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Several attributes intuitively considered to be typical 
mammalian features, such as complex behavior, live birth and 
malignant disease such as cancer, also appeared several times 
independently in lower vertebrates. The genetic mechanisms 
underlying the evolution of these elaborate traits are poorly 
understood. The platyfish, X. maculatus, offers a unique model 
to better understand the molecular biology of such traits. We 
report here the sequencing of the platyfish genome. Integrating 
genome assembly with extensive genetic maps identified an 
unexpected evolutionary stability of chromosomes in fish, 
in contrast to in mammals. Genes associated with viviparity 
show signatures of positive selection, identifying new putative 
functional domains and rare cases of parallel evolution. 
We also find that genes implicated in cognition show an 
unexpectedly high rate of duplicate gene retention after the 
teleost genome duplication event, suggesting a hypothesis 
for the evolution of the behavioral complexity in fish, which 
exceeds that found in amphibians and reptiles.

We sequenced the whole genome of a single platyfish female (XX, 2n =  
46 chromosomes, Jp163A strain; Fig. 1) from generation 104 of con-
tinuous brother-sister matings. Total sequence coverage of 19.6-fold 
(Supplementary Note) produced an assembly with N50 contig and 
supercontig lengths of 22 kb and 1.1 Mb, respecively (Supplementary 
Table 1). Assembly errors, mostly single-nucleotide insertions or  
deletions, were corrected with Illumina paired-end reads. A total of 
669 Mb of the estimated genome length of 750–950 Mb was assem-
bled in contigs. Gene predictions identified 20,366 coding genes,  
348 noncoding genes and 28 pseudogenes (Supplementary Note).

As in other teleosts, transposable elements (TEs) in platyfish were 
highly diverse, including many families absent in mammals1 and 
birds (Supplementary Figs. 1–3, Supplementary Tables 2 and 3 and 
Supplementary Note). We found that 4.8% of the transcriptome was 
derived from TE sequences representing about 40 different families, 
indicating that many of the platyfish TEs are most likely still active. 
The most active TEs were Tc1 DNA transposons (>16,000 copies), 
followed by the RTE family (>9,000 copies). Notably, we identified 
several almost-intact envelope-encoding copies of a foamy retrovirus 
(Spumaviridae) integrated into the platyfish genome (Fig. 2). Foamy 
viruses are known as exogenous infectious agents in mammals2. Only 
recently have endogenous foamy virus sequences that may be used to 
represent a fossil record of infections been described in the genomes 
of the sloth3 and aye-aye4 in mammals and in the coelacanth5.  
A foamy virus–like sequence in zebrafish6, a sequence in cod discov-
ered during this work and the platyfish genome sequence reported 
here show an even broader spectrum of hosts. The molecular phy-
logeny of foamy viruses is consistent with host phylogeny (Fig. 2). 
This result supports the notion of an ancient marine evolutionary 
origin of this type of virus, with possible host-virus coevolution5. 
The nearly intact copies of foamy virus found in the genomes of some 
divergent fish species, absent from other sequenced fish genomes, 
might indicate independent germline introductions through infec-
tion. Exogenous foamy virus had not been described in fish; however, 
our results suggest that exogenous foamy viruses have been and might 
still be infectious in the fish lineage.

Mammalian chromosome homology maps show a patchwork 
arrangement of about 35 large conserved synteny blocks on aver-
age (but about 80 in dog and 200 in mouse) and numerous small 
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blocks assembled in different combinations among the varied species  
and spanning over 90 million years of evolution7. We constructed 
the most extensive meiotic genetic map for any vertebrate yet 
published, which allowed the ordering of X. maculatus scaffolds 
and precise conserved synteny analysis comparing fish genomes 
(Supplementary Note). We used the innovative restriction site–
associated DNA (RAD)-tag approach8 to construct a meiotic map 
consisting of 16,245 polymorphic markers that define 24 link-
age groups equivalent to the haploid chromosome number of the 
platyfish9. Thus, 90.17% of the total sequences in contigs could 
be assigned a chromosomal position. Long-range comparisons  
of the order of genes across species10 identified novel evolutionary 
relationships between platyfish and other teleost chromosomes. 
Medaka, the closest relative with a sequenced genome, also has  

