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ARTICLE

Effects of climate and land-use changes on fish
catches across lakes at a global scale
Yu-Chun Kao et al.#

Globally, our knowledge on lake fisheries is still limited despite their importance to food

security and livelihoods. Here we show that fish catches can respond either positively or

negatively to climate and land-use changes, by analyzing time-series data (1970–2014)

for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g.,

air temperature) on lake environment could be relatively consistent in directions, but

consequential changes in a lake-environmental factor (e.g., water temperature) could result

in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis

indicates that reductions in fish catch was less likely to occur in response to potential climate

and land-use changes if a lake is located in a region with greater access to clean water.

This finding suggests that adequate investments for water-quality protection and water-use

efficiency can provide additional benefits to lake fisheries and food security.

https://doi.org/10.1038/s41467-020-14624-2 OPEN

#A full list of authors and their affiliations appears at the end of the paper.
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Lakes, natural and man-made, are important reserves of
accessible freshwater and are frequently managed for pro-
visioning ecosystem services1, such as drinking water,

irrigation, hydropower generation, and fisheries2. Consequently,
biota in lake ecosystems could be subject to stressors associated
with human activities, such as water withdrawal, floodplain
development, exotic species introduction, and overexploitation3.
Two important sources of anthropogenic stressors are climate
and land-use changes, which may alter a lake ecosystem directly
through changing water temperature (WT) and water
level (WL), and indirectly through the balance between inputs
and outputs of nutrients and sediments, as well as changes in
food-web dynamics4,5.

Among lake ecosystem services, fisheries are especially vul-
nerable to environmental changes because fish are ectothermic
and fish distribution is usually limited by structural6, thermal7,
and chemical8 barriers. Environmental changes driven by climate
and land-use changes have been linked to major shifts in fish
catches (CATCHs) and species composition in many lakes
around the world, such as lakes Erie9, Kinneret10, Naivasha11,12,
Peipsi13, and Victoria14, as well as the collapse of Aral Sea fish-
eries15. Reduced lake CATCHs caused by climate and land-use
changes can threaten food security and livelihoods of millions of
people worldwide, especially in impoverished countries where
rural poor communities may not have appropriate alternative
sources of animal protein and employment opportunity16.

Due to their protracted and compounding nature, under-
standing the effects of climate and land-use changes on lake
CATCHs requires long-term data, which may include climate and
land-use data at a spatial scale of the whole catchment (or drai-
nage basin) and environmental, biological, and fishery data at a
spatial scale of the whole lake. This intensive data requirement
has restricted assessments of how lake environment and lake
CATCHs respond to climate and land-use changes to lakes in a
few data-rich regions, mostly located in North America and
Europe17,18. As a result, given the large number (>1.43 million) of
lakes19 and their diversity in size, productivity, species compo-
sition, and fisheries6, our current understanding of how changing
climate and land-use influences lake CATCHs is very limited at a
global scale and is generally lacking for lakes in Africa and Asia
where CATCHs are the largest (Supplementary Fig. 1).

The goal of this study is to understand how climate and land-
use changes affect lake CATCHs at a global scale. We use a

Bayesian networks modeling approach20 to analyze time-series
data for the 31 study lakes (Fig. 1) over the period 1970–2014. We
choose this modeling approach because it can minimize negative
effects of data limitations on the statistical power of our analysis,
by accounting for our prior understanding of multi-level, causal
processes that could underlie changes in CATCHs in response to
changes in climate and land use across lakes. Our Bayesian net-
works model (BNM) represents the hypothesized causal processes
by expressing them as conditional probabilistic relationships
between model variables at multiple levels: between climate and
land use (operating at a catchment scale) and lake environ-
ment21–26, and between lake environment and (total) fish bio-
mass27–33 and thus (total) CATCH34, as shown in Fig. 2. Due to
the regional difference in data availability, our study lakes and
study period are selected to ensure that we can include
approximately equal numbers of study lakes in Africa, the
Americas, Asia, and Europe and in both tropic and temperate
regions (Fig. 1). The study lakes are diverse in terms of both
socio-economic environment and hydrogeomorphology (Sup-
plementary Data 2). However, most study lakes in Europe and
the Americas have a better socio-economic environment than the
study lakes in Asia and Africa. The diversity of these lakes allows
us to identify the characteristics of lakes where CATCHs can be
vulnerable to climate and land-use changes, which has implica-
tions for identifying vulnerable lake fisheries around the globe.

We conduct three analyses in this study. First, we determine
how the climate and land-use drivers affect CATCHs across the
31 study lakes in 1970–2014 by estimating coefficients of our
BNM. Second, by implementing the resulting BNM, we run
simulations to assess the change in each of climate and land-use
drivers associated with a (simulated) 25% decrease in CATCH
from the 1970–2014 median (hereafter, a 25% catch decrease) in
each lake. Third, we conduct a correlation analysis to identify
whether any socio-economic characteristic(s) associated with the
catchment or hydrogeomorphological characteristic(s) of the lake
corresponded to the magnitudes of changes in any of the climate
and land-use drivers that were associated with a 25% catch
decrease. To improve clarity, Fig. 3 presents a flowchart that
summarizes the procedures of these three analyses and Table 1
provides a list of symbols used in the development of BNM.

We demonstrate that climate and land-use changes can have
strong effects on CATCHs across lakes at a global scale, but the
effects can be either positive or negative. The subsequent
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Fig. 1 Global distribution of the 31 study lakes. The map was generated by using R58 and the R package rworldmap62 to plot the centers of study lakes (as
given in Supplementary Data 2) on a base world map, of which layers, including country borders, continent outlines, global lakes, and latitude–longitude
grids, were obtained from a public domain map dataset Natural Earth (www.naturalearthdata.com).
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correlation analysis shows that a lake located in a region with
greater access to clean water less likely experiences a substantial
decrease in CATCH in response to potential climate and land-use
changes. These results suggest that investments made for water-
quality protection and water-use efficiency can also provide
benefits to lake fisheries and food security.

