{-6}$) cultivars (Fig. 2 A, Tab. S1). The reduction was around 30-50%, 201 except for the cultivar C that was less affected (17%). Among the organs, leaves and stems 202 (Fig. 2 B-C, Tab. S1) showed this same response, but LN did not affect significantly root DW 203 (Fig. 2 D, Tab. S1) (p > 0.08). Furthermore, LN decreased the plastochron index ($p < 10^{-3}$), 204 total leaf area ($p < 10^{-15}$ det, $p < 10^{-8}$ ind), stem height ($p < 10^{-3}$ det, $p < 10^{-4}$ ind), epicotyl 205 diameter ($p < 10^{-15}$ det, $p < 10^{-8}$ ind), leaf area ratio ($p < 10^{-15}$ det, $p < 10^{-3}$ ind) and specific 206 leaf area ($p < 10^{-8}$ det, p < 0.1 ind), whereas the number of flower was not affected (p > 0.1) 207 (Tab. S2). The root : shoot ratio was higher under LN than HN ($p < 10^{-15}$ det, $p < 10^{-11}$ ind).

In each N regime, there were large and significant ($p < 10^{-7}$ det and $p < 10^{-4}$ ind) DW differences between cultivars. For all organs, determinate cvs A and B yielded the smallest DW and indeterminate cvs H and I the highest (Fig. 2).

211 Comparison of organ phenolics composition

All cultivars exhibited similar phenolic profiles for a given organ. However the phenolic composition was organ dependent (Fig. 3). Based on the phenolic profiles recorded at 330 nm, leaves (Fig. 3 A) showed a more complex composition and phenolics were more concentrated than in stems and roots (Fig. 3 B-C respectively). Whereas CGA was detected in all organs, rutin was absent from roots and KR occurred only in leaves.

In leaves, concentrations of CGA (Fig 4 A, Tab. S3) and rutin (Fig. 4 B, Tab. S3) were in most cases higher than in stems (Fig. 4 C-D, Tab. S3). These differed significantly between genotypes ($p < 10^{-4}$) except for leaf rutin concentration in indeterminate cvs (G-I, p > 0.08). CGA was the unique major phenolic in roots (Fig. 3; 4 E, Tab. S3) where its concentration differed only between determinate cvs ($p < 10^{-10}$). Leaf concentration of KR (Fig. 4 F, Tab. S3) differed significantly between cvs ($p < 10^{-4}$).

Ranking cultivars for phenolics depended on organs and on the particular molecule
considered, but indeterminate cvs (G-I) were generally poor in phenolics (Fig. 4 A-F, Tab.
S3). Cultivar A behaved peculiarly since CGA concentration was higher in stems than in
leaves while stem rutin concentration almost equalled that in leaves.

227 Nitrogen effect on phenolic acid concentrations and contents in tomato

LN increased significantly the concentration of all major phenolics (p from 10⁻¹⁵ to 0.02) but

the amplitude of the changes varied according to organs and molecules (Fig. 4, Tab. S3).

230 Compared to HN, LN increased leaf CGA concentration by a factor of 1.5 (cvs A, H) to 2.3 231 (cv E). This gain was less prominent in stems, *i.e.* from null (cv D) up to twofold (cv E). 232 Among organs, roots were the most sensitive to N nutrition, as CGA concentration markedly 233 rose from a factor of 2.3 (cv G) to 5.2 (cv C). As a consequence, the roots, which were the 234 poorest organs in phenolic concentration under HN, became the richest under LN. There was a significant (cv \times N) interaction for stem and root CGA concentration (both p<10⁻²) only for 235 236 determinate cultivars. Leaf rutin concentration increased in LN by a factor of 1.6 (cv A) to 3.2 237 (cv E) and in the stems, by a factor of 1.3 (cv A) to 2.8 (cv G). KR was detected in leaves 238 only, where its concentration rose in LN by a factor of 2.1 (cvs A, D) to 3.3 (cv E). There was a significant (cv \times N) interaction for leaf rutin and KR concentrations (p<10⁻² and p<10⁻⁴ 239 240 respectively) for determinate cultivars only.

From figure 4, it appears that cultivar E under LN exhibited the highest concentrations of CGA, rutin and KR in leaves, whereas in stems, cultivar A was the most concentrated in CGA and rutin. For all cultivars but A and E, roots of LN plants had the highest CGA concentration among organs.

The effect of nitrogen availability was also determined on phenolic content (mg per plant, Fig. 5). Leaf CGA content (Fig. 5 A, Tab. S4) was insensitive to N nutrition in all cultivars (p > 0.7 det; p > 0.5 ind). The same held true for stems (Fig. 5 B, Tab. S4), except for cv D (p<10⁻⁵) and F (p<10⁻²). In contrast, LN significantly enhanced root CGA in all cultivars (Fig. 5 C, Tab. S1) by a factor of 2.3 (cv G) to 5.7 (cv C). N nutrition affected differently the whole plant CGA content of cultivars: LN increased CGA significantly in cvs C, E and I but not in the other cvs (Fig. 5 D, Tab. S4 and S5).

Leaf rutin content (Fig. 6 A, Tab. S4) significantly increased under LN in cvs B, C, E and I (Tab. S5), all others being insensitive to N. In stems (Fig. 6 B, Tab. S4), LN increased

S4) was higher under LN than HN in cvs B, C, E, H and I, other cultivars being insensitive toN.

Leaf KR content (Fig. 7, Tab. S4) was significantly higher under LN than HN in the determinate cvs B, C, E and in the indeterminate cvs H-I (Tab. S5).

259 Organ specific response of CGA and N status

260 Organ CGA concentration was depressed under HN compared to LN (Fig. 5, Tab. S4). At the 261 same time, organ N concentration was depressed under LN compared to HN. In figure 8, we 262 plotted the relative changes in the concentration of CGA (*i.e.* 0 < HN/LN ratios ≤ 1) versus 263 the relative changes in that of N for each tissue (*i.e.* 0 < LN/HN ratios ≤ 1). For all other data 264 points, Fig. 8 shows 3 ordered clusters corresponding to organ classes that were regressed 265 through the maximum (1,1) taken as the absolute reference (*i.e.* HN = LN). For each cluster, 266 the slope of the regression indicates the mean organ sensitivity of changing CGA 267 concentration to changing N status. The roots exhibited the highest sensitivity and the stems 268 the lowest.

DISCUSSION

269 This study was conducted on determinate and indeterminate patio tomato cultivars that share 270 the characteristic of a small size and growth compared to commercial accessions. Despite a 3-271 4 fold range diversity in foliar phenolic concentration between cultivars the average 272 concentrations (CGA, rutin, KR) were in the same order of magnitude than generally found in 273 other conventional accessions (Hoffland et al., 2000; Stewart et al., 2000; Niggeweg et al., 274 2004; Millar et al., 2007; Le Bot et al., 2009). As a consequence, we may consider this set of 275 patio tomatoes and their response to N limitation as representative of what may occur for 276 commercial cultivars. In stems and roots, comparisons are more difficult as little information 277 is available in the literature. The lower rutin and CGA concentrations found in stems compared to leaves are in agreement with statements on other plants (Cirak et al., 2007;
Koncic et al., 2010). Moreover, the average root CGA concentration, which was shown to be
the major soluble phenolic in roots, matched the total soluble phenolic concentration reported
by Le Floch et al. (2005) in their study on tomato roots.

We intended to assess the effect of N nutrition on phenolics at two contrasted growth stages: vegetative stage whose results are presented here and at fruiting stage. The latter has not been examined because the development of the plants induced a competition for light between plants (shading) prior to harvest. Earlier studies, particularly our work published recently indicate that the patterns of response of vegetative parts to N limitation were independent of growth stage, whereas the phenolic composition of tomato fruits was not greatly influenced by N availability (Bénard *et al.*, 2009).