24 chromosomes, and 19 of these showed a strict one-to-one relation-
ship with the platyfish chromosomes (Fig. 3a,b). The remaining five 
platyfish chromosomes were also each orthologous to a single medaka 
chromosome, with the exception of one or two short segments (~1 Mb 
in length) that were located on another medaka chromosome (Fig. 3c 
and Supplementary Fig. 4). Thus, quite a few translocations, all very 
short, have disrupted karyotypes since the divergence of medaka and 
platyfish 120 million years ago11,12. A similar picture emerged from 
comparisons of platyfish chromosomes to those of stickleback (diver-
gence 180 million years ago)11,12. These findings detail the previously 
unknown broad extent to which the genetic content of chromosomes 
in these teleosts has been conserved over nearly 200 million years of 
evolution, a conservation much greater than that found in mammals 
over about half that time7,11,12. This is somewhat unexpected, given 
the teleost genome duplication (TGD) event, because one might have 
thought that the illegitimate pairing of paralogous chromosomes (aris-
ing from TGD) might have facilitated translocations. The mechanisms 
that may have mitigated such translocations remain unknown.

The platyfish is a well-known model in cancer research13. Its genome 
contains a tumor control region (TCR), including the oncogene xmrk14 
that triggers melanoma development. The TCR also contains the tumor 
modifier mdl15,16. mdl allelic variants control the body compartment, 
time of onset and severity of tumors17. In addition, mdl alleles manifest 
in platyfish as a high diversity of genetically defined pigment patterns. 
The mapped genome allowed us to rule out many pigment genes as 
the responsible factors for these sex-associated pigment variants and 
melanoma modifiers. All known pigment genes18 were present in the 
XX female platyfish genome; thus, none is Y chromosome specific. 
Only 6 of the 174 known pigment genes (asip2a, egfrb, muted, myca, 
rps20 and tfap2a) were located on the X chromosome (Xma21). Of 
these six, only the proto-oncogene egfrb resided close enough to the 
melanoma oncogene xmrk (Supplementary Table 4) to be considered 
a candidate gene for mdl. Indeed, biochemical studies have shown 
that Egfrb can cooperate with Xmrk19, but the expression levels of 
these genes are inversely regulated in melanoma20. Further studies 
are needed to evaluate egfrb function and to find other non-classical 
pigmentation gene candidates in this genomic region that may control 
both pigment pattern and melanoma phenotype.

Another so-far-unidentified genetic component of the Xiphophorus 
melanoma model is the R/Diff gene. R/Diff suppresses melanoma 
formation in wild platyfish, and the elimination of its expression by 
interspecies hybridization allows tumor growth. R/Diff was mapped 
to a 10-cM interval on Xma5 near the cdkn2a/b locus21. Despite the 
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Figure 1  The platyfish, X. maculatus. (a) Female (top) and male (bottom) 
platyfish, of strain Jp163A with black pigment spots on the dorsal fin that 
develop when the activity of an X-chromosomal oncogene is appropriately 
controlled. In hybrid genotypes, this control is compromised, and 
malignant melanoma develops from the spots. (b) Phylogenetic position  
of the platyfish relative to other fish species.
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Figure 2  Phylogenetic tree of endogenous retroviruses based on reverse 
transcriptase protein sequences. Foamy virus (FV) sequences (light-blue 
shading) form two distinct phylogenetic groups, one tetrapod specific 
and one teleost specific. Both groups contain endogenous foamy virus 
(EFV) sequences (the ewly identified platyfish and cod sequences are 
highlighted by dark-blue shading). Alignment was carried out with 
ClustalW (223 amino acids), and the phylogenetic tree was constructed 
with the PhyML package using maximum-likelihood methods38 with 
default bootstrap (shown at the beginning of branches) and optimized 
calculation options. FV, foamy virus; MuERV-L, Mus musculus endogenous 
retrovirus-L; BAEV, baboon endogenous virus; FENV1, feline endogenous 
virus 1; EFV, endogenous foamy virus, MLV, murine leukemia virus;  
HERV-K, human endogenous retrovirus-K; MMTV, mouse mammary  
tumor virus; HIV-1, human immunodeficiency virus-1. The scale bar 
represents the number of substitutions per site.
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eggs before fertilization, with the exception of one gene that evolved 
under positive selection, vitellogenin1 (Supplementary Fig. 5a).