Results
How climate and land-use changes affected CATCHs. The
BNM showed that climate and land-use changes could result
in either increases or decreases in CATCHs across the 31 study
lakes (Table 2). These results accounted for fish stocking and
fishing effort (EFF), which both could have strong effects on
CATCHs34–36 (Table 2). Based on the 75% one-tailed credible
intervals (CIs) of BNM coefficients, the effects of a climate or
land-use driver (one of air temperature (AT), precipitation (PRE),

and agricultural land use (LUag) in this study) on lake-
environmental factors (WT, WL, and primary productivity)
were more consistent in directions (positive or negative) across
lakes than the consequential changes in a lake-environmental
factor on CATCHs across lakes. Specifically, four of the six BNM
variable pairs between the climate land-use drivers and lake-
environmental factors (brown arrows in Fig. 2; Table 2) were
consistent in the directional relationships across at least half of
the 31 study lakes: AT was positively related to WT in all 31 study
lakes, but negatively related to WL in 17 lakes, PRE was positively
related to WL in 29 lakes, and LUag was positively related to
chlorophyll a (CHL), the measure of primary productivity in this
study, in 16 lakes. In contrast, none of the 5 BNM variable pairs
relating lake-environmental factors to each other or to CATCH
(blue arrows in Fig. 2; Table 2) had a consistent directional
relationship across the study lakes, although the closest was WT
being negatively related to CHL in 15 lakes.

Air
temperature

Water
temperature

Water level

Chlorophyll a

Fish
catch

Fish
stocking

Fishing
effort

Precipitation Agricultural
land use

Fig. 2 Hypothesized causal processes represented in the Bayesian networks model. Variables associated with catchment climate and land use are in
oval-brown boxes. Variables associated with lake environment are in blue-rectangular boxes. Variables associated with fish catch, fish stocking, and fishing
effort are in orange-hexagon boxes.
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Fig. 3 Summary flowchart for the procedures of three analyses conducted in this study. BNM Bayesian networks model.
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Changes in drivers associated with a 25% catch decrease. Our
simulations showed that a 25% catch decrease (from the 1970–2014
medians) was associated with both colder and warmer AT across
the 31 study lakes (Fig. 4a), and the effects of AT on CATCHs were
mostly mediated though changes in WT (Fig. 4e, h) rather than WL
(Fig. 4f) or CHL (Fig. 4g). For 8 of the 31 lakes, a simulated 25%
catch decrease was associated with colder AT (i.e., a positive rela-
tionship), with medians of 0.9–3.6 °C colder than the observed
1970–2014 medians (Fig. 4a). For another eight lakes, however,
a simulated 25% catch decrease was associated with warmer AT
(i.e., a negative relationship), with medians of 0.8–1.7 °C warmer
than the observed 1970–2014 medians. For these 16 lakes, the
simulated relationship between AT and WT was consistently

positive (Fig. 4b), whereas the simulated relationships between AT
and WL (Fig. 4c) and between AT and CHL (Fig. 4d) could be
either positive, negative, or mixed. Translating these simulated
changes to effects on CATCHs revealed that the effects of WT,
resulting from changes in AT, were important in 8 of these 16 lakes
(i.e., leading to a >9.1% catch decrease in simulations; Fig. 4e), even
though both colder and warmer WT could lead to a catch decrease.
The effects of WL, resulting from changes in AT, on catch decrease
were important in 2 of these 16 lakes (Fig. 4f), where warmer AT
were associated with lower WL which, in turn, resulted in lower
catches. The effects of CHL, resulting from changes in AT, on catch
decrease were not important in any of these 16 lakes. For the
remaining 15 lakes, a mixed relationship was revealed as a simu-
lated 25% catch decrease was associated with both colder and
warmer AT.

A simulated 25% catch decrease was associated with both
higher and lower PRE across the study lakes (Fig. 5a), but these
effects were mediated through changes in both WL (Fig. 5d, f)
and CHL (Fig. 5e, f). For 10 lakes, a simulated 25% catch decrease
was associated with lower PRE (i.e., a positive relationship), with
medians of 15–71% lower than the observed 1970–2014 medians
(Fig. 5a). For another six lakes, a simulated 25% catch decrease
was associated with higher PRE (i.e., a negative relationship), with
medians of 20–36% higher than the observed 1970–2014
medians. For these 16 lakes, the simulated relationship between
PRE and WL was consistently positive (Fig. 5b), while the
simulated relationship between PRE and CHL could be either
positive, negative, or mixed (Fig. 5c). Translating these simulated
changes to effects on CATCHs revealed that the effects of CHL
were important in 7 of these 16 lakes (i.e., leading to a >13.4%
catch decrease in simulations), but inconsistent relationships
underlie this pattern: lower PRE was associated with both lower
and higher CHL. The effects of WL, resulting from changes in
PRE, on catch decrease were important only in 2 of these 16 lakes
(Fig. 5d), where higher PRE increased WL. For the remaining 15
lakes, a mixed relationship was revealed as a simulated 25% catch
decrease was associated with both lower and higher PRE.

Similarly, a simulated 25% catch decrease was associated with
both increasing and decreasing LUag across the 31 study lakes
(Fig. 6a), but effects of LUag on CATCHs were mostly mediated
through changes in CHL (Fig. 6e, f) rather than through WL
(Fig. 6d, f). For nine lakes, a simulated 25% catch decrease was

Table 1 List of symbols used in the development of BNM.

Category Symbol Description (unit)

Parameter and coefficient α Empirical coefficient that was not estimated
β BNM coefficient, which might be expressed a function of α coefficients
μ Mean or predicted value
σ Standard deviation

Variables associated with climate and land use AT Air temperature (°C)
LUag Agricultural land use (% of catchment area)
LUun Undeveloped land use (% of catchment area)
PE Potential evaporation (m)
PRE Precipitation (m)
RUNOFF Catchment runoff (m3)

Variables associated with lake environment ΔWL Change in water level (m)
CHL Concentration of chlorophyll a (μg/l)
WT Water temperature (°C)

Variables associated with fish catch, fish stocking,
and fishing effort

B Fish biomass (kg/ha)
CATCH Fish catch (kg/ha)
EFF Fishing effort (dimensionless)
Q Fishing catchability (dimensionless)
ST Number of fish stocked (number per hectare)

BNM Bayesian networks model.