289 All cultivars exhibited the same qualitative response to N limitation characterized by (i) a 290 lower shoot growth, while root growth was not affected (*ii*) a higher phenolic concentration at 291 the plant level. Those effects reinforce previous studies made on a large range of plants 292 (Scheible et al., 1997; Stewart et al., 2001; Fritz et al., 2006; N'Guyen and Niemeyer, 2008; 293 Le Bot et al., 2009). Regarding growth and development parameters, the amplitude of the 294 response to LN was almost the same for all genotypes, as illustrated by the ranking of 295 cultivars for plant DW that was not affected by N nutrition (except for cv C, Fig. 2 A). In 296 contrast, phenolic concentrations in all organs, but that of rutin in stem, revealed significant 297 genotype × nitrogen interactions for determinate cultivars. This indicates that different tomato 298 genotypes react specifically to N limitation and that a generic response cannot be drawn from 299 studies based on a few number of cultivars. We cannot conclude yet for indeterminate 300 cultivars as the limited panel of indeterminate accessions may explain the absence of 301 interactions. From a plant defense viewpoint, recent literature reported that a-two- and four-302 fold increases of leaf CGA and rutin concentrations allowed higher plant resistance

respectively to bacteria and insects in solanacea (Niggeweg et al., 2004; Misra et al., 2010), whereas KR was identified as a detrimental compound to thrips invasion in *Senecio* and Chrysantemum (Leiss et al., 2009 a, b). Under LN, the phenolic (CGA, rutin, KR) concentrations in shoots were increased by a factor 1.5 to 3 and that of CGA in roots by a factor of 2.5 to 4.5 suggesting that plant defense against several pathogens could have been reinforced under LN. This assumption needs to be assessed by specific experiments testing parasite behavior under contrasted N regimes inducing differential phenolic concentrations.

310 Root CGA and other phenolics are allelochemicals (Kanchan and Jayachandra, 1980; Abdul-311 Rahman and Habib, 1989), released in the rhizosphere when nutrient deficiencies occur (Uren 312 and Reisenauer, 1988). Root phenolic exudation is stimulated in response to P and N 313 deficiency in bean (Juszczuk et al., 2004), as well as in Fe-deficient pigeon peas (Cajanus 314 cajan L., Ae et al., 1990). The functionality of root-released phenolics is through their 315 contribution to plant adaptation to nutrient deficiency by (i) solubilizing nutrients from 316 inaccessible sources (Dakora and Phillips, 2002), (ii) favoring mycorhization (Antunes et al., 317 2006) thus improving plant foraging for nutrients. CGA has also been shown to mediate 318 lateral root growth in lettuce (Narukawa et al., 2009).

In our experiment, organ concentrations of CGA and N were inversely correlated and this relationship was organ-specific. Plants are known to optimize N allocation to leaves, whereas roots is are the organ by which N is absorbed from the nutrient solution and is translocated to other plant organs.

Whereas concentrations of all the phenolics increased under LN in all the organs, their contents did not evolve the same way. Indeed they depend on the organ, the molecule and the cv tested. Leaf and stem phenolic contents were not or only slightly affected by LN (Fig 5 A-B, Fig 6 A-B, Fig 7), meaning that their observed concentration increase resulted mainly from the reduced leaf and stem growth. This observation is consistent with the conclusions of a 328 recent model describing carbon allocation to primary and secondary metabolism in young 329 tomato leaves (Le Bot et al. 2009) suggesting that the secondary metabolite concentration 330 declines at high N availability owing to a dilution process by primary metabolites and not 331 necessarily to a lesser rate of secondary metabolism. However, the weak but significant 332 increase of leaf flavonoid (rutin, KR) contents in several cultivars (B, C, E, H, I, Tab. S6) 333 under LN suggests that a specific regulation of the phenolic pathway could occur depending 334 on the cultivar. The higher root CGA concentrations under LN resulted from a higher phenolic 335 content, since root growth proved insensitive to N nutrition. It remains unclear whether this 336 increase resulted from a local regulation of the biosynthetic pathway in roots (biosynthesis 337 increase/degradation decrease) or from changes in transports from shoots or even to-from 338 both. Regarding CGA content at the whole plant level, we identified two kinds of cultivars: 339 those (C, E and I) that accumulated more CGA under LN (Fig. 5 D) implying that N 340 limitation induced an up regulation of its biosynthesis and those- A(a majority of cultivars) 841 that did not accumulate more CGA under LN at the whole plant level but at the root level, 342 which may be interpreted as a relocation of CGA from shoots to roots. Both mechanisms have 343 experimental support in the literature. Indeed, on one hand, Joet et al. (2010) highlighted a 344 high correlation between CGA accumulation in coffee seeds (Coffea arabica) and gene 345 expression upstream and downstream CGA biosynthesis, meaning that transcriptional control 346 alone could explain a large part of CGA accumulation. On the other hand, Narukawa et al. 347 (2009) showed that roots from decapitated lettuce contained less CGA compared with intact 348 plants and Mondolot et al. (2006) that coffee phloem cells contained CGA, thus rendering 349 consistent the hypothesis of CGA transport from shoots to roots. A more comprehensive 350 study, involving transcriptional studies, flux analyses and isotopic labeling, is needed to 351 understand the underlying mechanism of root CGA accumulation under LN.

In conclusion, concentrations of phenolics increased in all organs under low nitrogen and a significant genotype × nitrogen effect was observed. For all cultivars, the stimulation of CGA concentration by the nitrogen limitation was more important in roots than in leaves and stems. Nitrogen limitation did not change CGA content in shoots, whereas it stimulated accumulation in roots. The organ dependent response to N limitation points out the need to integrate all plant organs when considering plant responses to nutrient limitation and the trade-off of resource share between growth and secondary metabolism.

ABBREVIATIONS

- 359 [X], concentration of X
- 360 CGA, chlorogenic acid
- 361 KR, kaempferol rutinoside
- det., determinate
- 363 ind., indeterminate
- 364 N, nitrogen
- 365 HN, high nitrogen
- 366 LN, low nitrogen
- 367 GDBH, growth differentiation balance hypothesis
- 368 IPM, integrated pest management
- 369 ICM, integrated crop management
- 370 NFT, nutrient film technique
- 371 DW, dry weight
- 372 cv/cvs, cultivar/cultivars

ACKNOWLEDGEMENTS

We thank J Fabre, J Hostalery, V Serra and A Fauvet for conducting the experiments and helping with harvests and analyses and also C Vigne for optimizing the NFT system. The authors are grateful to INPL and region Lorraine for their participation in the funding of this work.