Three of 13 platyfish genes, whose mammalian orthologs are related 
to placenta development, evolved under positive selection (Fig. 4a, 
Supplementary Fig. 5b–d and Supplementary Table 5). Igf2, which in 
mouse regulates placenta permeability33, evolved under strong positive 
selection in platyfish (Fig. 4a), which particularly affected the region 
distal to the proteolysis site. The igf2 sequence33 was also available from 
another poeciliid, the desert topminnow Poeciliopsis lucida, which shares 
a livebearing ancestor with Xiphophorus species but differs in having 
evolved placentation recently. In the desert topminnow, the same region 
as in platyfish evolved under positive selection, but the selection was even 
stronger (Supplementary Fig. 5b), suggesting ongoing molecular adaptive 
evolution since the two genera containing these fish diverged several mil-
lion years ago. The two other placental genes, pparg and ncoa6, had mul-
tiple regions with signals for positive selection outside known functional 
domains, suggesting novel regions important for viviparity. The same genes 
under selection in livebearing fish, however, did not show positive selec-
tion signatures when orthologous genes from the egg-laying platypus and 
from marsupials and placental mammals were analyzed (Supplementary 
Table 6). This result is in line with the fact that the placentas of mammals 
and fish are convergent but not homologous structures.

Zona pellucida (Zpc) genes, which produce a glycoprotein-rich  
coat surrounding the oocyte plasma membrane, showed the most 
pronounced changes. alveolin was lost from the platyfish genome. 
Conversely, choriogeninH minor, choriolysinL, choriolysinH and zvep 
evolved under positive selection (Fig. 4b, Supplementary Fig. 5e–g 
and Supplementary Table 5). In Xenopus laevis, Zpc genes control 
species-specific sperm binding and help ensure that only conspecific  
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Figure 3  Conserved syntenies between platyfish and medaka. (a) The 
medaka orthologs of genes on X. maculatus chromosome 9 (Xma9) tend 
to lie on Oryzias latipes chromosome 4 (Ola4), showing that the genic 
content of these chromosomes has remained intact with no translocations 
in the 120 million years since the lineages of these species diverged. 
Each gray dot along the horizontal axis labeled Xma9 represents the 
position of a platyfish gene whose medaka ortholog (as judged by 
reciprocal best-BLAST hit analysis) lies directly vertical to the Xma9 gene, 
plotted on the appropriate medaka chromosome10. (b) Reciprocally, nearly 
all of the platyfish orthologs of genes on medaka chromosome Ola4 lie 
on Xma9. (c) Nearly all of the medaka orthologs of Xma19 lie on Ola22, 
except for a segment about 1 Mb long at position 20 Mb on Ola22 that 
appears on Ola24 (dashed box).

orthologous human CDKN2A gene being a well-described tumor sup-
pressor gene in certain human melanomas22, cdkn2a/b was excluded 
from being R/Diff because it is not mutated but is instead overex-
pressed in the Xiphophorus melanoma model23. The Xma5 sequence 
now defines a number of R/Diff candidate genes for further explo-
ration. For example, scaffold 182 (1,085,500 bp), which harbors 
cdkn2a/b, contains several genes with high potential of having a role 
as the R/Diff tumor suppressor (for example, tet2, cxxc4, mtap, topo-rs, 
mdx4 and pdcd4a). Alternatively, the region may represent a complex 
locus comprising several genes that act in a synergistic or compensa-
tory manner to regulate the xmrk oncogene, consistent with previ-
ous reports of spontaneous and induced carcinogenesis in the many 
Xiphophorus interspecies hybrid tumor models24–26.

