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ABSTRACT: Temperature as obtained by infrared remote sensing of bare soil or vegetation 

covered soil during day depends on soil water content ranging from the surface down to the 

root-zone. The main reason is that evaporation and plant transpiration cools down the soil 

surface and the leaves. However surface temperature does not only depend on soil moisture. It 

has to be combined with other measured variables. In this work we start with the classical 

combination between temperature and a vegetation index and we explore the benefit of adding 

the albedo or the cellulose absorption index to retrieve the surface soil moisture. The 

correlation between the inferred Soil Vegetation Wetness Index and the true moisture content is 

analyzed based on the thermal infrared and visible-NIR hyperspectral images recorded during 

Hymap 2007 campaign over Camargue (France). 
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1. Introduction

Information on soil moisture is of first importance for irrigation scheduling and for 
improving crop yield, but also in water management in the climate change context and 
for the evaluation of the anthropic ecosystem impact. Remote sensing with earth 
observation instruments has been considered for a few decades to provide the 
requested information over large areas and at various scales. 

Vegetation and soil temperatures have long been recognized as an indicator of 
water availability. As a matter of fact, under proper water supply, the transpiration 
cools the leaves towards air temperature. Water is exchanged through the stomata, i.e. 
the pores in the leaf epidermis. On the opposite, under water stress condition, the plant 
closes its stomata to limit transpiration. This leads to foliage temperature increase. 
Similarly, the soil surface temperature is inversely correlated with water content due 
to evaporation. Additionally, soil drying induces a reduction of soil thermal inertia 
which also leads to soil temperature increase. 

Thermal sensors used for environment monitoring on board of satellite or airplane 
have a spatial resolution ranging from a few meters to a couple of kilometres. The 
consequence is that in the footprint corresponding to a pixel, the surface is seldom 
homogenous: most pixels are a mixture of vegetation and soil. The radiance reaching 
the elementary detector is thus a combination of the radiance coming from leaves and 
from soil. As a consequence, the brightness temperature depends on temperature and 
emissivity of both soil and vegetation, and on the vegetation cover fraction. Part for 
this reason, the problem of evaluating the soil moisture is underdetermined when only 
considering the brightness temperature: a same brightness temperature value can be 
associated with a large range of soil moisture. It is thus necessary to add other 
observation data to reduce this underdetermination and finally to reduce the 
uncertainty of the inferred moisture. 

A method proposed a few years ago consists in jointly analyzing the temperature 
and a vegetation index which is used as a proxy of the vegetation cover. Such index 
could be the classical NDVI (Normalized Difference Vegetation Index) which 
corresponds to the normalized difference between the signals recorded in the red and 
in the near infrared (typically at about 0.65 μm and 0.8 μm). This index is indeed 
strongly correlated with the vegetation cover: it ranges from about 0.1 for bare soil to 
values close to 0.8 for dense and green vegetation, depending on the wavelength 
choice. It is also correlated with foliage density which is expressed by LAI, Leaf Area 
Index (total surface of leaves per unit surface). However NDVI is also sensitive to the 
soil spectral characteristics. Other indexes were proposed for being less dependant on 
soil background (Rondeaux et al., 1996). Among them we considered TSAVI 
(Transformed Soil Adjusted Vegetation Index) in this work (its definition is given 
later in Eq. [3]). Other vegetation indexes designed for providing a proxy for 
vegetation cover could also be used. For this reason we will denote VI for the chosen 
vegetation index. 
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When plotting the two-dimensional distribution of temperature and vegetation 
index (T-VI) corresponding to an area with well distributed vegetation cover and 
moisture content, one gets a triangular of trapezoidal cloud of points (see Fig. 1). The 
four vertices correspond to the extreme conditions of a crop: the bottom vertices (low 
VI) correspond to dry and saturated bare soil, whereas the upper vertices (High VI)
correspond to well-irrigated and water-stressed full cover vegetation (Moran et al.,

