S. F. Altschul, T. L. Madden, A. A. Schaffer, J. H. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, pp.3389-3402, 1997.

P. Baldet, C. Devaux, C. Chevalier, R. Brouquisse, D. Just et al., Contrasted responses to carbohydrate limitation in tomato fruit at two stages of development, Plant, Cell and Environment, vol.25, pp.1639-1649, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02670253

P. Baldet, M. Hernould, F. Laporte, F. Mounet, D. Just et al., The expression of cell proliferationrelated genes in early developing flowers is affected by a fruit load reduction in tomato plants, Journal of Experimental Botany, vol.57, pp.961-970, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02655801

M. E. Balibrea, C. Martinez-andujar, J. Cuartero, M. C. Bolarin, and F. Perez-alfocea, The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism, Functional Plant Biology, vol.33, pp.279-288, 2006.

L. Bermudez, U. Urias, D. Milstein, L. Kamenetzky, R. Asis et al., A candidate gene survey of quantitative trait loci affecting chemical composition in tomato fruit, Journal of Experimental Botany, vol.59, pp.2875-2890, 2008.

N. Bertin, Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication, Annals of Botany, vol.95, pp.439-447, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02680762

N. Bertin, M. Gé-nard, and S. Fishman, A model for an early stage of tomato fruit development: cell multiplication and cessation of the cell proliferative activity, Annals of Botany, vol.92, pp.65-72, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02682162

N. Bertin, A. Lecomte, B. Brunel, S. Fishman, G. et al., A model describing cell polyploidization in tissues of growing fruit as related to cessation of cell proliferation, Journal of Experimental Botany, vol.58, pp.1903-1913, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02666622

P. Bucheli, E. Voirol, R. De-la-torre, J. Lopez, A. Rytz et al., Definition of nonvolatile markers for flavor of tomato (Lycopersicon esculentum Mill.) as tools in selection and breeding, Journal of Agricultural and Food Chemistry, vol.47, pp.659-664, 1999.

P. Bussiè, Water import in the young tomato fruit limited by pedicel resistance and calyx transpiration, Functional Plant Biology, vol.29, pp.631-641, 2002.

F. Carrari, C. Baxter, and B. Usadel, Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior, Plant Physiology, vol.142, pp.1380-1396, 2006.

M. Causse, P. Duffe, and M. C. Gomez, A genetic map of candidate genes and QTLs involved in tomato fruit size and composition, Journal of Experimental Botany, vol.55, pp.1671-1685, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02679748

M. Causse, V. Saliba-colombani, L. Lecomte, P. Duffe, P. Rousselle et al., QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits, Journal of Experimental Botany, vol.53, pp.2089-2098, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02680289

J. Chaib, L. Lecomte, M. Buret, and M. Causse, Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato, Theoretical and Applied Genetics, vol.112, pp.934-944, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02660077

G. P. Chen, I. D. Wilson, S. H. Kim, and D. Grierson, Inhibiting expression of a tomato ripening-associated membrane protein increases organic acids and reduces sugar levels of fruit, Planta, vol.212, pp.799-807, 2001.

Z. W. Dai, P. Vivin, P. Robert, S. Milin, S. H. Li et al., Modelbased analysis of sugar accumulation in response to source-sink ratio and water supply in grape (Vitis vinifera) berries, Functional Plant Biology, vol.36, pp.527-540, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02668613

J. N. Davies and E. C. Cocking, Changes in carbohydrates, proteins and nucleic acids during cellular development in tomato fruit locule tissue, Planta, vol.67, pp.242-253, 1965.

S. J. Dibley, M. L. Gear, X. Yang, E. G. Rosche, C. E. Offler et al., Temporal and spatial expression of hexose transporters in developing tomato (Lycopersicon esculentum) fruit, Functional Plant Biology, vol.32, pp.777-785, 2005.

H. Dinar and M. A. Stevens, The relationship between starch and accumulation of soluble solids content of tomato fruit, Journal of the American Society for Horticultural Science, vol.106, pp.415-418, 1981.

T. M. Fulton, P. Bucheli, E. Voirol, J. Lopez, V. Petiard et al., Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato, Euphytica, vol.127, pp.163-177, 2002.

M. Gé-nard, F. Lescourret, L. Gomez, and R. Habib, Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: a modeling approach applied to peach fruit (Prunus persica), Tree Physiology, vol.23, pp.373-385, 2003.

M. Gé-nard and M. Souty, Modeling the peach sugar contents in relation to fruit growth, Journal of the American Society for Horticultural Science, vol.121, pp.1122-1131, 1996.