Viviparity is an elaborate reproductive mode involving diverse levels 
of maternal investment in offspring, ranging from fully provisioning eggs 
before fertilization and retaining them through development to mini-
mally provisioning eggs before fertilization and provisioning them after 
fertilization via a placenta, as in mammals. The fish family Poeciliidae, 
a monophyletic clade of more than 260 species27, is unusual in includ-
ing species that span the spectrum from negligible to extensive post- 
fertilization provisioning28,29. The platyfish genome is the first from a 
non-mammalian viviparous vertebrate. We performed analysis in platy-
fish as well as in a second livebearing fish, the swordtail Xiphophorus  
hellerii, both of which have well-provisioned eggs before fertilization30,31, 
of 3 groups of viviparity genes (yolk, placenta and egg coat genes; n = 34) 
for gene loss and positive selection compared to 4 species of egg-laying 
teleosts (medaka, tetraodon, stickleback and zebrafish).

In mammals, the rise of viviparity has been proposed to involve the 
progressive loss of vitellogenins (yolk precursors)32. In platyfish and 
swordtail, all yolk-related genes (vitellogenins and their transporters/
receptors; Supplementary Table 5) were present and evolved under 
purifying selection, consistent with both species fully provisioning 
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sperm released into the aqueous environment fertilizes eggs34. 
Viviparous fish, however, have internal fertilization, where species-
specific sperm recognition would not be as crucial. Compared to 
egg-laying fish, the eggshell in these fish is expected to have adapted 
to development inside the mother, as it is no longer essential for 
protection but must facilitate gas and material exchange. Hatching 
enzyme genes zvep and choriolysinH showed fast-evolving sites gen-
erally located adjacent to the catalytic domains (Supplementary 
Fig. 4f,g), indicating that, during the evolution of viviparity, these 
enzymes might have altered interactions with target or regulatory 
proteins. Notably, in choriogeninH minor, the same regions, in par-
ticular in the zona pellucida domain, evolved under positive selection 
in both mammals and fish (Fig. 4b). This is a noticeable example of 
how convergent evolution at the molecular level manifests on the 
physiological and ultimately morphological levels.

Our analyses of the consequences of TGD uncovered a functional 
class of genes that raised our interest because Xiphophorus fish in 
particular and teleosts in general show a pronounced high level of 
behavioral complexity35 that other groups of ‘cold-blooded’ verte-
brates such as amphibians and reptiles do not achieve. Using the 
platyfish genome and gene annotations from six other sequenced 
teleosts, we asked whether duplicate gene retention from the 
TGD event could produce through subfunctionalization (differ-
ential retention of ancestral subfunctions) and/or neofunction-
alization (acquisition of new subfunctions)36 the acquisition of 
more complex behaviors. We compared 190 cognition-related  
genes (Supplementary Table 7 and Supplementary Note) to those 
involved in pigmentation (133 genes, for which increased gene rep-
ertoires have been connected to the high complexity and diversity 