Table 2 Predicted effects between variable pairs in the BNM
across lakes.

BNM variable pair Number of lakes

Predictor Response Positive
effects

Negative effcts Mixed
effects

Air
temperature

Water
temperature

31 0 0

Water level 6 17 8
Precipitation Water level 29 0 2

Chlorophyll a 9 7 15
Agricultural
land use

Water level 8 12 11

Chlorophyll a 16 8 7
Water
temperature

Chlorophyll a 6 15 10

Fish catch 10 10 11
Water level Chlorophyll a 13 8 10

Fish catch 9 5 17
Chlorophyll a Fish catch 12 11 8
Fish stocking Fish catch 4 1 3
Fishing effort Fish catch 30 0 1

Effects between a variable pair were positive, negative, and mixed based on one-tailed 75%
credible intervals of BNM coefficients, for which complete summary statistics are given in
Supplementary Data 4. Effects of stocking on fish catch were only included in eight lakes where
stocked species contributed >20% of fish catches in >10 years in the study period 1970–2014.
BNM Bayesian networks model.
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associated with decreasing LUag (i.e., a positive relationship),
with median decreases of 3.0–6.9% of catchment area from the
observed 1970–2014 medians (Fig. 6a). In turn, these simulated
decreases in LUag resulted in lower CHL for eight of these nine
lakes, but a higher CHL in the other (Fig. 6c). For another 12
lakes, a simulated 25% catch decrease was associated with
increasing LUag (i.e., a negative relationship), with median
increases of 1.2–14.0% of catchment area from the observed
1970–2014 medians (Fig. 6a). However, the simulated effects of
increasing LUag on CHL were more variable across lakes, some
associated with higher CHL and some associated with lower CHL
(Fig. 6c). Translating these simulated changes to effects on
CATCHs revealed that the effects of CHL, resulting from changes
in LUag, were important in all 21 lakes (i.e., leading to a >13.4%
catch decrease), but once again the direction of the relationships

varied across lakes, particularly when LUag increased. The effects
of WL, resulting from changes in LUag, on catch decrease were
unimportant in these 21 lakes. For the remaining 10 lakes, a
mixed relationship was revealed as a simulated 25% catch
decrease was associated with both lower and higher LUag.

Characteristics of lakes where CATCHs are vulnerable. Our
results showed that access to clean water (as measured by the
proportion of population in the catchment using drinking-water
and sanitation services37) was positively correlated with the
magnitude of changes in each of AT, PRE, and LUag that was
associated with a 25% catch decrease across the study lakes (AT:
r= 0.56, t-test p < 0.01, N= 31; PRE: r= 0.51, t-test p < 0.01, N=
31; LUag: r= 0.50, t-test p < 0.01, N= 31; Fig. 7a–c). This
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Fig. 4 Assessment for effects of air temperature on fish catches across the 31 study lakes. Changes or effects were calculated as differences (actual or
relative) from the 1970–2014 medians. a shows simulated changes in air temperatures (AT) associated with a 25% decrease in fish catches. b–d show
simulated effects of changes in AT on water temperature (WT), water level (WL), and chlorophyll a (CHL). e–g depict how simulated effects of WT, WL,
and CHL, in response to changing AT, affected fish catches. h summarizes these linkages within a subset of the Bayesian networks model that
demonstrates the effects of AT, where the width of each arrow is a qualitative indicator of the strength of the hypothesized causal effects. In a–g, bars
represent simulated median changes and error bars represented first and third quartiles of the simulated changes. Dashed lines divide the lakes into
“positive” (top 8 lakes), “mixed” (middle 15 lakes), or “negative” (bottom 8 lakes) associations between AT and fish catches, based on one-tailed 75%
credible intervals, as indicated by error bars in a. For positive lakes, a 25% decrease in fish catches was associated with colder AT. For mixed lakes, a 25%
decrease in fish catches was associated with both colder and warmer AT. For negative lakes, a 25% decrease in fish catches was associated with warmer
AT. Source data for a–g are provided as a Source Data file.
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Fig. 5 Assessment for effects of precipitation on fish catches across the 31 study lakes. Changes or effects were calculated as differences (actual or
relative) from the 1970–2014 medians. a shows simulated changes in precipitation (PRE) associated with a 25% decrease in fish catches. b, c show
simulated effects of changes in PRE on water level (WL) and chlorophyll a (CHL). d, e depict how simulated effects of WL and CHL, in response to
changing PRE, affected fish catches. h summarizes these linkages within a subset of the Bayesian networks model that demonstrates the effects of PRE,
where the width of each arrow is a qualitative indicator of the strength of the hypothesized causal effects. In a–e, bars represent simulated median changes
and error bars represented first and third quartiles of the simulated changes. Dashed lines divide the lakes into “positive” (top 10 lakes), “mixed” (middle 15
lakes), or “negative” (bottom 6 lakes) associations between PRE and fish catches, based on one-tailed 75% credible intervals, as indicated by error bars in
a. For positive lakes, a 25% decrease in fish catches was associated with lower PRE. For mixed lakes, a 25% decrease in fish catches was associated with
both lower and higher PRE. For negative lakes, a 25% decrease in fish catches was associated with higher PRE. Source data for a–e are provided as a Source
Data file.
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Fig. 6 Assessment for effects of agricultural land use on fish catches across the 31 study lakes. Changes or effects were calculated as differences (actual
or relative) from the 1970–2014 medians. a shows simulated changes in agricultural land use (LUag), in terms of percent of catchment area (Acat),
associated with a 25% decrease in fish catches. b, c show simulated effects of changes in LUag on water level (WL) and chlorophyll a (CHL). d, e depict
how simulated effects of WL and CHL, in response to changing LUag, affected fish catches. h summarizes these linkages within a subset of the Bayesian
networks model that demonstrates the effects of LUag, where the width of each arrow is a qualitative indicator of the strength of the hypothesized causal
effects. In a–e, bars represent simulated median changes and error bars represented first and third quartiles of the simulated changes. Dashed lines divide
the lakes into “positive” (top 9 lakes), “mixed” (middle 10 lakes), or “negative” (bottom 12 lakes) associations between LUag and fish catches, based on
one-tailed 75% credible intervals, as indicated by error bars in a. For positive lakes, a 25% decrease in fish catches was associated with decreasing LUag.
For mixed lakes, a 25% decrease in fish catches was associated with both decreasing and increasing LUag. For negative lakes, a 25% decrease in fish
catches was associated with increasing LUag. Source data for a–e are provided as a Source Data file.
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suggests that limited access to clean water is a characteristic for
lakes where CATCHs are vulnerable to both climate and land-use
changes, as relatively small changes (either increases or decreases)
in AT, PRE, or LUag can cause a 25% catch decrease. Our results
also showed that the magnitude of changes in LUag associated
with a 25% catch decrease was negatively correlated with the
shoreline development index (SDI), a measure of the circularity of
lake surface and an indicator of littoral area relative to lake area24,
across the study lakes (r=−0.39, t-test p= 0.03, N= 31; Fig. 7l).
This suggests that lakes with larger littoral area (as indicated by a
higher SDI) were more vulnerable because they required relatively
small changes in LUag (either increases or decreases) to cause a
25% catch decrease. Across the study lakes, however, there was no
significant correlation (i.e., t-test p > 0.05, N= 31) for all com-
binations between the magnitude of changes in each of AT, PRE,
and LUag associated with a 25% catch decrease and shoreline
population density or average depth (Fig. 7d–i), and between the
magnitude of changes in each of AT and PRE associated with a
25% catch decrease and SDI (Fig. 7j, k).