REFERENCES

- Abdul-Rahman A.A., Habib SA. (1989) Allelopathic effect of alfalfa (*Medicago sativa*) on bladygrass (*Imperata cylindrical*). *Journal of Chemical Ecology*. **15**, 2289-2300.
- Adamowicz S., Le Bot J. (2008) Altering young tomato plant growth by nitrate and CO2 preserves the proportionate relation linking long-term organic-nitrogen accumulation to
- intercepted radiation. *New Phytologist.* **180**, 663-672.
- Adamowicz S., Le Bot J., Huanosto Magana R., Fabre J. (2011) Totomatix: a novel automatic
- 383 <u>set-up to control diurnal, diel and long-term plant nitrate nutrition. Annals of Botany. in press.</u>
- Ae N., Arihara J., Okada K., Yoshihara T., Johansen C. (1990) Phosphorus uptake by pigeon
 pea and its role in cropping systems of the Indian subcontinent. *Science*. 248, 477-480.
- 386 Antunes P.M., Rajcan I., Goss MJ. (2006) Specific flavonoids as interconnecting signals in
- 387 the tripartite symbiosis formed by arbuscular mycorrhizal fungi, *Bradyrhizobium japonicum*
- 388 (Kirchner) Jordan and soybean (*Glycine max* (L.) Merr.). Soil Biology and Biochemistry. 38,
 389 533-543.
- 390 Baidez A.G., Gomez P., Del Rio J.A., Ortuño A. (2007) Antifungal capacity of major
- 391 phenolic compounds of Olea europaea L. against Phytophthora megasperma Drechsler and
- 392 Cylindrocarpon destructans (Zinssm.) Scholten. Physiological and Molecular Plant
- 393 Pathology. 69, 224-229.
- 394 Bénard C., Gautier H., Bourgaud F., Grasselly D., Navez B., Caris-Veyrat C., Weiss M.,
- 395 Génard M. (2009) Effects of low nitrogen supply on tomato (*Solanum lycopersicum*) fruit 396 yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids and phenolic 307 compounds. *Journal of Agricultural and Ecod Chemistry* **57**, 4112, 4123
- 397 compounds. Journal of Agricultural and Food Chemistry. **57**, 4112-4123.
- Campos M.L., de Almeida M., Rossi M.L., Martinelli A.P., Litholdo C.G., Figueira A.,
 Rampelotti-Ferreira F.T., Vendramim J.D., Benedito V.A., Peres L.E.P. (2009)
 Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits
 in tomato. *Journal of Experimental Botany*. 60, 4346-4360.
- 402 Campos M.L., Carvalho R.F., Benedito V.A., Pereira Peres L.E. (2010) Small and
- 403 remarkable. The Micro-Tom model system as a tool to discover novel hormonal functions and 404 interactions. *Plant Signaling and Behavior*. **5**(3), 267–270.
- Cirak C., Radusiene J., Karabuk B.S., Janulis V., Ivanauskas L. (2007) Variation of bioactive
 compounds in *Hypericum perforatum* growing in Turkey during its phenological cycle *Journal of Integrative Plant Biology*. 49, 615-620.
- 408 ColemanW.K., Greyson R.I. (1976) The growth and development of leaf in tomato
- 409 (Lycopersicon esculentum). 1. Plastochron index, a suitable basis for description. Canadian
- 410 *Journal of Botany*. **54**, 2421-2428.
- 411 Dakora F., Phillips D.A. (2002) Root exudates as mediators of mineral acquisition in low 412 nutrient environments. *Plant and Soil.* **245**, 35-47.
- 413 Dixon R.A., Paiva N.L. (1995) Stress-Induced Phenylpropanoid Metabolism. *Plant Cell.* 7,
 414 1085-1097.
- 415 Doré T., Makowski D., Malézieux E., Munier-Jolain N., Tchamitchian M., Tittonell P. (2011)
- 416 Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods,
- 417 concepts and knowledge. *European Journal of Agronomy.* **34**, 197-210.
- 418 Fritz C., Palacios-Rojas N., Feil R., Stitt M. (2006) Regulation of secondary metabolism by
- the carbon-nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. *The Plant Journal.* **46**, 533-548.
- 421 Giorgi A., Mingozzi M., Madeo M., Speranza G., Cocucci M. (2009) Effect of nitrogen
- 422 starvation on the phenolic metabolism and antioxidant properties of yarrow (*Achillea collina*
- 423 Becker ex Rchb). Food Chemistry. 114, 204-211.

- 424 Glynn C., Herms D.A., Orians C.M., Hansen R.C., Larsson S. (2007) Testing the growth-
- 425 differentiation balance hypothesis: dynamic responses of willows to nutrient availability. *New*
- 426 Phytologist. 176, 623-634.
- 427 Hanson P.M., Yang R.Y., Wu J., Chen J.T., Ledesma D., Tsou S.C.S., Lee T.C. (2004)
- 428 Variation for antioxidant activity and antioxidants in tomato. *Journal of the American Society* 429 *for Horticultural Science*. **129**, 704-711.
- Herms D.A., Mattson W.J. (1992) The dilemma of plants: to grow or defend. *The Quarterly Review of Biology*. 67, 283-335.
- 432 Hoffland E., Dicke M., Van Tintelen W., Dijkman H., Van Beusichem M.L. (2000) Nitrogen
- 433 availability and defense of tomato against two-spotted spider mite. *Journal of Ecology.* 26,
 434 2697-2711.
- 435 Ikonen A., Tahvanainen J., Roininen H. (2001) Chlorogenic acid as an antiherbivore defence
- 436 of willows against leaf beetles. *Entomologia Experimentalis et Applicata*. **99**, 47-54.
- Jarvis W.R. (1992) Managing diseases in greenhouse crops. *Managing diseases in greenhouse crops.* St. Paul USA: American Phytopathological Society, vii + 288 pp.
- 439 Joet T., Salmona J., Laffargue A., Descroix F., Dussert S. (2010) Use of the growing
- 440 environment as a source of variation to identify the quantitative traits transcripts and modules
- 441 of co-expressed genes that determine chlorogenic acid accumulation. *Plant Cell and* 442 *Environment.* **33**, 1220-1233.
- 442 Environment M Wiltergensler A Maler E
- Juszczuk M., Wiktorowska A., Malusa E., Rychter A.M. (2004) Changes in the concentration
 of phenolic compounds and exudation induced by phosphate deficiency in bean plants
 (*Phaseolus vulgaris* L.). *Plant and Soil.* 267, 41-49.
- 446 Kanchan S.D., Jayachandra A. (1980) Allelopathic effects of Parthenium hysterophorus L.
- 447 Part II. Leaching of inhibitors from aerial vegetative parts. *Plant and Soil.* 55, 61-66.
- 448 Koncic M.Z., Kremer D., Gruz J., Strnad M., Bisevac G., Kosalec I., Samec D., Piljac-Zegara
- 449 J., Karlovic K. (2010) Antioxidant and antimicrobial properties of Moltkia petraea (Tratt.)
- 450 Griseb flower, leaf and stem infusions. *Food Chemistry and Toxicology.* **48**, 1537-1542.
- 451 Koricheva J., Larsson S., Haukioja E., Keinanen M. (1998) Regulation of woody plant
- 452 secondary metabolism by resource availability: hypothesis testing by means of meta-analysis.
- 453 *Oikos.* **83**, 212-226.
- 454 Kovacik J., Backor M. (2007) Changes of phenolic metabolism and oxidative status in 455 nitrogen-deficient *Matricaria chamomilla* plants. *Plant and Soil.* **297**, 255-265.
- Larsson S., Wiren A., Lundgren L., Ericsson T. (1986) Effects of light and nutrient stress on leaf phenolic chemistry in Salix-dasyclados and susceptibility to *Galerucella-lineola*
- 458 (Coleoptera). *Oikos*. **47**, 205-210.
- 459 Lea U., Slimestad R., Smedvig P., Lillo C. (2007) Nitrogen deficiency enhances expression of
- 460 specific MYB and bHLH transcription factors and accumulation of end products in the 461 flavonoid pathway. *Planta*. **225**, 1245-1253.
- 462 Le Bot J., Bénard C., Robin C., Bourgaud F., Adamowicz S. (2009) The "trade-off" between
- 463 synthesis of primary and secondary compounds in young tomato leaves is altered by nitrate
- 464 nutrition: experimental evidence and model consistency. *Journal of Experimental Botany*.
- **465 60**, 4301-4314.
- Le Floch G., Benhamou N., Mamaca E., Salerno M.I., Tirilly Y., Rey P. (2005)
 Characterisation of the early events in atypical tomato root colonisation by a biocontrol agent, *Phytium oligandrum. Plant Physiology and Biochemistry*. 43, 1-11.
- 469 Leiss K., Choi Y., Abdel-Farid I., Verpoorte R. & Klinkhamer P. (2009 a) NMR
- 470 Metabolomics of Thrips (Frankliniella occidentalis) Resistance in Senecio Hybrids. Journal
- 471 *of Chemical Ecology*, **35**, 219-229.