of teleost coloration) and liver functions (187 genes)18 as controls. 
Analysis of cognition-related genes showed a high duplicate retention 
rate of 45% in platyfish and similar values in other teleosts (Fig. 5  
and Supplementary Fig. 6) compared to the rates seen for genes 
related to pigmentation (30%) and liver function (15%). The average 
duplicate retention rate over all genes in teleost genomes is estimated 
at 12–24% (ref. 37). We found no bias in genes from all three functional  
categories (cognition, pigmentation and liver function) that were 
retained after TGD owing to dosage sensitivity or protein complex mem-
bership (Supplementary Tables 8 and 9 and Supplementary Note),  
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but a bias in the cognition genes (but not liver function and pigmen-
tation genes) for particularly large proteins (>1,000 amino acids in 
length) was found (Supplementary Fig. 7, Supplementary Table 10 
and Supplementary Note). Plotting gene losses on the phylogenetic 
tree showed that cognition gene retention was already fixed shortly 
after TGD and before teleost diversification. This finding supports 
the hypothesis that paralog retention from the TGD event may have 
supported the high level of behavioral complexity in Xiphophorus 
and other teleosts.

The platyfish genome sequence and analysis have provided new 
perspectives for several prominent features of this fish model, includ-
ing its livebearing reproductive mode, variation in pigmentation pat-
terns, sex chromosome evolution in action, complex behavior and 
both spontaneous and induced carcinogenesis17. Teleosts dominate 
the extant fish fauna, and, within teleosts (Fig. 1b), the Poeciliidae 
family, including platyfish, swordtails, guppies and mollies, is a para-
digm of this wide spectrum of adaptations. Our study of this first 
genome of a poeciliid fish illuminates some teleost evolutionary adap-
tations and provides an important resource to advance the study of 
melanoma and other segregating phenotypes.

URLs. Xiphophorus Genetic Stock Center (XGSC), http://www.
xiphophorus.txstate.edu/; Platyfish BAC Library, http://bacpac.
chori.org/library.php?id=353; Oases software package, http://www.
ebi.ac.uk/~zerbino/oases/; PHRINGE resource, http://xiphophorus.
genomeprojectsolutions-databases.com/; MiRscan tool, http://genes.
mit.edu/mirscan/; RepeatMasker, http://repeatmasker.org/; Geneious 
software package, http://www.geneious.com/; platyfish transcriptome, 
http://avogadro.tr.txstate.edu/cgi-bin/gb2/gbrowse/XM_ncbi442/ 
and http://avogadro.tr.txstate.edu/Xiph_data_link/stable/Xm_ 
transcriptome_v4.0/; platyfish gene models, http://xiphophorus.
genomeprojectsolutions-databases.com/ and http://avogadro.
tr.txstate.edu/Xiph_data_link/stable/Xm_JB_gene_models/; multispe-
cies RNA database, http://www.ensembl.org/info/data/ftp/index.html; 
platyfish genome at Ensembl, http://www.ensembl.org/Xiphophorus_
maculatus/Info/Index; GenBank assembly GCA_000241075.1, http://
www.ncbi.nlm.nih.gov/genome/assembly/?term=GCA_000241075.1; 
genomic variants database, http://dgvbeta.tcag.ca/dgv/app/home; 
Human Protein Reference Database, http://www.hprd.org/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. All sequence data have been deposited in the NCBI 
database under accession AGAJ00000000. All annotated sequences, 
genes, transcripts and proteins are available from http://www.ensembl.
org/Xiphophorus_maculatus/Info/Index and http://xiphophorus.
genomeprojectsolutions-databases.com/. Transcriptome data are 
deposited at http://avogadro.tr.txstate.edu/Xiph_data_link/stable/
Xm_transcriptome_v4.0/.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Source material. DNA for genome sequencing was derived from a single 
female X. maculatus, strain Jp163A (sample XMAC-090115_JP163A) from 
the Xiphophorus Genetic Stock Center (XGSC) at Texas State University  
(San Marcos, Texas, USA). The Jp163A line is maintained exclusively by 
brother-sister matings. The sequenced fish came from generation 104.  
A female fish was chosen because of its XX sex chromosome constitution. 
RNA that was sequenced to assemble the Jp163A reference transcriptome was 
isolated from two stages of pooled embryos (stages 15 and 25), a single 5-d-old 
individual and a 1-month-old fry, a single male and female at 2 months of age, 
one 9-month-old female, one 15-month-old male and the testes and ovaries 
of a single male and a single female 10-month-old fish.