1994). The left limit is called the “wet” (or “cold”) edge whereas the right limit is 
called the “dry” (or “warm”) edge. It is usually admitted that the soil dryness linearly 
increases when moving from the left (“wet”) edge to the right (“dry”) edge. For this 
reason, a soil moisture index was defined from the relative distance of a given point to 
the dry edge (a constant VI). Similarly, it is argued that the vegetation stress increases 
from the “wet” edge to the “dry” edge. A consequence is that the position of a 
particular point relatively to these extreme lines could also be a measure of the 
evapotranspiration flux at the time of the remote sensing test. 
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Figure 1. Principle of soil moisture mapping from a Temperature-Vegetation Index 

(T-VI) plot. The vertices of the trapezoidal distribution correspond to: (1) well-

watered full cover, (2) non-transpiring full cover, (3) wet bare soil, (4) dry bare soil. 

Soil moisture increases from the dry edge (on the right) to the wet edge (on the left) 

(Moran et al., 1994). 

Different methods were devised for defining the position of the wet and dry edges. 
The empirical method uses the experimental T-VI distribution and linear edges are set 
to fit its border (Sandholt et al., 2002). Iso-moisture straight lines are then distributed 
linearly between the wet edge and the dry edge. Another method is based on the use of 
Penman-Monteith equation for evapotranspiration (which is derived from an energy 
budget equation) for expressing the difference between surface temperature and air 
temperature for the four extreme cases that define the vertices of the trapezoidal T-VI 
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plot (Moran et al., 1994). As before, iso-moisture straight lines are distributed linearly 
between the wet edge and the dry edge. Still another method is based on the use of a 
SVAT (Soil Vegetation Atmosphere Transfer) model in order to evaluate the radiation 
flux, the convective flux and the water/vapor fluxes between soil, vegetation and 
atmosphere (Carlson et al., 1995). The SVAT model allows building iso-moisture 
lines as well as iso-evaporation lines to which the T-VI distribution can then be 
compared. After inversion, one retrieves a moisture map of the overflown area. 

These methods were compared in (Krapez et al., 2009) where some improvements 
were also proposed. We highlighted the possibility to infer not only a map of the 
surface moisture but also an estimation of the root-zone moisture. 

Nevertheless the concept of exploiting only T-VI (eventually together with some 
meteorological data like in the methods described in (Moran et al., 1994) and (Carlson 
et al., 1995)) is based on a simple representation of the thermal and radiative 
properties of the complex soil/vegetation structure and of the exchanges therein. 
However, a large number of parameters, in addition to soil moisture, are influencing 
the apparent soil/canopy temperature. Furthermore these parameters may vary 
between the different vegetation types and the different soil types that are present in 
the scene. Spreading the temperature distribution along only one dimension like the 
VI is not enough for efficiently separating the sensitivities and for allowing an 
unambiguous determination of soil moisture. In addition to temperature and 
vegetation index, the authors in (Chauhan et al., 2003) suggested to consider surface 
albedo as retrieved from visible-near IR reflectance signals. As a matter of fact the 
albedo α  has a high influence on the net radiation flux and as such has a significant 
impact on temperature. Furthermore, with nowadays hyperspectral instruments, it is 
an easy task to evaluate with a good precision this optical property. In (Chauhan et al.,

2003) the identification process was divided in two phases. The first phase is a 
learning phase which consists in a fitting procedure between the optical remote 
sensing data T, NDVI, α on one hand and Mo on the other hand, where Mo is the 
reference moisture inferred from low-resolution microwave remote sensing. The 
regression law is a polynomial limited to second order terms: 
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Each observable variable T*, NDVI*, α* is obtained first by downscaling the optical 
data to the microwave resolution and then by normalizing it with the corresponding 
minimum and maximum values. High resolution moisture maps were then constructed 
by applying the quadratic relation in Eq. [1] to the raw, i.e. high resolution, optical 
images. 
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We propose to take into account the albedo in a different way which avoids 
referring to microwave data for the learning process. The idea is merely to extent the 
procedure defined for 2D T-VI plots in (Sandholt et al., 2002) to 3D T-VI-α plots. 
Dry and wet edges now become dry and wet 2D surfaces in the 3D representation. We 
define the Soil-Vegetation Wetness Index (SVWI) from the relative distance between 
the considered pixel and the dry surface. 