- 472 Leiss K.A., Maltese F., Choi Y.H., Verpoorte R. & Klinkhamer P.G.L. (2009 b) Identification
 473 of Chlorogenic Acid as a Resistance Factor for Thrips in Chrysanthemum. *Plant Physiology*,
- 474 **150**, 1567-1575.
- 475 Leser C., Treutter D. (2005) Effects of nitrogen supply on growth, contents of phenolic
- 476 compounds and pathogen (scab) resistance of apple trees. *Physiologia Plantarum*. **123**, 49-56.
- 477 Loomis W.E. (1932) Growth-differentiation balance vs. carbohydrate-nitrogen ratio.
- 478 *Proceedings of American Society for Horticultural Science.* **29**, 240-245.
- Lovdal T., Olsen K.M., Slimestad R., Verheul M., Lillo C. (2010) Synergetic effects of
 nitrogen depletion, temperature and light on the content of phenolic compounds and gene
 expressionn in leaves of tomato. *Phytochemistry*.**71**, 605-613.
- 482 Marti E., Gisbert C., Bishop G.J., Dixon M.S., Garcia-Martinez J.L. (2006) Genetic and 483 physiological characterization of tomato cv. Micro-Tom. *Journal of Experimental Botany*. **57**, 484 2037-2047
- 485 Matros A., Amme S., Kettig B., Buck-Sorlin G.H., Sonnewald U., Mock H.P. (2006) Growth
- 486 at elevated CO₂ concentrations leads to modified profiles of secondary metabolites in tobacco
- 487 cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant Cell
- 488 *and Environment.* **29**, 126-137.
- 489 Millar D.J., Long M., Donovan G., Fraser P.D., Boudet A.M., Danoun S., Bramley P.M.,
- Bolwell G.P. (2007) Introduction of sens constructs of cinnamate 4-hydroxylase (CYP73A24)
 in transgenic tomato plants shows opposite effects on flux into stem lignin and fruit
- 492 flavonoids. *Phytochemistry*. **68**, 1497-1509.
- 493 Mirnezhad M., Romero-González R.R., Leiss K.A., Choi Y.H., Verpoorte R., Klinkhamer
- 494 P.G.L. (2009) Metabolomic analysis of host plant resistance to thrips in wild and cultivated
 495 tomatoes. *Phytochemical Analysis.* 21, 110-117.
- 496 Misra P., Pandey A., Tiwari M., Chandrashekar K., Sidhu O.P., Asif M.H., Chakrabarty D.,
- 497 Singh P.K., Trivedi P.K., Nath P. & Tuli R. (2010) Modulation of Transcriptome and
 498 Metabolome of Tobacco by Arabidopsis Transcription Factor, AtMYB12, Leads to Insect
- 499 Resistance. Plant Physiology, 152, 2258-2268.
- 500 Mondolot L., La Fisca P., Buatois B., Talansier E., de Kochko A., Campa C. (2006) Evolution 501 in caffeoylquinic acid content and histolocalization during *Coffea canaphora* leaf 502 development. *Annals of Botany*. **98**, 33-40.
- 503 Narukawa M., Kanbara K., Tominaga Y., Aitani Y., Fukuda K., Kodama T., Murayama N.,
- Nara Y., Arai T., Konno M., Kamisuki S., Sugawara F., Iwai M., Inoue Y. (2009) Chlorogenic acid facilitates roots hair formation in lettuce seedlings. *Plant Cell and*
- 506 *Physiology.* **50**, 504-515.
- 507 N'Guyen P.M., Niemeyer E.D. (2008) Effects of nitrogen fertilization on the phenolic
- 508 composition and antioxidant properties of basil (*Ocimum basilicum* L.). Journal of 509 Agricultural and Food Chemistry. **56**, 8685-8691.
- 510 Niggeweg R., Michael A.J., Martin C. (2004) Engineering plants with increased levels of the 511 antioxidant chlorogenic acid. *Nature Biotechnology*. **22**, 746-754.
- 512 Scheible W.R., Lauerer M., Schulze E.D., Caboche M., Stitt M. (1997) Accumulation of
- 513 nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. The Plant
- 514 Journal. 11, 671-691.
- 515 Slimestad R., Verheul M. (2009) Review of flavonoids and other phenolics from fruits of 516 different tomato cultivars. *Journal of the Science of Food and Agriculture*. **89**, 1255-1270.
- 517 Stewart A.J., Bozonnet S., Mullen W., Jenkins G.I., Lean M.E.J., Crozier A. (2000)
- 518 Occurrence of flavonols in tomatoes and tomato-based products. Journal of Agricultural and
- 519 *Food Chemistry*. **48**, 2663-2669.

- 520 Stewart A.J., Chapman W., Jenkins G.I., Graham I., Martin T., Crozier A. (2001) The effect
- 521 of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. *Plant Cell*
- 522 *and Environment.* **24,** 1189-1197.
- 523 Stout M.J., Brovont R.A., Duffey S.S. (1998) Effect of Nitrogen Availability on Expression of
- 524 Constitutive and Inducible Chemical Defenses in Tomato, *Lycopersicon esculentum*. *Journal* 525 *of Chemical Ecology*. **24**, 945-963.
- 526 Treutter D. (2006) Significance of flavonoids in plant resistance: a review. *Environmental* 527 *Chemistry Letters.* **4**, 147-157.
- 528 Urbanczyk-Wochniak E., Fernie A.R. (2005) Metabolic profiling reveals altered nitrogen
- nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. *Journal of Experimental Botany*. **56**, 309-321.
- 531 Uren N.C., Reisenauer H.M. (1988) The role of root exudates in nutrient acquisition, in :
- 532 Advances in Plant Nutrition, Ed. B. Tinker and A. Lauchli, New York, Praeger, vol. 3, 79-114.
- 533 Vercambre G., Adamowicz A. (1996) Dosage de l'ion nitrate en solution nutritive et en
- 534 présence de polyéthylène glycol par spectrométrie UV. *Agronomie*. **16**, 73-87.
- 535 Wilkens R.T., Shea G.O., Halbreich S., Stamp N.E. (1996a) Resource availability and the
- trichome defenses of tomato plants. *Oecologia*. **106**, 181–191.
- 537 Wilkens R.T., Spoerke J.M., Stamp N.E. (1996b) Differential responses of growth and two
- soluble phenolics of tomato to resource availability. *Ecology*. **77**, 247–258.

Table

Table 1: Patio tomato cultivars with codes used in text and figures. The coding followed increasing whole plant dry biomass accumulation according to breeder technical resources.

	Code	Cultivar	Average plant size	Breeder
			(from breeder resources)	
	А	Micro-Tom	15-20 cm	University of Florida,
				Bradenton
	В	Red Robin	20-30 cm	Burpee/seminis
	С	Tiny Tim	25-35 cm	University of New
Determinate				Hampshire, Durham
	D	Florida Basket	30-45 cm	University of Florida,
				Bradenton
	E	Pixie II (F1)	45 cm	Burpee/seminis
	F	Totem (F1)	60 cm	Floranova/Vegetalis
	G	Husky Cherry	90-120 cm	Petoseed
		Gold (F1)		
Indeterminate	Н	Husky Cherry	90-120 cm	Petoseed
		Red (F1)		
	Ι	Better Bush	90-120 cm	Park seed

Figure legends

Fig. 1: Cumulative nitrate uptake of determinate (thin lines) and indeterminate (thick lines) tomato cultivars under HN (solid lines) and LN (dashed lines) nutrition. Nitrate uptake was calculated hourly, each solution tank feeding 96 (determinate) or 24 (indeterminate) plants until harvest, half these numbers after harvest. Irregularities in the traces result from day/night cycles and natural climate instability.