A Jp163A BAC library (average insert size of 160 kb; 10× genome cov-
erage with a total of 43,192 clones available)40 was produced from subline 
WLC#1247, maintained at the Biocenter Fish Facility (BFF) at the University 
of Würzburg (Würzburg, Germany). WLC#1247 was separated from the 
XGSC Jp163A line after approximately generation 50 and then maintained 
by inbreeding at BFF.

For RAD-tag mapping, one X. maculatus Jp163A male (WLC#1325, BFF) 
was crossed with an X. hellerii female (strain Rio Lancetilla, Db-, WLC#1337, 
BFF). Two F1 hybrid females from this cross were then backcrossed to X. hellerii  
males, and DNA from 267 backcross individuals was used for analysis.

Genome sequencing. All genomic sequences for de novo assembly were generated 
on Roche 454 Titanium and Illumina Genome Analyzer IIx instruments, with the 
exception of the BAC-end sequences, which were generated on an ABI3730.

Physical map. A physical map indicating tiling paths of X. maculatus contigs 
was constructed by generating fingerprints from the WLC-1247 BAC library 
(see URLs)40.

Genome assembly. Two independent assemblies were built with all sequence 
data, using the Newbler (Roche) and PCAP41 algorithms from ~19.6× total 
sequence coverage in whole-genome shotgun reads, a combination of 12× 
fragments, 9× 3-kb fragments, 0.38× 20-kb fragments and 0.02× BAC-end 
read pairs. A merged assembly was achieved by assigning the Newbler assem-
bly as the reference and aligning the PCAP assembly via BLAT, followed by 
assimilation of all aligned scaffolds using an established graph accordance 
method42. Assembly consensus base error correction was accomplished by 
aligning Illumina reads (75-base paired-end reads, insert size of 200 bp), 
the same DNA source used for the reference, to the reference assembly 
using the Genomics Workbench v.4.03 software (CLC Bio). A consensus 
sequence was then created that factored the quality scores of both the refer-
ence assembly and the individual Illumina reads (Supplementary Fig. 8 and 
Supplementary Note). The annotated platyfish genome sequence is available 
at NCBI (AGAJ00000000).

Transcriptome sequencing and annotation. Total RNA was isolated from 
platyfish tissues using the RiboPure Total RNA Isolation kit (Ambion). mRNA 
was isolated from total RNA using the Micro-PolyA Purist kit (Ambion). 
mRNA was reverse transcribed with SuperScript III Reverse Transcriptase 
(Invitrogen) using random hexamer primers (Invitrogen). Second-strand 
cDNA was synthesized using random primers and 15 U of Klenow DNA 
polymerase exo-minus (Epicentre). Double-stranded cDNA was sheared in 
a Bioruptor (Diagenode) for 30 cycles (30 sec on, 60 sec off). Sheared DNA 
was end repaired with the End-It DNA repair kit (Epicentre), and adenine 
overhangs were added with Klenow DNA polymerase exo-minus. cDNA 
was ligated to adapters overnight, and 100 ng was PCR amplified for 12 
cycles with Phusion DNA polymerase (New England Biolabs). Each mRNA 
sample was sequenced on an Illumina Genome Analyzer IIx (60-bp reads). 
The X. maculatus transcriptome was assembled by combining sequences  
from several tissues, including heart, liver, brain, ovaries and testes, as well 
as from embryonic stages 15 and 25. For the X. hellerii transcriptome, RNA 
from 1-month-old whole fish and from the brain, liver, ovaries and testes 
of mature fishes was sequenced and assembled. Transcriptome sequences 
were aligned to the genome assembly contigs using Bowtie43, then assembled 
using the Velvet/Oases package (see URLs)44, reporting putative transcripts 

and splice variants using a coverage cutoff of 4, an insert length estimate of 
120 bp and other parameters at default values.

