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Abstract

Pest Risk Analyses (PRAs) are conducted worldwide to decide whether and how exotic plant pests should be regulated to
prevent invasion. There is an increasing demand for science-based risk mapping in PRA. Spread plays a key role in
determining the potential distribution of pests, but there is no suitable spread modelling tool available for pest risk analysts.
Existing models are species specific, biologically and technically complex, and data hungry. Here we present a set of four
simple and generic spread models that can be parameterised with limited data. Simulations with these models generate
maps of the potential expansion of an invasive species at continental scale. The models have one to three biological
parameters. They differ in whether they treat spatial processes implicitly or explicitly, and in whether they consider pest
density or pest presence/absence only. The four models represent four complementary perspectives on the process of
invasion and, because they have different initial conditions, they can be considered as alternative scenarios. All models take
into account habitat distribution and climate. We present an application of each of the four models to the western corn
rootworm, Diabrotica virgifera virgifera, using historic data on its spread in Europe. Further tests as proof of concept were
conducted with a broad range of taxa (insects, nematodes, plants, and plant pathogens). Pest risk analysts, the intended
model users, found the model outputs to be generally credible and useful. The estimation of parameters from data requires
insights into population dynamics theory, and this requires guidance. If used appropriately, these generic spread models
provide a transparent and objective tool for evaluating the potential spread of pests in PRAs. Further work is needed to
validate models, build familiarity in the user community and create a database of species parameters to help realize their
potential in PRA practice.
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Introduction

Due to the intensification of world trade and the increase of

travel and human activities throughout the world, more and more

species are transported from their native area to new territories

[1,2]. Although only a small proportion of species are capable of

establishing and spreading [3], it has been suggested that this

proportion may be increasing due to global warming [4]. The

number of non-indigenous terrestrial invertebrates and pathogens

established outside their native area has been increasing dramat-

ically in Europe in the last century [5,6], causing serious concern

for the European economy and environment [5,7,8]. Effective

phytosanitary measures are required to revert or slow down this

trend [9–11].

To assess the risk caused by invasive alien plant pests, Pest Risk

Analyses (PRAs) are conducted on pest species to evaluate the

probability of entry, establishment, spread and their potential

impact in the PRA area. The conclusions of a PRA are used to

decide whether risk management measures are required, and to

determine which measures are the most appropriate [12]. The

potential impacts associated with a pest invasion influence how

much effort may be justified for prevention or management [13].

Potentially vulnerable assets can be identified using bioclimatic

modelling tools, however, economic theory holds that for two pests

that have similar vulnerable assets, the faster-spreading one is

more costly, because its impacts will accrue more rapidly [13,14].

Evaluating the potential spread of a pest in the PRA area is

challenging because both spatial and temporal processes are

involved. Besides, the area of potential establishment, the presence
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of natural dispersal barriers, the dispersal capability of individuals,

the potential vectors of the pest, the potential movements with

commodities and transport, but also predators, mutualisms and

many other biotic and abiotic factors can be involved [15,16].

Formal PRA schemes (e.g. [17]) typically require qualitative

assessments of potential spread, through answers to questions such

as: ‘‘How does the pest spread?’’, ‘‘How far can the pest spread

within a given time?’’, ‘‘How fast can the pest invade the area of

potential establishment?’’ and levels of uncertainty are often

requested. Such qualitative assessments of the potential spread rely

on expert judgment. Extrapolation can be made from other

situations: the spread of the pest in another region or the spread of

a closely related species (see PRAs made by the European and

Mediterranean Plant Protection Organization, EPPO, [18]). In

some cases, the qualitative assessment of potential spread is

insufficient, and quantitative estimation is desirable, especially

when the cost-effectiveness of phytosanitary measures is at stake

[19].

Theoretical models have been developed to quantify spread

based on reaction-diffusion models (e.g. [20–23]). When these

models do not fit the observed spread pattern because of long

distance dispersal, stratified dispersal models that combine long

distance jumps with local spread can be used [24,25]. Some

specific spread models have been developed to simulate the

potential spread of a species taking into account human-assisted

dispersal (e.g., [26–30]). These models address details of the life

cycle and dispersal mechanisms, and they take considerable time

and effort to develop, parameterise and test. It is not realistic to

request the development of species-specific complex models in

real world PRAs because risk assessors are generally not

modellers, and they lack the time, resources and training to

do it. Instead, there is a need for generic modelling tools in

PRAs that can be used by risk assessors to capture the main

processes driving the invasion process of alien species. While

developments towards generalization and more unified applica-

tion of complex modelling platforms in spread modelling for

PRA are underway (e.g. [25,31,32]), there is as yet no

modelling toolbox that risk assessors may use to conduct rapid

appraisals of pest spread in the context of a PRA.

The European Union 7th Framework project PRATIQUE

[33] aimed to deliver new tools to assist the risk assessor in the

PRA. In this project, we developed a prototype for a generic

spread modelling toolbox that risk assessors may use in PRAs in

the future. The prototype consists of a suite of parsimonious

ecological models for population growth and dispersal processes,

with linkages to fundamental niche maps, based on climate

suitability and presence of hosts or non-climatic habitat factors.

While most of the model components are well established in the

ecological literature, they have never before been brought

together in an overarching integrated framework meant for

future use (after appropriate testing and familiarization) in PRA.