Fig. 2: Dry biomass (g per plant) of HN tomato cultivars plotted against LN: (A) whole plant DW, (B) leaf DW, (C) stem DW, (D) <u>leaf-root</u> DW. Coded symbols are the means of 8 (A-F, determinate cvs) and 4 (G-I, indeterminate cvs) replicates with SE bars. The diagonals (straight lines) indicate where LN = HN. It follows that data above the diagonal are depressed by LN, whereas below the line, they are enhanced by LN.

Fig. 3: Typical HPLC chromatogram of soluble phenolic extracts from leaves (A), stems (B) and roots (C) of tomato plants under HN. The profiles were recorded at 330 nm and are expressed in arbitrary unit (AU). The labelled molecules correspond to chlorogenic acid (CGA) (1), taxifolin (2), rutin (3) and kaempferol rutinoside (KR) (4). Taxifolin is an internal control added during the extraction.

Fig. 4: Phenolic concentration (mg g⁻¹ DW) of HN tomato cultivars plotted against LN: chlorogenic acid (CGA) in leaves (A), stems (C) and roots (E); rutin in leaves (B) and stems (D); kaempferol rutinoside (KR) in leaves (F). Symbols and lines as in Fig. 2.

Fig. 5: Chlorogenic acid (CGA) content (mg per plant) of HN tomato cultivars plotted against LN: (A) leaves, (B) stems, (C) roots and (D) whole plants. Symbols and lines as in Fig. 2.

Fig. 6: Rutin content (mg per plant) of HN tomato cultivars plotted against LN: (A) leaves,(B) stems and (C) whole plants. Symbols and lines as in Fig. 2.

Fig. 7: Leaf kaempferol rutinoside (KR) content (mg per plant) of HN tomato cultivars plotted against LN. Symbols and lines as in Fig. 2.

Fig. 8: Relative changes in [CGA] (0 < HN/LN ratios \leq 1) plotted versus the relative changes in tissue [N] (0 < LN/HN ratios \leq 1) in leaves (black), stems (red) and roots (blue). Coded symbols as in Fig. 2. Lines are regressions forced through the maximum (1,1) taken as the reference where HN=LN: leaves (black) y = 1.051 x - 0.051 (R² = 0.97); stems (red) y = 0.677 x + 0.323 (R² = 0.95); roots (blue) y = 1.643 x - 0.643 (R² = 0.99). Figure 3

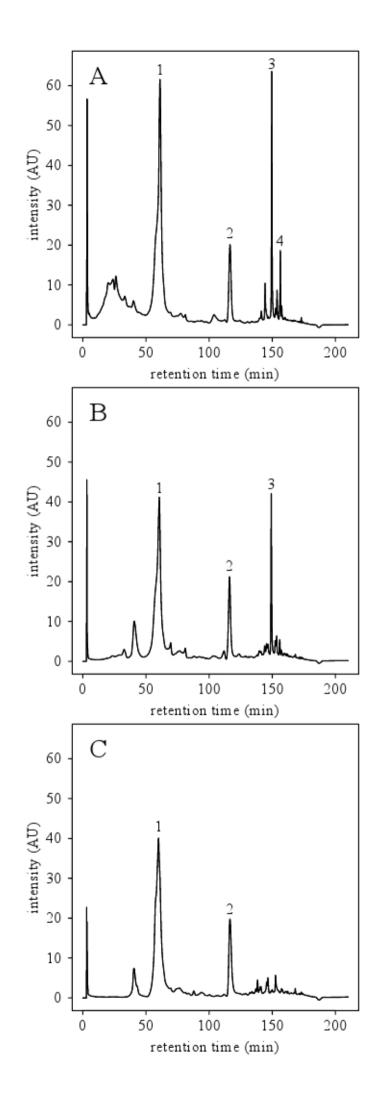


Figure 4

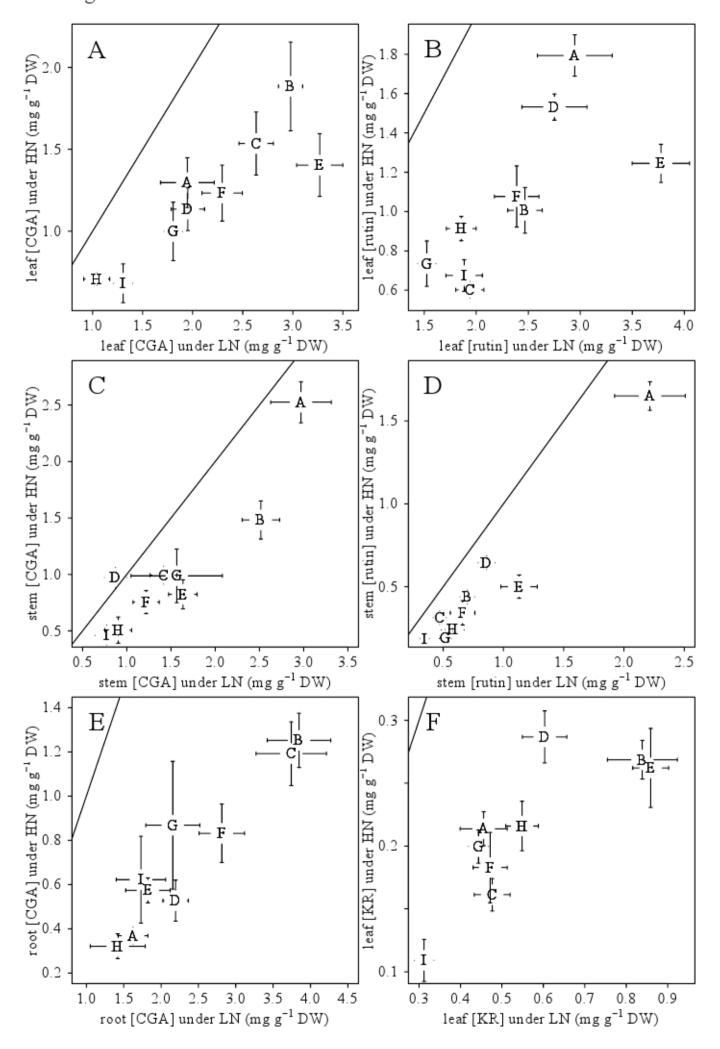
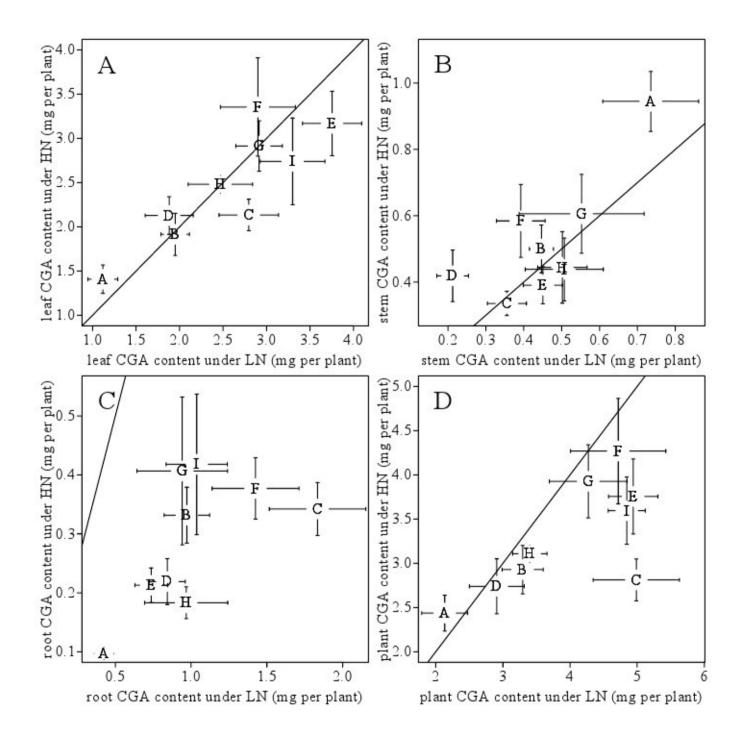
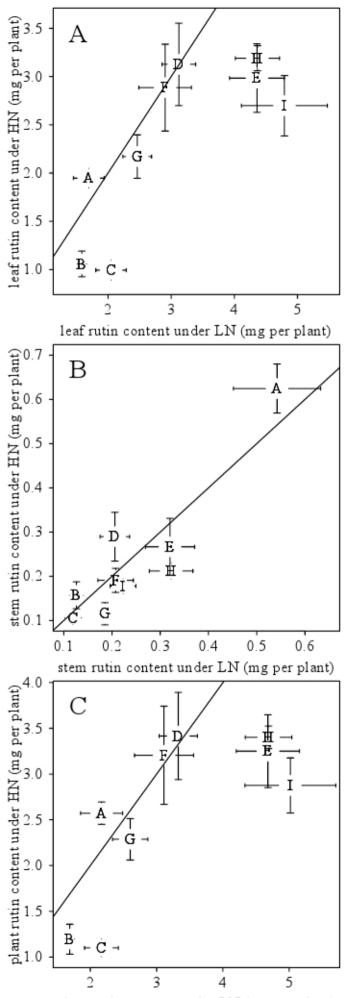
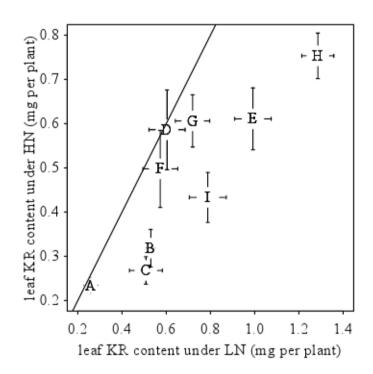