When introducing the albedo, it is expected to better separate areas according to 
the absorbed solar radiation. We also looked for separating vegetated areas according 
to the fraction of green vegetation versus senescent vegetation. A suitable index for 
quantifying the fraction of senescent vegetation is CAI (Cellulose Absorption Index). 
As a matter of fact, a broad absorption band near 2.1 μm appears in all compounds 
possessing alcoholic -OH groups such as sugars, starch and cellulose. This absorption 
band appears in the reflectance spectra of dry plant residues and a cellulose absorption 
index (CAI) based on the reflectance in three bands - two on the shoulders at 2 μm and 
2.2 μm and one at 2.1 μm (cellulose–lignin absorption maximum) was proposed in 
(Daughtry, 2001): 

( )1.22.20.2 25.0 ρρρ −+=CAI  [2]

where ρi is the reflectance at wavelength i. 

A linear unmixing approach using Normalized Difference Vegetation Index 
(NDVI) and the Cellulose Absorption Index (CAI) proved indeed to be efficient in 
providing an estimation of fractional cover of photosynthetic vegetation (fPV), non-
photosynthetic vegetation (fNPV) and bare soil (Guerschman et al., 2009). 

In the same manner as before with albedo, we propose to use CAI as an additional 
observation parameter and to exploit the three-dimensional T-VI-CAI distribution 
features to infer a soil moisture map. 

The aim of this study is to analyse the benefit of adding a third index to the 
classical T-VI empirical method for soil moisture mapping (Sandholt, 2002). The 
proposed procedures will be applied on remote sensing data obtained during the 
HyEurope 2007 campaign over Camargue (France) with HyMap and ATM sensors 
operated by DLR. HyMap is a hyperspectral imager with 128 bands from 0.45 μm to 
2.5 μm whereas ATM is a multispectral imager with 11 bands from 0.42 μm to 13 μm. 

2. Measurement campaign

2.1. Airborne remote sensing campaign 

During the HyEurope 2007 campaign, a HyMap hyperspectral sensor (HyVista 
Corporation Website, 2011) was operated by DLR, Oberpfaffenhofen, Germany, on board 
of a Do228 airplane over several sites in Europe (DLR HyEurope Campain, 2010). 
Seventeen flight lines were flown on June 23rd over Camargue region, south of France. 
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HyMap is a spectroradiometer utilizing diffraction gratings and four 32-element 
detector arrays (1 Si, 3 liquid nitrogen-cooled InSb). It measures radiation in 128 
spectral bands between 0.45 μm and 2.48 μm. It is a whisk-broom type scanner, i.e. a 
mirror scans across the airplane path, reflecting light towards the four arrays which 
collect a spectrum one pixel at a time. The angular width is 61.3° with 512 pixels in 
each line (2 mrad across track IFOV and 2.5 mrad along track IFOV). At the 1950 m 
mean flight altitude the swath was thus 2.3 km and the resolution was at nadir about 
4 m x 5 m. 

Together with HyMap was flown the multispectral sensor Daedalus AADS 1268 
“Airborne Thematic Mapper” (ATM). It is also a whisk-broom type scanner. 
Measurement is performed in ten bands from 0.42 μm to 2.23 μm plus in one large 
thermal infrared band from 8 to 13 μm. The angular width is 86° with 716 pixels in a 
line. The swath was thus 3.6 km and the nadir pixel dimension of approximately 5 m. 

Data from HyMap and ATM were orthorectified and resampled at 4 m x 4 m 
resolution by DLR. Fluctuations of altitude were taken into account in the geometric 
correction. An atmospheric correction was also applied to HyMap data, but not to 
ATM data. The ATM thermal channel was nevertheless calibrated absolutely in 
temperature units (brightness temperature). 

Channel 16 (0.675 μm) and 26 (0.819 μm) from HyMap were combined to provide 
a vegetation index map of the flown area. A spectrum recorded over bare soil was 
used to evaluate the soil line coefficients a,b which are necessary for computing 
TSAVI (Transformed Soil Adjusted Vegetation Index) (Rondeaux et al., 1996). 