Discussion
By using a Bayesian networks modeling approach to analyze
time-series data for 31 lakes across five continents in the period
1970–2014, we found that climate and land-use changes could
have both positive and negative effects on CATCHs. At one level,
we found that effects of a climate or land-use driver (one of AT,
PRE, and LUag in this study) on lake-environmental factors (WT,

WL, and primary productivity) were relatively consistent in
directions (e.g., warmer AT always increased WT). However, the
effects of a changing lake-environmental factor (e.g., CHL) could
have either positive or negative effects on CATCHs across lakes
(Table 2).

One likely explanation for the lack of a consistent response
across lakes is the abiotic and biotic diversity of lake ecosystems
that could not be incorporated within our global model. For
example, increases in WT can have both positive and negative
effects on fish growth and recruitment38, but the direction of
these effects on individual fish species usually depends upon the
thermal tolerance of this species and the thermal environment of
the lake27,39,40. Within a lake, as most fisheries are multi-species
and multi-gear in nature, fishers are able to adapt, usually gra-
dually, to changes in the composition of fish species6. There is a
rich literature reporting how different fish species responded
differently to lake-environmental changes that could be linked to
changes in climate and land use9,41–44, especially in lakes where
some species are close to the boundary of their current
distributions40,45. However, in response to climate and land-use
changes, lake environment21 may change at a very rapid pace so
that native species cannot adapt, which, at an extreme, could
create conditions for highly productive, introduced/exotic species
to flourish and become dominant in CATCHs11,14,46. For lakes
where the catch and effort could be subdivided into trophic levels
or habitat guilds, future research could modify our existing
modeling framework to predict catch at relevant trophic levels,
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for example, to evaluate whether a consistent catch response
across lakes can be detected.

By assessing changes in climate and land-use drivers associated
with a substantial, 25%, decrease in CATCHs across the 31 study
lakes, we identified key processes that could underlie declines in
CATCHs. Specifically, we found that changes in AT influence
catches more through changes in WT than through changes in
WL or primary productivity (as measured by CHL; Fig. 4h). Our
BNM revealed strong positive relationships between AT and WT
across all the 31 study lakes, which is consistent with predictions
based on energy balance and findings in another global study21.
Given robust projections for climate warming throughout this
century47, our results suggest that projected increases in AT will
result in increases in WT, but will not necessarily lead to wide-
spread declines in CATCHs across lakes, as our simulations
revealed that decreases in CATCHs were associated with warmer
AT in only 7 of the 31 study lakes. One important caveat is that
the largest AT increase in our model was 2.6 °C warmer than the
1970–2014 median. We caution against extrapolating our results
should AT warm to even higher temperatures.

We found that changes in PRE could lead to substantial
declines in CATCHs through changes in either WL or primary
productivity (as measured by CHL; Fig. 5f). Across 29 of the
31 study lakes, our BNM suggested strong positive relationships
between PRE and WL, which is consistent with water cycle and
runoff dynamics. However, the lack of any consistent pattern of
linkages between PRE and primary productivity revealed in our
BNM exemplifies the diversity of lake systems. In theory,
increased PRE can result in increases in primary productivity in a
lake, directly through increasing inputs of allochthonous-derived
nutrients from the catchment24 and indirectly through increasing
WL that lead to the release of nutrients from inundated riparian
land48. Nonetheless, depending on the timing, duration, and
intensity of PRE, the increased PRE can also result in increases in
sediment loads and resuspension, which can result in decreases in
water clarity and primary productivity18. Based on current pro-
jections for this century, generally, future PRE may increase in the
high-latitude (>40°) and near-equator (latitude <10°) regions, but
decrease in mid-latitude regions47. As shown in Supplementary
Data 2, these projections suggest that 21 of the 31 study lakes will
have PRE increases, yet the scenarios under which these 21 lakes
experienced decreases in CATCHs in our simulations included
increased PRE (four lakes), reduced PRE (eight lakes), and mixed
(nine lakes). While these projections suggest that 10 of the
31 study lakes will have PRE decreases (Supplementary Data 2),
the scenarios under which these 10 lakes experienced decreases
in CATCHs in our simulations also included increased PRE (two
lakes), reduced PRE (two lakes), and mixed (six lakes). As a result,
although projected changes in PRE will result in consistent
directional changes in WL, it will not necessarily result in the
same directional changes in primary production and CATCHs
across lakes. Finally, although the projected changes in PRE
across global change scenarios47 are generally within the range of
our BNM inputs (i.e., from 63% lower to 51% higher than the
1970–2014 median), we caution against extrapolating our results
should PRE change beyond this range.