Figure 5




```
Figure 6
```


plant rutin content under LN (mg per plant)

Figure 7

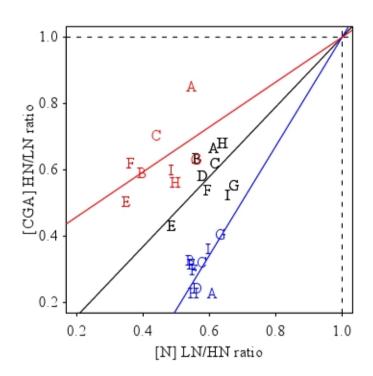


Figure 1

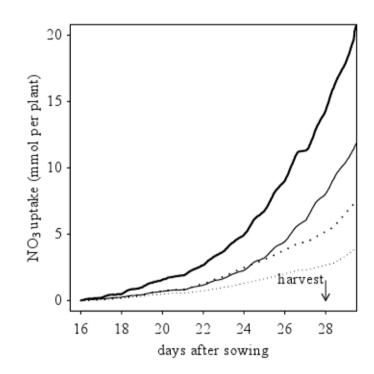


Figure 2

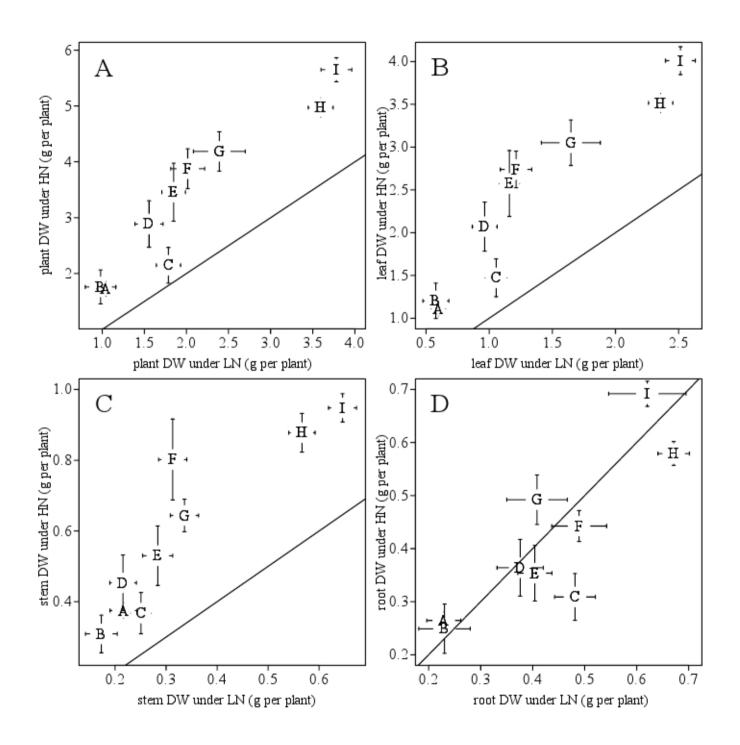


Table S1: Average organs and plant DW for the nine tomato cultivars as a function of the N nutrition. Means and standard errors are calculated from the analysis of 8 and 4 replicates for determinate and indeterminate cultivars respectively.

0.4	Nutrition	Organ/Plant DW (g)						
Cv	Nutrition	Leaf	Stem	Root	Plant			
۸	HN	1.10 ± 0.08	0.37 ± 0.02	0.26 ± 0.02	1.72 ± 0.13			
A	LN	0.60 ± 0.06	0.22 ± 0.03	0.23 ± 0.03	1.04 ± 0.11			
В	HN	1.20 ± 0.21	0.31 ± 0.05	0.25 ± 0.05	1.76 ± 0.30			
Б	LN	0.58 ± 0.10	0.17 ± 0.03	0.23 ± 0.05	0.98 ± 0.18			
С	HN	1.47 ± 0.22	0.37 ± 0.06	0.31 ± 0.04	2.15 ± 0.32			
C	LN	1.05 ± 0.09	0.25 ± 0.02	0.48 ± 0.04	1.79 ± 0.14			
D	HN	2.07 ± 0.29	0.45 ± 0.08	0.36 ± 0.05	2.89 ± 0.41			
D	LN	0.96 ± 0.10	0.22 ± 0.03	0.38 ± 0.04	1.56 ± 0.17			
Е	HN	2.57 ± 0.38	0.53 ± 0.08	0.35 ± 0.05	3.46 ± 0.52			
E	LN	1.16 ± 0.08	0.28 ± 0.03	0.40 ± 0.03	1.85 ± 0.14			
F	HN	2.74 ± 0.21	0.80 ± 0.11	0.44 ± 0.03	3.88 ± 0.36			
Г	LN	1.21 ± 0.12	0.31 ± 0.03	0.49 ± 0.05	2.01 ± 0.20			
G	HN	3.05 ± 0.27	0.64 ± 0.05	0.49 ± 0.05	4.19 ± 0.35			
G	LN	1.65 ± 0.23	0.34 ± 0.03	0.41 ± 0.06	2.39 ± 0.31			
н	HN	3.51 ± 0.11	0.88 ± 0.05	0.58 ± 0.02	4.97 ± 0.17			
п	LN	2.36 ± 0.10	0.57 ± 0.03	0.67 ± 0.03	3.59 ± 0.15			
I.	HN	4.01 ± 0.16	0.95 ± 0.04	0.69 ± 0.02	5.65 ± 0.21			
I	LN	2.51 ± 0.12	0.65 ± 0.03	0.62 ± 0.07	3.78 ± 0.18			

Table S2: Average values of some morphological traits for the nine tomato cultivars as a function of the N nutrition. Means and standard errors are calculated from the analysis of 8 and 4 replicates for determinate and indeterminate cultivars respectively. The morphological traits analysed were the plastochron index (Plast. Ind.), flower number (Flower Numb.), epicotyl diameter (Epicot. Diam.), stem height, total leaf area, leaf area ratio (LAR), specific leaf area (SLA) and root shoot ratio (RSR).