Gene models and annotation. Gene annotation using Ensembl genebuild was 
carried out on assembly Xipmac4.4.2 (GenBank Assembly GCA_000241075.1; 
see URLs).

Another gene identification analysis was performed by a combination of 
gene prediction and transcriptome integration. We used ab initio modeling 
with Augustus45 that had been trained on the medaka gene set and on the 
alignment of full-length gene models of medaka and zebrafish (both from 
Ensembl) using BLATX46. Transcriptome sequences were aligned to the 
assembly scaffolds using Bowtie43, the alignment was adjusted for the most 
likely exon-intron boundaries using TopHat47, and gene models were cre-
ated using Cufflinks48. Only those transcripts containing a complete ORF 
and transcript read coverage of at least 3× were retained, and these were rec-
onciled into a single set of 33,756 unique potential protein-encoding genes. 
These gene models were further culled to a subset of 17,783 that are amenable 
by phylogenetic analysis to entry into a whole-genome evolutionary inter-
pretation using PHRINGE (Phylogenetic Resources for the Interpretation of 
Genomes) system (see URLs) by eliminating any transcripts shorter than 300 
nucleotides and retaining only the longest version of any splice variant at 
each locus (Supplementary Fig. 9, Supplementary Tables 11 and 12 and 
Supplementary Note).

Estimation of gene number by transcriptome similarity. We identified 
known genes by reciprocal BLASTX49 searches of the de novo transcriptome 
assembly against medaka, stickleback, fugu, tetraodon, zebrafish and human 
Ensembl gene libraries. To control for the inclusion of alternate transcript 
forms, we grouped these by the locus number as reported by Oases50.

Estimation of the number of novel genes. To identify novel genes, we first 
reduced the redundancy of the platyfish transcriptome by clustering similar 
(with >95% identity) sequences. Sequences from clusters with no identifi-
able members were filtered to remove sequences that mapped (by GMAP51) 
with less than 99% identity to the genome or had predicted coding sequences 
shorter than 300 bp. Finally, identities for the remaining sequences were  
sought in the “nr” database (NCBI). Separate clustering by  
genomic distance (1 kb) produced a very similar gene number estimate 
(Supplementary Table 13 and Supplementary Note).

Annotation of noncoding RNAs. To detect small nucleolar RNA (snoRNA), 
small nuclear RNA (snRNA), microRNA and rRNA, homology-based pre-
diction was carried out using the multispecies RNA database (see URLs) 
comprised of zebrafish, stickleback, medaka and Takifugu noncoding RNA 
libraries. tRNAs were annotated using tRNAscan-SE.21 software locally 
on Linux52. rRNAs, microRNAs, snRNAs and snoRNAs were predicted by 
BLASTN using other fish noncoding RNA databases as queries, and duplicates 
were removed from the output files (Supplementary Tables 14 and 15). Fish 
databases were downloaded from Ensembl on the following genome versions: 
zv9 (Danio rerio), BROADS1 (Gasterosteus aculeatus), HdrR (O. latipes) and 
FUGU4.0 (Takifugu rubripes). microRNA sequences were identified with the 
Vienna RNA package of MiRscan (see URLs).

Annotation of TEs. Both manual and automatic classification of TEs, on the 
basis of Wicker’s nomenclature53, were performed, and identified elements 
were combined into a single library. Two TEs were considered to be differ-
ent if their sequences diverged by more than 20% at the nucleotide level. 
Manual classification was carried out by searching TE sequence homology 
using CENSOR54 software, by homology searching specific TE proteins using 
TBLATN and BLASTP, by identifying terminal repeat features (TIRs, LTRs and 
TSDs) using BLASTN2 and LTR_FINDER software55, and by reconstructing 
phylogeny using ClustalW alignment and maximum-likelihood calculation 
(default aLRT) using the PhyML package38. Phylogenetic reconstructions for 
the DNA, long interspersed nucleotide element (LINE) and long terminal 
repeat (LTR) classes (Supplementary Figs. 1–3) were based either on com-
parisons of transposase or reverse transcriptase proteins. An automatic repeat 
library was built with RepeatScout software using default parameters on the 
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supercontig assembly corrected for homopolymer errors. The percentage of 
TEs in the genome was determined from unassembled reads by locally running 
RepeatMasker software (see URLs) on the UNIX system.