While increases in LUag could affect lake ecosystems increas-
ing water withdrawals and nutrient inputs, which could result in
decreases in WL and increases in primary productivity2, we found
that changes in LUag affected CATCHs more through changes in
primary productivity (as measured by CHL) than through
changes in WL (Fig. 6f). However, our BNM showed that
increases in LUag could result in increases in primary pro-
ductivity in 17 of the 31 study lakes, which suggests that in the
remaining 14 study lakes, the positive relationship between
nutrient inputs and LUag was decoupled. One plausible

explanation for this decoupling is that the intensity of agriculture
in a lake’s catchment could increase with little or no change in the
area of agricultural land, such as through increases in fertilizer
use49, livestock densities49, or cage culture50. Additionally, the
area of LUag does not reflect the management efforts to control
nutrient enrichment in recipient lakes, which is very common in
developed countries2,43, but less so in developing countries.

Generally, LUag is projected to increase in developing coun-
tries but decrease in developed countries in this century51. As
shown in Supplementary Data 2, 16 of the 31 study lakes are
projected to have decreases in LUag and the scenarios under
which these lakes experienced decreases in CATCHs in our
simulations included increased LUag (eight lakes), reduced LUag
(two lakes), and mixed (six lakes). Similarly, among 15 lakes that
are projected to undergo increases in LUag, the scenarios under
which these lakes experienced decreases in CATCHs in our
simulations included increased LUag (four lakes), reduced LUag
(seven lakes), and mixed (four lakes). Once again, our results
suggest that projected changes in LUag will not necessarily result
in the same directional changes in primary production and
CATCHs across lakes and we caution against extrapolating our
results should agricultural land-use change beyond the range of
our BNM inputs (from an decrease of 13% to an increase of 11%,
in terms of percent of catchment area, from the 1970–2014
median).

We identified low access to clean water (as measured by the
proportion of population using drinking-water and sanitation
services in the catchment) as one characteristic of lakes where
CATCHs are vulnerable to changes in AT, PRE, and LUag
(Figs. 7a–c and 8). Access to clean water can only be improved
with substantial investments for water-use efficiency and water-
quality protection37. Therefore, combining with the identified key
processes that underlie changes in CATCHs (Figs. 4h, 5f, and 6f),
these results suggest that the investments for water-use efficiency
and water-quality protection can also make CATCHs less vul-
nerable to climate and land-use changes. Future research will be
required to determine whether this correlation is causative; one
potential mechanism that has support from previous studies is
that investments in sanitation improve fish habitat2,9. One caveat
is that lakes in regions with more access to clean water may also
have stronger fishing regulations, which could also make
CATCHs less vulnerable to climate and land-use changes by
sustaining healthier fish stocks. We were unable to disentangle
these effects in our analysis because none of the 31 study lakes has
both high access to clean water and limited or weak fishing
regulations.

Independent of access to clean water, our results suggest that
climate and land-use changes can result in substantial decreases
in CATCHs across lakes with very different socio-economic and
hydrogeomorphological characteristics, such as shoreline popu-
lation densities, depths, and littoral areas (Figs. 7d–k and 8).
Although we identified a large littoral area (as indicated by SDI)
as one characteristic for lakes where CATCHs are vulnerable to
changes in LUag, the significant relationship was driven by two
lakes with SDI >7 (Fig. 7l). Therefore, more research is needed to
confirm this suggestion.

Throughout this study, we interpreted the results across the
31 study lakes collectively, with a focus on understanding effects
of climate and land-use on CATCHs at a global scale (Figs. 3–7).
We caution against interpreting our lake-specific results because
the uncertainty around some predictions can be large, and it is
difficult to discern whether this is a consequence of structural
errors in our BNM or the uncertainty that arises from using data
from so many sources (Supplementary Data 3). However, we
suggest using our lake-specific predictions as priors for future
lake-specific assessments, where quantitative models can be
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tailored to include important, lake-specific drivers that we were
not able to include in our global model and data collected by
consistent methods can be obtained. This is especially relevant to
lakes where effects of climate or land-use change alone on
CATCHs has not been as prevalent as effects of other anthro-
pogenic stressors, such as pollution, invasive species, and over-
fishing; however, climate and land-use changes may exacerbate
the negative effects of these stressors on CATCHs39.

In conclusion, although we were unable to identify consistent
directional relationships between lake-environmental variables
(e.g., WT, WL, CHL) and CATCH (Table 2; Figs. 4–6), correla-
tions based on our simulations suggested an intriguing and
potentially important relationship between access to clean water
and vulnerability to a large reduction in CATCH in response to
climate and land-use changes (Figs. 7 and 8). As an extension, our
results suggest that CATCHs for lakes in developing countries in
sub-Saharan Africa, Southeastern and Central Asia, and Central
and South America are more vulnerable, which is consequential
given that inland CATCHs are among the highest in the world in
these regions and that the main purpose of fishing is for food
rather than income6. To mitigate the threat of significant
decreases in CATCHs and food security, our results imply that
development strategies that include investments for clean water37

can also benefit lake CATCHs in the face of anthropogenic
stressors (Fig. 8). The implications of this result made possible by
analyzing time series of lakes across continents highlight possible
synergies for policy makers aiming to achieve multiple United
Nation Sustainable Development Goals (SDGs)52, including Zero
Hunger (SDG 2), Clean Water and Sanitation (SDG 6), Climate

Action (SDG 13), and Life Below Water (SDG 14), and Life on
Land (SDG 15).