( ) ( ) ( )[ ]2
82.067.067.082.0 108.0 ababaaTSAVI ++−−−−= ρρρρ [3]

Channel 11 (8-13 μm) from ATM provided the brightness temperature map. 
Modtran4 simulations for atmospheric radiation and transmission were performed at 
ONERA in order to convert at-sensor brightness temperature to on-ground true 
temperature as described in (Lagouarde et al., 2000). For this purpose an estimation of 
the effective emissivity map was necessary. Effective emissivity was computed from a 
weighted average of soil emissivity and vegetation emissivity according to the model 
described in (Valor and Caselles, 1996) which takes into account mean values for 
vegetation emissivity and for bare soil emissivity. Vegetation emissivity was taken from 
(Coll et al., 2003) whereas mean soil emissivity was evaluated from measurements 
performed on saturated and dry soil samples taken from six different fields in flight line 
2 (Lesaignoux et al., 2009). Standard deviation of altitude fluctuations was 3.7 m. Its 
impact on soil temperature evaluation was estimated to be less than 0.02 K; this 
correction was thus discarded. 

For present analysis we focused on flight line n°2 which was flown at 10h20 UTC 
over a region with crops of wheat, alfalfa (flowering plant cultivated as forage crop), 
meadows, rice and vineyards and some bare soil fields (average coordinates: N 
43.629° E 4.477°). 
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2.2. In-situ measurements 

In-situ measurements were performed by INRA in a series of fields in the central 
part of flight line n°2. In particular, a series of soil samples were extracted in the 0-
5 cm upper soil layer on June 25th for gravimetric water content measurement 
(5 samples per spot, 3 spots per field or per crop type) (see Table 1). 

In the following we will also focus the discussion on three other types of crops: 
harvested wheat, tilled wheat and rice (see Table 2). 

Table 1. List of in situ water content gravimetric measurements and mean moisture 

value (% weight). 

Table 2. Additional fields without in situ moisture measurement. 
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3. Temperature and Vegetation Index maps

Temperature map as obtained with Daedalus ATM sensor is reported in Fig. 2 left. 
Corresponding TSAVI (Transformed Soil Adjusted Vegetation Index) map as obtained 
with Hymap sensor is reported in Fig. 2 right. The color scale was chosen to represent 
high vegetation cover in green and bare soil in yellow. In general, the highest 
temperature values are observed over bare soils. Especially cold plots correspond to 
irrigated rice fields. 

Figure 2. Map of vegetation index TSAVI (left) and of temperature (right) recorded 

over flight line 2 (about 2.5 km x 8.3 km). 

4. Moisture identification from 2D T-VI distribution

When plotting the Temperature-Vegetation Index data for whole flight line, one 
gets the distribution in Fig. 3.  It is roughly trapezoidal with an apex at high vegetation 
index (high vegetation cover). The drawing of the straight lines which define the wet 
and dry edges as described in (Sandholt et al., 2002) is rather subjective. Here we 
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chose a more objective approach based on statistics: for each TSAVI interval of width 
0.05, a low temperature limit and a high temperature limit are defined from the 1.5% 
and the 98.5% percentile. The results are then interpolated to provide the blue and red 
curves, respectively wet edge and dry edge in Fig. 3. By this way the distribution is 
well bounded; in the same time, possible outliers are rejected. 

At each Vegetation Index level, the moisture index is defined as the relative 
distance to the dry edge. We call it Soil Vegetation Wetness Index (SVWI). Except for 
very few points, it ranges between 0 and 1. 

( )
( ) ( )ijdryijwet

ijdryij

ij
TSAVITTSAVIT

TSAVITT
SVWI

−

−
= [4]

Figure 3. Temperature-Vegetation Index plot with the location of wet edge (in blue) and 

the dry edge (in red). The results for the 27 spots listed in Table 1 and 2 are represented 

with dots with scaled color. 