Cv	Nutrition	Plast.Ind.	Flower Numb.	Epicot. Diam.	Stem height	Total Leaf Area	LAR	SLA	RSR
А	HN	8.3 ± 0.2	40 ± 5	6.1 ± 0.2	11.2 ± 0.3	222 ± 12	129 ± 4	202 ± 7	0.18 ± 0.01
~	LN	7.9 ± 0.4	30 ± 4	4.8 ± 0.2	10.4 ± 0.4	114 ± 11	113 ± 6	192 ± 6	0.29 ± 0.01
В	HN	8.0 ± 0.3	11 ± 2	8.3 ± 0.4	11.5 ± 0.5	564 ± 83	195 ± 2	270 ± 4	0.14 ± 0.01
D	LN	7.8 ± 0.3	10 ± 1	6.0 ± 0.4	10.0 ± 0.5	235 ± 23	153 ± 5	245 ± 9	0.31 ± 0.01
С	HN	9.4 ± 0.4	8 ± 1	9.6 ± 0.6	14.0 ± 0.8	610 ± 93	176 ± 4	236 ± 6	0.12 ± 0.01
U	LN	8.4 ± 0.2	10 ± 1	7.3 ± 0.2	12.9 ± 0.4	253 ± 22	136 ± 3	217 ± 5	0.28 ± 0.01
D	HN	8.9 ± 0.2	17 ± 4	7.6 ± 0.5	12.0 ± 0.8	399 ± 62	184 ± 3	269 ± 4	0.17 ± 0.01
D	LN	8.3 ± 0.2	19 ± 4	6.0 ± 0.1	11.7 ± 0.4	256 ± 20	144 ± 4	244 ± 7	0.37 ± 0.01
Е	HN	8.2 ± 0.6	9 ± 1	7.4 ± 0.6	8.7 ± 0.4	303 ± 53	171 ± 3	255 ± 7	0.15 ± 0.01
-	LN	7.4 ± 0.4	7 ± 1	5.3 ± 0.5	8.4 ± 0.5	135 ± 25	140 ± 3	235 ± 6	0.33 ± 0.01
F	HN	9.7 ± 0.4	9 ± 2	10.8 ± 0.3	15.2 ± 0.9	673 ± 52	168 ± 3	244 ± 6	0.13 ± 0.01
1	LN	8.5 ± 0.4	8 ± 1	7.5 ± 0.3	12.6 ± 0.4	275 ± 24	139 ± 4	232 ± 8	0.32 ± 0.01
G	HN	10.7 ± 0.3	6 ± 0	9.9 ± 0.2	16.2 ± 0.6	732 ± 28	147 ± 2	208 ± 2	0.13 ± 0.01
0	LN	9.6 ± 0.4	6 ± 1	8.4 ± 0.1	14.1 ± 0.5	469 ± 30	131 ± 7	199 ± 10	0.23 ± 0.01
н	HN	9.2 ± 0.2	3 ± 0	11.1 ± 0.2	15.4 ± 0.4	793 ± 15	141 ± 6	199 ± 9	0.13 ± 0.01
	LN	8.5 ± 0.2	3 ± 0	9.9 ± 0.2	13.4 ± 0.2	499 ± 15	133 ± 3	199 ± 4	0.22 ± 0.01
1	HN	9. ± 0.2	6 ± 1	9.3 ± 0.1	12.6 ± 0.7	634 ± 69	151 ± 4	207 ± 5	0.13 ± 0.01
,	LN	8.4 ± 0.3	6 ± 1	7.4 ± 0.2	10.8 ± 0.6	303 ± 19	129 ± 8	189 ± 14	0.23 ± 0.01

Table S3: Average phenolics (CGA, rutin, KR) concentration in organs of the nine tomato cultivars as a function of the N nutrition. Means and standard errors are calculated from the analysis of 8 and 4 replicates for determinate and indeterminate cultivars respectively. Concentrations are given in mg.g⁻¹DW.

<u>C</u> v	Nutrition		[CGA]		[Ru	[KR]	
Cv	Nutrition	Leaf	Stem	Root	Leaf	Stem	Leaf
А	HN	1.29 ± 0.15	2.52 ± 0.18	0.37 ± 0.04	1.79 ± 0.10	1.65 ± 0.09	0.21 ± 0.01
A	LN	1.95 ± 0.27	2.97 ± 0.34	1.62 ± 0.20	RootLeafStemL 0.37 ± 0.04 1.79 ± 0.10 1.65 ± 0.09 0.21 1.62 ± 0.20 2.95 ± 0.36 2.22 ± 0.29 0.46 1.25 ± 0.12 1.01 ± 0.12 0.44 ± 0.04 0.27 3.85 ± 0.42 2.47 ± 0.17 0.70 ± 0.06 0.84 1.19 ± 0.14 0.60 ± 0.04 0.31 ± 0.04 0.16 3.74 ± 0.47 1.94 ± 0.13 0.47 ± 0.05 0.48 0.53 ± 0.09 1.53 ± 0.07 0.64 ± 0.04 0.29 2.19 ± 0.17 2.75 ± 0.31 0.86 ± 0.07 0.60 0.57 ± 0.06 1.24 ± 0.10 0.50 ± 0.07 0.26 1.82 ± 0.30 3.78 ± 0.28 1.13 ± 0.15 0.86 0.83 ± 0.13 1.08 ± 0.15 0.34 ± 0.07 0.18 2.81 ± 0.30 2.38 ± 0.21 0.66 ± 0.10 0.47 0.87 ± 0.29 0.73 ± 0.11 0.19 ± 0.05 0.20 2.16 ± 0.36 1.52 ± 0.09 0.52 ± 0.05 0.44 0.32 ± 0.06 0.91 ± 0.06 0.24 ± 0.01 0.22 1.42 ± 0.37 1.86 ± 0.14 0.58 ± 0.10 0.55 0.62 ± 0.20 0.67 ± 0.08 0.19 ± 0.01 0.11	0.46 ± 0.06	
В	HN	1.88 ± 0.27	1.48 ± 0.17	1.25 ± 0.12	1.01 ± 0.12	0.44 ± 0.04	0.27 ± 0.01
D	LN	2.98 ± 0.12	2.51 ± 0.21	3.85 ± 0.42	2.47 ± 0.17	0.70 ± 0.06	0.84 ± 0.08
С	HN	1.54 ± 0.19	0.99 ± 0.08	1.19 ± 0.14	0.60 ± 0.04	0.31 ± 0.04	0.16 ± 0.01
C	LN	2.63 ± 0.17	1.42 ± 0.15	3.74 ± 0.47	1.94 ± 0.13	eafStemLeaf ± 0.10 1.65 ± 0.09 0.21 ± 0.01 ± 0.36 2.22 ± 0.29 0.46 ± 0.06 ± 0.12 0.44 ± 0.04 0.27 ± 0.01 ± 0.17 0.70 ± 0.06 0.84 ± 0.08 ± 0.04 0.31 ± 0.04 0.16 ± 0.01 ± 0.13 0.47 ± 0.05 0.48 ± 0.04 ± 0.07 0.64 ± 0.04 0.29 ± 0.02 ± 0.31 0.86 ± 0.07 0.60 ± 0.05 ± 0.10 0.50 ± 0.07 0.26 ± 0.03 ± 0.28 1.13 ± 0.15 0.86 ± 0.04 ± 0.15 0.34 ± 0.07 0.18 ± 0.03 ± 0.21 0.66 ± 0.10 0.47 ± 0.04 ± 0.01 0.19 ± 0.05 0.20 ± 0.02 ± 0.14 0.58 ± 0.10 0.55 ± 0.04 ± 0.08 0.19 ± 0.01 0.11 ± 0.02	
D	HN	1.13 ± 0.13	0.97 ± 0.09	0.53 ± 0.09	1.53 ± 0.07	0.64 ± 0.04	0.29 ± 0.02
D	LN	1.95 ± 0.17	0.87 ± 0.13	2.19 ± 0.17	2.75 ± 0.31	0.86 ± 0.07	0.60 ± 0.05
Е	HN	1.40 ± 0.19	0.82 ± 0.13	0.57 ± 0.06	1.24 ± 0.10	0.50 ± 0.07	0.26 ± 0.03
E	LN	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.86 ± 0.04				
F	HN	1.23 ± 0.17	0.75 ± 0.10	0.83 ± 0.13	1.08 ± 0.15	0.34 ± 0.07	0.18 ± 0.03
Г	LN	2.29 ± 0.20	1.22 ± 0.15	2.81 ± 0.30	2.38 ± 0.21	0.66 ± 0.10	0.47 ± 0.04
G	HN	0.99 ± 0.18	0.99 ± 0.24	0.87 ± 0.29	0.73 ± 0.11	0.19 ± 0.05	0.20 ±0.01
9	LN	1.81 ± 0.09	1.56 ± 0.52	2.16 ± 0.36	1.52 ± 0.09	0.52 ± 0.05	0.44 ± 0.02
н	HN	0.71 ± 0.04	0.51 ± 0.11	0.32 ± 0.06	0.91 ± 0.06	0.24 ± 0.01	0.22 ± 0.02
11	LN	1.04 ± 0.13	0.90 ± 0.15	1.42 ± 0.37	1.86 ± 0.14	0.58 ± 0.10	0.55 ± 0.04
	HN	0.68 ± 0.12	0.46 ± 0.09	0.62 ± 0.20	0.67 ± 0.08	0.19 ± 0.01	0.11 ± 0.02
I	LN	1.30 ± 0.09	0.77 ± 0.13	1.73 ± 0.33	1.88 ± 0.17	0.34 ± 0.04	0.31 ± 0.02