Methods
Choice of modeling approach. We chose to use a Bayesian networks modeling
approach because it could minimize negative effects of data limitations on the
statistical power of our analysis, by accounting for our understanding of multi-
level, causal processes that could underlie changes in CATCHs in response to
changes in climate and land use across lakes. A BNM could be developed to
represent the hypothesized causal processes by expressing them as conditional
probabilistic relationships between model variables, with which the estimation of
every BNM coefficient took all model inputs derived from data into account20. For
example, if we developed a simple BNM to represent that changes in AT resulted in
changes in WT, which, in turn, resulted in changes in CATCH in a lake, the
estimation of model coefficients for the relationship between AT and WT and for
the relationship between WT and CATCH would both take model inputs for all
variables (AT, WT, and CATCH) into account. Although the 31 study lakes were
selected partly because of good data availability, there were still large within-lake
differences in data availability among model variables (as shown in Supplementary
Data 3). For example, we obtained 9, 16, and at least 32 years of data for CHL, WT,
and all the other variables in Lake Chilwa, respectively. Therefore, the BNM’s
capability of taking all model inputs into account for the estimation of every model
coefficient was important to maximize the statistical power of our analysis.

Model development. To mathematically formulate our BNM based on our
hypothesized causal processes (Fig. 2), we assumed that (1) each response variable
in the BNM has a normal distribution, with a mean that can be expressed as a
function of predictor variables based on the primary literature described below, and
(2) annual time-series data are independent observations, such that the mean value
of each response variable in 1 year is dependent upon the values of predictor
variables in the same year, but independent from all of its mean values in the
other years. For example, the conditional probability distribution of WT in our
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BNM was expressed as

WTi � NORM μWT
i ; σWT

� �
;

μWT
i ¼ βWT

0;i þ βWT
1;i ´ATi;

(

ð1Þ

where NORM(μ, σ) represents a normal distribution with a mean of μ and a
standard deviation of σ, subscripted i indicates the ith lake, superscripted WT
indicates that the parameter or BNM coefficient was associated with the response
variable WT, and β represents a BNM coefficient. In Eq. (1), μWT was expressed as
a linear function of AT based on the primary literature21 and was assumed to be
dependent upon the observed value of AT in the same year, but independent from
any μWT of the other years. In a similar manner, we give details for how we
developed the conditional probability distributions of the other three BNM
response variables—change in water level (ΔWL), CHL, and CATCH—in the
following of this section.

The conditional probability distribution of ΔWL in our BNM was developed
based on an empirical linear relationship between ΔWL and annual catchment
runoff (RUNOFF)23, of which the latter could be expressed as a balance between
PRE and evapotranspiration (ET)53. In a simple manner, these relationships could
be expressed as

ΔWL ¼ αΔWL
0 þ αΔWL

1 ´RUNOFF; ð2Þ

RUNOFF ¼ PRE� αET1 ´ PE ´ LUag� αET2 ´PE ´ LUun; ð3Þ
where α represents an empirical coefficient, PE is potential evaporation, LUun is
undeveloped land use, and α1ET × PE × LUag and α2ET × PE × LUun represent ET
over agricultural area and undeveloped area, respectively. In this study, we
categorized catchment land use into three types: agricultural (which includes
cropland, managed pasture, and rangeland), undeveloped (which includes forest,
primary and secondary non-forest land, the lake itself, and other water and ice
area), and urban. Equation (3) did not include urban land use because urban water
use is mostly non-consumptive and returns to the catchment54. By combining Eqs.
(2) and (3) and re-arranging α coefficients, the conditional probability distribution
of ΔWL in our BNM was expressed as

ΔWLi � NORM μΔWL
i ; σΔWL

� �
;

μΔWL
i ¼ βΔWL

0;i þ βΔWL
1;i ´PREi þ βΔWL

2;i ´PEi þ βΔWL
3;i ´PEi ´ LUagi;

(

ð4Þ

where each β coefficient can be expressed as a combination of α coefficients in Eqs.
(2) and (3). We only included LUag in Eq. (4) because in each of these 31 study
lakes, LUag+ LUun in the catchment was almost a constant, which means that
LUun could be replaced with a constant minus LUag, as the increase in agricultural
area mostly resulted from the decrease in undeveloped area, or vice versa, in the
study period.

The conditional probability distribution of CHL in our BNM was developed
based on empirical log–log relationships between CHL and total phosphorus24 and
between CHL and WT25. Because total phosphorus data were only available for a
few of our study lakes, we modeled the total phosphorus in lakes as a function of
PRE26, LUag26, and ΔWL29. This led to a conditional probabilistic distribution for
CHL expressed as

logðCHLiÞ� NORM μCHL
i ; σCHL

� �
;

μCHL
i ¼ βCHL

0;i þ βCHL
1;i ´ logðPREiÞ þ βCHL

2;i ´ logðLUagiÞ þ βCHL
3;i ´ μΔWL

i þ βCHL
4;i ´ μWT

i ;

(

ð5Þ
where μWT and μΔWL are from Eqs. (1) and (4), respectively.

Finally, the conditional probability distribution of CATCH was developed based
on (1) a theoretical relationship between CATCH and fish biomass (B)34, (2) a
hypothesized empirical relationship between fishing catchability (Q) and EFF and
B34, and (3) a hypothesized empirical relationship between B and WT27,28,
ΔWL29,30, and CHL31,32 and number of fish stocked (ST)35,36. In a simple manner,
these relationships could be expressed as

CATCH ¼ Q ´EFF ´B ) logðCATCHÞ ¼ logðQÞ þ logðEFFÞ þ logðBÞ; ð6Þ

logðQÞ ¼ αQ0 þ αQ1 ´ logðEFFÞ þ αQ2 ´ logðBÞ; ð7Þ

logðBÞ ¼ αB0 þ αB1 ´WTþ αB2 ´ΔWLþ αB3 ´ logðCHLÞ þ αB4 ´ logðSTÞ; ð8Þ
By combining Eqs. (6)–(8) and re-arranging α coefficients, we developed the
conditional probabilistic distribution for CATCH expressed as

logðCATCHiÞ� NORM μCATCHi ; σCATCH
� �

;

μCATCHi ¼ βCATCH0;i þ βCATCH1;i ´ μWT
i þ βCATCH2;i ´ μΔWL

i þ βCATCH3;i ´ μCHL
i

þ βCATCH4;i ´ logðSTiÞ þ βCATCH5;i ´ logðEFFiÞ;

8
>><

>>:
ð9Þ

where μWT, μΔWL, and μCHL are from Eqs. (1), (4), and (5), respectively. As
described in the Supplementary Methods, we did not estimate β4,iCATCH for 23
lakes where stocking effects on CATCHs were not sufficiently important in the
study period.