Construction of a meiotic map using RAD tags. Genomic DNA from map 
cross parents and progeny was digested with the restriction enzyme SbfI (New 
England Biolabs), and adapters with five-nucleotide barcodes each differing by 
at least two nucleotides were ligated onto fragments. RAD-tag libraries were 
made as described8. A 50-ng aliquot of size-selected DNA was PCR ampli-
fied for 12 cycles, and fragments 200 to 500 bp long were gel purified and 
sequenced using 80-nucleotide single-end reads on an Illumina HiSeq2000 
sequencer. An equal amount of barcoded DNA from each of 16 progeny was 
loaded onto each lane. Low-quality reads and ambiguous barcodes were 
discarded. We used Stacks software56 to sort retained reads into loci and 
to genotype individuals by implementing the likelihood-based SNP calling  
algorithm57 to distinguish SNPs from sequencing errors. Stacks exported data 
into JoinMap 4.0 for linkage analysis using markers that were present in at 
least 200 of 267 individuals.

Assigning scaffolds to map positions. To finalize assembly scaffold order and 
orientation, we used the high-density meiotic map to assign genome contigs 
to the genetic map. Using 14,391 marker sequences, we could reliably align 
1,950 scaffolds to all linkage groups. Of these, 231 scaffolds contained blocks 
of markers from more than 1 linkage group, suggesting a misassembly event. In 
these cases, we manually split the scaffolds to maintain order with the genetic 
map (Supplementary Note).

Genome synteny. For the analysis of conserved syntenies, the Synteny 
Database was employed using parameters as described10. In constructing the 
dot plots, for each gene along a specific platyfish chromosome, the Synteny 
Database identifies orthologs and paralogs by reciprocal best-BLAST analysis 
and plots positive results on the chromosomes of the same or other species 
directly above the index gene on the index chromosome.

Analyses of viviparity-related genes. Thirty-four protein-coding genes 
known to function in yolk production, placenta-related characteristics and 
zona pellucida structures were selected as candidate genes (Supplementary 
Note) for the evolution of viviparity among Xiphophorus fishes. Eighteen ran-
domly selected genes were used for control. Orthologous sequences for these 
genes from four fish species (O. latipes, G. aculeatus, Tetraodon nigroviridis 
and D. rerio) were retrieved from the Ensembl database and aligned using the 
MAFFT translation alignment. PAML (version 4.4, linux 64 bit) was imple-
mented to test whether genes were under positive selection using a branch 
site–specific model (see URLs). Genes with P values less than 0.05 in likeli-
hood ratio tests were designated as positively selected in Xiphophorus, and the 
Bayes empirical Bayes method58 was further used to calculate the selection 
pressure at each site.

Analysis of post-TGD gene retention. The orthologs in human, mouse 
and teleosts of genes involved in cognition, pigmentation and liver function 
were obtained from Ensembl65, and missing gene annotations were iden-
tified with TBLASTN (Supplementary Table 7 and Supplementary Note). 
EnsemblCompara GeneTrees were checked for teleost duplications, and TGD-
based duplications were confirmed using the Synteny Database10. Xiphophorus 
orthologs were identified from transcriptome v4 and the genome using BLAST 
searches, and assignment was confirmed with the Synteny Database. Potential 
bias in TGD-derived duplicate retention due to dosage sensitivity, protein 
complex membership and gene length was tested (Supplementary Note).
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