Table S4: Average phenolics (CGA, rutin, KR) contents in organs of the nine tomato cultivars as a function of the N nutrition. Means and standard errors are calculated from the analysis of 8 and 4 replicates for determinate and indeterminate cultivars respectively. Phenolic content are given in mg.

Cv	Nutrition		CGA c	ontent		Rutin content			KR content
Cv	NUTITION	Leaf	Stem	Root	Plant	Leaf	Stem	Plant	Leaf/Plant
۸	HN	1.41 ± 0.16	0.94 ± 0.09	0.10 ± 0.01	2.44 ± 0.20	1.95 ± 0.10	0.62 ± 0.06	2.57 ± 0.12	0.23 ± 0.02
A	LN	1.12 ± 0.17	0.73 ± 0.13	0.42 ± 0.06	2.13 ± 0.34	1.70 ± 0.24	0.54 ± 0.09	2.17 ± 0.32	0.26 ± 0.03
В	HN	1.91 ± 0.24	0.50 ± 0.07	0.33 ± 0.05	2.93 ± 0.27	1.06 ± 0.13	0.16 ± 0.03	1.19 ± 0.16	0.32 ± 0.04
D	LN	1.95 ± 0.16	0.45 ± 0.03	0.97 ± 0.15	3.29 ± 0.31	1.59 ± 0.07	0.13 ± 0.01	1.69 ± 0.07	0.53 ±0.02
С	HN	2.13 ± 0.18	0.34 ± 0.04	0.34 ± 0.04	2.81 ± 0.24	0.99 ± 0.10	0.11 ± 0.01	1.10 ± 0.10	0.27 ± 0.03
C	LN	2.80 ± 0.34	0.35 ± 0.05	1.83 ± 0.32	4.99 ± 0.64	2.05 ± 0.24	0.12 ± 0.01	2.17 ± 0.25	0.51 ± 0.07
P	HN	2.13 ± 0.21	0.42 ± 0.08	0.22 ± 0.04	2.74 ± 0.31	3.13 ± 0.43	0.29 ± 0.05	3.42 ± 0.48	0.59 ± 0.09
D	LN	1.88 ± 0.28	0.21 ± 0.04	0.84 ± 0.12	2.90 ± 0.41	3.12 ± 0.27	0.21 ± 0.03	3.33 ± 0.29	0.60 ± 0.08
Е	HN	3.17 ± 0.36	0.39 ± 0.06	0.21 ± 0.03	3.76 ± 0.42	2.98 ± 0.35	0.27 ± 0.06	3.25 ± 0.40	0.61 ± 0.07
E	LN	3.75 ± 0.34	0.45 ± 0.05	0.74 ± 0.11	4.94 ± 0.37	4.36 ± 0.43	0.32 ± 0.05	4.68 ± 0.48	0.99 ± 0.08
F	HN	3.35 ± 0.55	0.58 ± 0.11	0.38 ± 0.05	4.27 ± 0.60	2.89 ± 0.45	0.19 ± 0.03	3.20 ± 0.54	0.49 ± 0.09
Г	LN	2.90 ± 0.43	0.39 ± 0.06	1.42 ± 0.29	4.72 ± 0.71	2.90 ± 0.42	0.21 ± 0.04	3.11 ± 0.44	0.57 ± 0.08
G	HN	2.91 ± 0.28	0.61 ± 0.12	0.41 ± 0.12	3.93 ± 0.41	2.17 ± 0.22	0.11 ± 0.02	2.29 ± 0.23	0.61 ± 0.06
G	LN	2.91 ± 0.27	0.55 ± 0.16	0.94 ± 0.30	4.27 ± 0.58	2.46 ± 0.23	0.18 ± 0.01	2.60 ± 0.27	0.72 ± 0.08
н	HN	2.48 ± 0.10	0.44 ± 0.11	0.18 ± 0.03	3.11 ± 0.10	3.19 ± 0.13	0.21 ± 0.02	3.40 ± 0.12	0.75 ± 0.05
п	LN	2.47 ± 0.37	0.50 ± 0.06	0.97 ± 0.27	3.40 ± 0.26	4.36 ± 0.35	0.32 ± 0.04	4.69 ± 0.35	1.29 ± 0.07
	HN	2.74 ± 0.49	0.44 ± 0.09	0.42 ± 0.12	3.60 ± 0.38	2.70 ± 0.31	0.18 ± 0.02	2.88 ± 0.30	0.43 ± 0.06
I	LN	3.30 ± 0.37	0.51 ± 0.10	1.04 ± 0.20	4.84 ± 0.28	4.79 ± 0.68	0.22 ± 0.03	5.02 ± 0.68	0.79 ± 0.08

		CC	GA			KR		
Cv	Leaf	Stem	Root	Plant	Leaf	Stem	Plant	Leaf
А	ns	ns	p<10 ⁻¹²	ns	ns	ns	ns	ns
В	ns	ns	p<10 ⁻⁹	ns	p<10 ⁻³	ns	p<10 ⁻³	p<10 ⁻⁴
С	ns	ns	p<10 ⁻¹⁵	p<10 ⁻⁵	p<10 ⁻⁷	ns	p<10 ⁻⁶	p<10 ⁻⁵
D	ns	p<10 ⁻⁵	p<10 ⁻¹²	ns	ns	ns	ns	ns
E	ns	ns	p<10 ⁻⁹	p<10 ⁻²	p<10 ⁻³	ns	p<10 ⁻²	p<10 ⁻³
F	ns	p<10 ⁻²	p<10 ⁻¹⁰	ns	ns	ns	ns	ns
G	ns	ns	p<10 ⁻²	ns	ns	p<10 ⁻²	ns	ns
Н	ns	ns	p<10 ⁻⁴	ns	ns	ns	p<10 ⁻²	p<10 ⁻³
Ι	ns	ns	p<10 ⁻²	p<10 ⁻²	p<10 ⁻⁴	ns	p<10 ⁻⁴	p<10 ⁻⁴

Table S5: Significance of LN effect on phenolic content in vegetative organs and plant of the nine tomato cultivars analysed. ns means non significant.