The derivations and data sources of model inputs, including climate and land-
use drivers (AT, PRE, and LUag), lake-environmental factors (WT, WL, and CHL),
CATCH, ST, and EFF are given in the Supplementary Methods.

Prior distributions. We followed a previously used procedure20 to derive prior
distributions of BNM coefficients. For example, to derive the prior distribution of
βWT
i , we first expressed the function of μWT

i in Eq. (1) as 31 linear models (i.e., one
for each study lake) in a form

WTi ¼ βWT
0;i þ βWT

1;i ´ATi þ εWT
i ; ð10Þ

where ε is the residual error. Then we derive the least-squares estimates for the
coefficients of each of these 31 linear models based on model inputs derived from
data for WTi and ATi in the same year. In theory, the least-squares estimates for
the coefficients of each of these 31 linear models have a multivariate normal
(MVN) distribution because they could be expressed as linear combinations of
WTi, which was assumed to have a normal distribution as shown in Eq. (1). Finally,
we used the MVN distribution for the least-squares estimates of the linear model
coefficients as the prior distribution of each of the 31 sets of βiWT, but the cov-
ariance matrix of the MVN distribution was set to be proportional to its un-scaled,
least-squares estimates, with a proportional constant (i.e., the hyperparameter)
having a noninformative (hyperprior) distribution20. We repeated this procedure
to derive prior distributions for βiΔWL, βiCHL, and βiCATCH. The prior distributions
of these BNM coefficients were always developed on a lake-by-lake basis because
for each of the 31 study lakes, we were able to obtain data to derive model inputs
for at least 9 years for all BNM variables (refer to Supplementary Data 3 for data
sources and availability). Lastly, for nuisance parameters σWT, σΔWL, σCHL, and
σCATCH in Eqs. (1), (4), (5), and (9), respectively, we set each of them to have a
noninformative prior distribution.

Coefficient estimation. The posterior distributions of our BNM coefficients
were developed based on pooled information across the 31 study lakes. Our
BNM was structured in a way to have the transferability of information across
the lakes informed by data. Specifically, in the derivation of posterior distribu-
tions of our BNM coefficients, the relative importance of lake-specific infor-
mation increases with lake-specific sample size and across-lake difference. If a
lake was very different from all the other lakes, for example, the relative
importance of its lake-specific information would be much higher than across-
lake information in the derivation of posterior distributions of lake-specific
BNM coefficients.

Computationally, we derived empirical posterior distributions for all BNM
coefficients by using a Gibbs sampling method to run Markov chain Monte Carlo
(MCMC) simulations55. We ran three random-starting MCMC chains by
implementing the program JAGS56 and the package runjags57 in R58. After
discarding 20,000 iterations for burn-in and adaptation, we considered that the
convergence of three MCMC chains was achieved at 50,000 interactions as
autocorrelations were close to 0 and Gelman and Rubin’s convergence
diagnostics59 were <1.005 for all coefficients. Our empirical posterior distribution
of each BNM coefficient was based on 50,000 samples from each converged
MCMC chain.

Effects between variable pairs. As shown in Fig. 2, there were 13 pairs of pre-
dictor and response variables in our BNM. For each of these 13 variable pairs, we
categorized the effects of predictor variable on response variable as positive,
negative, and mixed in each lake based on the posterior distribution of the asso-
ciated BNM coefficient, which we used as a proxy of effect strength because it
represents how much the response variable would change in response to one unit
change in the predictor variable. For example, we categorized the effects of AT on
WT in lake i based on the posterior distribution of β1,iWT, which represents how
much of WT would increase in response to one unit change of AT. We categorized
effects between a variable pair as positive and negative based on the 75% CI of the
associated BNM coefficient. We categorized effects between a variable pair as
mixed when both positive and negative 75% CIs of the associated BNM coefficients
included 0, which, statistically, also means that its 50% CI included 0.

Changes in drivers associated with a 25% catch decrease. We implemented the
BNM and used a Monte Carlo simulation method to empirically derive distribu-
tions of climate (AT and PRE) and land-use (LUag) drivers associated with a 25%
decrease in CATCH from its 1970–2014 median (i.e., a 25% catch decrease) in each
of the 31 study lakes. We used a 25% catch decrease as our simulation target
because it is close to the maximum value of standard errors for the ratios of
CATCH to its median, which ranged from 2.1% to 25.7% across the study lakes in
the study period.

Monte Carlo simulation. Our Monte Carlo simulation was a three-step process.
The first step was to randomly sample a set of BNM coefficients (i.e., βWT, βΔWL,
βCHL, and βCATCH) from empirical posterior distributions by implementing the
package rv60 in R. Then, we calculated predicted medians of WT, ΔWL, CHL, and
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CATCH (denoted as μ0WT, μ0ΔWL, μ0CHL, and μ0CATCH, respectively) using the set
of BNM coefficients and the 1970–2014 medians of all BNM inputs.

The second step was to generate a set of BNM inputs from probability
distributions based on lake-by-lake data by implementing random number
generators in R. We assumed that each of AT, PRE, and LUag has a normal
distribution. PE was derived empirically based on randomly sampled AT and the
assumption that temperature change is uniform throughout the year (e.g., if
randomly sampled AT was 1 °C higher than its 1970–2014 median, we assumed
that AT in every month was 1 °C higher than its 1970–2014 median).

The third step was to calculate predicted values (i.e., μWT, μΔWL, μCHL, and
μCATCH) using randomly sampled BNM coefficients, randomly sampled values of
one climate or land-use drivers, and 1970–2014 medians of the other climate and/
or land-use variables not being evaluated. For example, to investigate effects of AT
on CATCH, we calculated BNM predicted values using BNM coefficients randomly
sampled from empirical posterior distributions, inputs of AT randomly sampled
from normal distributions, inputs of PE derived based on random samples of AT,
and 1970–2014 medians of PRE and LUag.