L. Gomez, E. Rubio, and M. Auge, A new procedure for extraction and measurement of soluble sugars in ligneous plants, Journal of the Science of Food and Agriculture, vol.82, pp.360-369, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02680723

L. Gomez, D. Bancel, E. Rubio, and G. Vercambre, The microplate reader: an efficient tool for the separate enzymatic analysis of sugars in plant tissues-validation of a micro-method, Journal of the Science of Food and Agriculture, vol.87, pp.1893-1905, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02665279

S. Guichard, N. Bertin, C. Leonardi, and C. Gary, Tomato fruit quality in relation to water and carbon fluxes, Agronomie, vol.21, pp.385-392, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00886126

S. Guichard, C. Gary, C. Leonardi, and N. Bertin, Analysis of growth and water relations of tomato fruits in relation to air vapor pressure deficit and plant fruit load, Journal of Plant Growth Regulation, vol.24, pp.201-213, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01578859

L. 1. Ho and . Tomato, Photoassimilate distribution in plants and crops: source-sink relationship, pp.709-728

L. C. Ho, The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato, Journal of Experimental Botany, vol.47, pp.1239-1243, 1996.

L. Ho and J. Hewitt, Fruit development, The tomato crop, pp.201-239, 1986.

M. Kandel-kfir, H. Damari-weissler, M. A. German, D. Gidoni, A. Mett et al., Two newly identified membrane-associated and plastidic tomato HXKs: characteristics, predicted structure and intracellular localization, Planta, vol.224, pp.1341-1352, 2006.

K. Kobayashi and M. U. Salam, Comparing simulated and measured values using mean squared deviation and its components, Agronomy Journal, vol.92, pp.345-352, 2000.

H. F. Liu, M. Gé-nard, S. Guichard, and N. Bertin, Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes, Journal of Experimental Botany, vol.58, pp.3567-3580, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02667654

L. A. Mueller, R. K. Lankhorst, and S. D. Tanksley, A snapshot of the emerging tomato genome sequence, The Plant Genome, vol.2, pp.78-92, 2009.

L. A. Mueller, T. H. Solow, and N. Taylor, The SOL Genomics Network. A comparative resource for Solanaceae biology and beyond, Plant Physiology, vol.138, pp.1310-1317, 2005.

M. Prudent, N. Bertin, M. Gé-nard, S. Muñ-os, R. F. Garcia et al., Genotypedependent response to carbon availability in growing tomato fruit, Plant, Cell and Environment, vol.33, pp.1186-1204, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00600426

M. Prudent, M. Causse, M. Gé-nard, P. Tripodi, S. Grandillo et al., Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection, Journal of Experimental Botany, vol.60, pp.923-937, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00600425

S. A. Quarrie, P. Quarrie, S. Radosevic, R. Rancic, D. Kaminska et al., Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes, Journal of Experimental Botany, vol.57, pp.2627-2637, 2006.

B. Quilot, M. Gé-nard, J. Kervella, and F. Lescourret, Analysis of genotypic variation in fruit flesh total sugar content via an ecophysiological model applied to peach, Theoretical and Applied Genetics, vol.109, pp.440-449, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02675697

B. Quilot, J. Kervella, M. Gé-nard, and F. Lescourret, Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach, Journal of Experimental Botany, vol.56, pp.3083-3092, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02675468

M. Reymond, B. Muller, A. Leonardi, A. Charcosset, and F. Tardieu, Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit, Plant Physiology, vol.131, pp.664-675, 2003.

N. L. Robinson, J. D. Hewitt, and A. B. Bennett, Sink metabolism in tomato fruit: I. Developmental changes in carbohydrate metabolizing enzymes, Plant Physiology, vol.87, pp.727-730, 1988.

V. Saliba-colombani, M. Causse, D. Langlois, J. Philouze, and M. Buret, Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits, Theoretical and Applied Genetics, vol.102, pp.259-272, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02674426

A. A. Schaffer and M. Petreikov, Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation, Plant Physiology, vol.113, pp.739-746, 1997.

R. C. Sprinthall, Basic statistical analysis, 2002.

M. A. Stevens, A. A. Kader, M. Albright-holton, and M. Algazi, Genotypic variation for flavor and composition in fresh market tomatoes, Journal of the American Society for Horticultural Science, vol.102, pp.680-689, 1977.

S. D. Tanksley, The genetic, developmental, and molecular bases of fruit size and shape variation in tomato, The Plant Cell, vol.16, pp.181-189, 2004.

X. Yin, S. D. Chasalow, P. Stam, M. J. Kropff, C. J. Dourleijn et al., Use of component analysis in QTL mapping of complex crop traits: a case study on yield in barley, Plant Breeding, vol.121, pp.314-319, 2002.

X. Y. Yin, M. J. Kropff, and P. Stam, The role of ecophysiological models in QTL analysis: the example of specific leaf area in barley, Heredity, vol.82, pp.415-421, 1999.