In Fig. 4 this moisture index is compared to the measured moisture (in % weight) 
for the 18 spots listed in Table 1. The dots are not arranged along a straight line. This 
imperfect correlation has several explanations:  

- The results for meadow fields are those which are farthest from the regression 
line (the three dark blue dots in the upper part). Meadow spots actually present high 
TSAVI values and it is well known that temperature shows a decreasing sensitivity to 
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soil water content for increasing values of Leaf Area Index (i.e. at the top of the T-VI 
distribution). Another possible reason is that high VI areas in flight line 2 may offer a 
too narrow range of soil moisture (the dry edge would be underestimated at the top of 
the trapezoid); in such situation the present empirical approach for moisture 
evaluation would lead to a biased wetness index. 

- In-situ measured moisture is in % weight whereas SVWI is linked to volume 
water content: indeed meadow soil has generally a lower density than bare soil. 

- In-situ measurements were performed two days after the remote sensing 
campaign. 

Anyway, when excluding the meadow data, the correlation between SVWI and 
gravimetric moisture is reasonably good: the correlation coefficient R

2 reaches 
0.61.

Figure 4. Comparison between the Soil Vegetation Wetness Index (SVWI) computed 

from remote sensing data and the in situ measured moisture. SVWI was obtained by 

using the 2D T-VI distribution in Fig. 3. 

5. Moisture identification from 3D distributions T-VI-αααα or T-VI-CAI

When considering the albedo or the Cellulose Absorption Index (CAI) as an 
additional observable parameter, one gets the 3D distributions reported in Fig. 5. 
When adding a third parameter, the wet edge and the dry edge become bounding 
surfaces.  
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Similarly to the previous case, we defined by computing the 1.5% temperature 
percentile and the 98.5% temperature percentile values over cells obtained after 
discretizing the VI-α plane, respectively the VI-CAI plane. 

Figure 5. Distribution of temperature, Vegetation Index and either albedo (top) or 

Cellulose Absorption Index (bottom). The “wet” surface and the “dry” surface are 

defined to stick to the distributions from bellow and from top. 

The correlation coefficient R2 between SVWI and gravimetric moisture content 
slightly diminishes to 0.57 when using albedo whereas it increases to 0.69 when using 
CAI (see Fig. 6). Therefore introducing the albedo doesn’t seem to provide a significant 
improvement, at least for present types of crops. The use of the Cellulose Absorption 
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Index (CAI) seems to be more promising. This may be due to the fact that this index has 
the ability to separate senescent vegetation, like ripe wheat and harvested wheat, from 
bare soils and from green vegetation. Different classes of surfaces which present highly 
different processes regarding evapo-transpiration but which previously merged in the 
classical T-VI plot, are now separated in the T-VI-CAI plot. 

The proposed Wetness Index map as obtained from the analysis of the T-VI-CAI 
distribution is plotted in Fig. 7. A strong correlation is found between the wetness 
index and the crop type: with only a few exceptions, the rice fields are the wettest, and 
the driest soil is observed in alfalfa fields and ploughed fields. For wheat fields, soil 
moisture decreases when going from ripe vegetation field, to tilled field and then to 
harvested field. Bare soils and tilled wheat fields present similar wetness index. 

Figure 6. Comparison between the Soil Vegetation Wetness Index (SVWI) computed 

from remote sensing data and the in situ measured moisture. SVWI was obtained by 

using the T-VI-CAI distribution in fig. 5-bottom. 

Figure 7. Soil Vegetation Wetness Index (SVWI) map computed from remote sensing 

data by exploiting the T-VI-CAI distribution in fig. 5-right (high water content is 

represented in blue). 
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5. Conclusion

Adding a third observation parameter like CAI or albedo to temperature and 
vegetation index which are used in the classical “triangle method” can bring the 
advantage of discriminating areas having different moisture content but otherwise 
presenting the same T-VI values. A better correlation is thus expected between the 
calculated moisture and the measured one. For the analyzed crops, the addition of CAI 
proved to be efficient, contrarily to albedo. The number of reference data used for the 
correlation analysis was however limited. Other remote sensing databases should be 
considered to further assess the benefit of the proposed method. 
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