We kept the set of BNM coefficients, inputs, and predicted values that led to a
ratio of predicted CATCH to predicted median CATCH, which was calculated as
[exp(μCATCH − μ0CATCH)], between 0.74 and 0.76, and assumed they were
associated with a 25% catch decrease. We repeated the Monte Carlo simulation
process until we obtained 10,000 samples associated with a 25% catch decrease for
each lake to derive empirical probability distributions.

Assessment of climate and land-use effects. We assessed how climate and land-
use drivers (i.e., AT, PRE, and LUag) could lead to a 25% catch decrease by
analyzing empirical probability distributions derived from samples obtained in our
Monte Carlo simulations.

To assess effects of AT on CATCH in each of the 31 study lakes, we analyzed
empirical probability distributions associated with a 25% catch decrease for
changes in AT, predicted effects of AT on WT, WL, and CHL, and predicted
effects of WT, WL, and CHL on CATCH. We used predicted changes in
WT, WL, and CHL driven by AT to quantify effects of AT on WT, WL, and
CHL, respectively. Following the methods used by the Intergovernmental
Panel on Climate Change (IPCC)47, we calculated predicted changes as an actual
difference from the 1970–2014 medians for AT, WT, and WL and as a percent
difference from the 1970–2014 median for CHL. We used predicted changes in
CATCH driven by WT, WL, and CHL to quantify effects of WT, WL, and CHL
on CATCH, respectively. The predicted changes in CATCH driven by WT,
WL, and CHL were calculated as percent differences from the 1970–2014
medians based on Eq. (9). For example, we calculated predicted effects of WT on
CATCH as

exp βCATCH1 ´ μWT � μWT
0

� �� �� 1
� �

´ 100%: ð11Þ
Similar to how we summarized BNM coefficients, we also categorized
relationships between AT and CATCH and between AT and each of WT, WL,
and CHL as positive, negative, and mixed based on 75% CIs of their changes
associated with a 25% catch decrease in each lake. Further, we considered effects
of WT, WL, or CHL on CATCH to be important in each lake if its predicted
effects could lead to a >9.1% catch decrease based on 75% CI. The cutoff value
9.1% was calculated as (1–0.751/3) × 100%, based on the assumption that WT,
WL, and CHL contributed equally to a 25% catch decrease.

With two changes, we followed the same method used to assess AT effects on
CATCH to assess effects of PRE and effects of LUag on CATCH. First, following
the IPCC methods for calculating projected global distributions of changes in PRE
and land use, we calculated predicted changes as a percent difference from the
1970–2014 median for PRE and as an actual difference from the 1970–2014 median
for LUag. Second, we did not analyze changes in WT and effects of WT on CATCH
in both assessments, because there was no hypothesized linkage between PRE and
WT and between LUag and WT (Fig. 2). Consequently, since effects of WT on
CATCH were not assessed, we considered effects of WL or CHL on CATCH to be
important in each lake if its predicted effects could lead to a >13.4% catch decrease
based on 75% CI. The cutoff value 13.4% was calculated as (1–0.751/2) × 100%,
based on the assumption that WL and CHL contributed equally to a 25% catch
decrease.

Characteristics of lakes where CATCHs are vulnerable. We define vulnerability
of a lake as the extent to which the focal unit (e.g., CATCH) will be adversely
affected by environmental changes61. In this study, we used the magnitude of
change for each of AT, PRE, and LUag associated with a 25% catch decrease to
index the vulnerability of a lake to a 25% catch decrease owing to climate and
land-use changes. For example, we considered a hypothetical lake A to be more
vulnerable than another hypothetical lake B if the magnitude of change for each
of AT, WL, and CHL associated with a 25% catch decrease was smaller in lake A
than lake B.

We investigated whether the vulnerability of a lake to a 25% catch decrease
corresponded to any of the two socio-economic characteristics associated with the
catchment: access to clean water and shoreline population density; and any of the
two hydrogeomorphological characteristics of the lake: average depth and SDI. The
access to clean water was indicated by the proportion of population using drinking-

water and sanitation services in the catchment37. The shoreline population density
was the population density within 10 km of a lake’s shoreline. SDI is a measure of
circularity of the lake surface24, which is defined as

SDI ¼ 0:5 ´ SL= π ´Alakeð Þ0:5; ð12Þ
where SL is shoreline length and Alake is lake area. A larger SDI indicates that the
lake surface is less circular and may have a larger littoral area relative to lake area.
The derivations and values of these socio-economic and hydrogeomorphological
characteristics are given in the Supplementary Methods.

We conducted a correlation analysis to evaluate whether the relationship
between each of the 4 socio-economic and hydrogeomorphological
characteristics and the magnitude of change for each of AT, PRE, and LUag
associated with a 25% catch decrease was significant at p= 0.05 level (t test, N=
31). To quantify the magnitude of change for each of AT, WL, and CHL
associated with a 25% catch decrease, we used the predicted median of absolute
change associated with a 25% catch decrease, which was calculated from
empirical probability distributions derived from samples obtained in our Monte
Carlo simulations.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data used to derive model inputs for variables associated with lake environment, fish
catch, fish stocking, and fishing effort (i.e., WT, ΔWL, CHL, CATCH, ST, and EFF) are
either publicly available or available upon requests to corresponding authorities, as given
in Supplementary Data 3. Data used to derive model inputs for variables associated with
climate and land use (i.e., AT, PRE, PE, and LUag) are from publicly available global
databases, as described the Supplementary Methods. The source data underlying
Figs. 4a–g, 5a–e, 6a–e, 7, and 8 are provided as a Source Data file.

Code availability
JAGS code for running MCMC simulations is provided as Supplementary Data 5. R code
associated with the estimation of BNM coefficients is provided as Supplementary Data 6.
R codes associated with BNM input derivation and BNM simulations are available upon
request to the corresponding author.
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