We conducted several case studies in collaboration with

practical pest risk analysts with specific species knowledge to

test the tools and develop a proof of concept. We present one

case study in detail for illustration, including a sensitivity

analysis. Finally, we report on the first expert feedback collected

from these case studies. A detailed tutorial on the generic

spread models is provided in Materials S1. Case studies are

detailed in Materials S2. The spread module package which

includes the R code and the files used for case studies can be

downloaded at a permanent repository of the Royal Dutch

Figure 1. Classification of the models used for calculating scenarios of pest spread. Models A and B are models for occupancy of cells
(presence/absence) on the PRA area. Models C and D are models for pest density. They calculate pest abundance within cells at given times t. Within
each class, one model considers the process of spread only in the time dimension (A, C) while the other model considers processes in both time and
space (B, D). The four models are further described in the text.
doi:10.1371/journal.pone.0043366.g001

Generic Spread Models for Pest Risk Analysis
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Academy of Arts and Sciences: http://www.persistent-identifier.

nl/?identifier = urn:nbn:nl:ui:13-jz0d-d5.

Materials and Methods

Definition of the Area of Potential Establishment
To apply the spread models for an invasive species, it is firstly

necessary to define the area of potential establishment (the

fundamental niche) of the alien species. This area is defined by

favourable climatic conditions for long-term survival, the avail-

ability of host plants for plant pests and pathogens, suitable

habitats and other abiotic factors, e.g. soil pH for plants and soil-

dwelling organisms such as nematodes. Assessing the establishment

potential of a pest in a PRA area is part of all PRA procedures and

there is a large variety of methods and information sources to

inform such assessments (e.g. [17,34–36]).

Here we used the outputs of a CLIMEX model run on gridded

climatic data [37–39] to define the area of potential establishment.

We used two CLIMEX outputs in the spread modelling. These are

the Ecoclimatic Index (EI, from 0 to 100) and the annual Growth

Index (GIA, from 0 to 100; from here on written as GI), where the

EI characterizes the suitability of the climate for long term survival

and the GI indicates the potential for population growth during

favourable seasons [38]. The CLIMEX model was run on a

0.560.5 degree grid [40]. As the dimensions of grid cells are

defined in degrees, the size of grid cells varies with Latitude

(Materials S1). To ensure consistency between map layers, the

spread model implementation uses the grid on which the climatic

and host inputs are defined. In the applications in this paper, the

simulation grid for spread modelling is therefore a 0.560.5 degree

grid. We define a ‘‘suitable cell’’ as a cell located within the area of

potential establishment, based on climate and host or habitat, and

an ‘‘invaded cell’’ as a cell that is not only suitable but also

occupied by the study species. Unsuitable cells cannot be occupied.

Description of the Spread Models
The four models developed here can be uniquely classified by

considering two criteria (Fig. 1):

– whether the output variable is the occupancy of the pest

(presence/absence – models A and B) or the pest density

(percentage of the carrying capacity – models C and D) in each

grid cell,

– whether the model ignores the geographical distance between

the cells (spatially implicit – models A and C) or describes both

temporal and spatial processes taking into account dispersal

distance (spatially explicit – models B and D).

Models A and C are not true spread models in a strict sense

because they primarily focus on population growth over time

which influences, but does not directly predict, the potential for

population spread in space. However, these simple demographic

models describe an important component of the invasion process

and provide part of the theoretical basis for some true invasion

models. They partly explain the spread rate (see [41]). Further-

more, these models have potential usefulness for PRA. We

therefore consider all of these four models and call them ‘‘spread

models’’ for brevity. Hereafter these models are described in more

detail.

Model A: Output Variable is Occupancy and Model
Ignores the Geographical Distance

The first model describes the logistic increase of the invaded

area over time [42,43]. The invaded area is determined by the

number of cells and these cells are then allocated to positions

within the area of potential establishment depending on their asset

value, according to three scenarios: best, worst, and random. This

occupancy model considers the increase of the number of invaded

cells over time, starting from one or more invaded cells at the

beginning of the simulation. The final state of the model is that all

cells that are in the area of potential establishment are occupied.

The logistic growth model is implemented as a difference equation

at a one year time step:

nt~
n0 exp (r t)

1zn0( exp (r t){1)=100
ð1Þ

Figure 2. Four cross sections through a rotated t distribution for u = 100 km, and n = 2 (grey line), n = 5 (black dashed line), n = 20
(thin black line), and n = 100 (thick black line). In A, the kernels are shown with linear y-scale, whereas in B the same kernels are shown with
logarithmic y-scale to bring out the differences in the fatness of the tails of the distributions.
doi:10.1371/journal.pone.0043366.g002

Generic Spread Models for Pest Risk Analysis
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where nt is the number of invaded cells as a percentage of the

number of cells within the area of potential establishment at time t,

and r is the relative rate of increase of the invaded area (yr21). The

user needs to identify one initial value, the percentage of cells

initially invaded (n0, %) and estimate a single parameter, r, which is

the only parameter in the model. In addition, the user needs to

provide data on the economic values of assets (affected hosts)

across the area of potential establishment because the model takes

into account values at risk in each cell and assigns the new

invasions preferentially to the most valuable cells in the worst case

scenario, or to the least valuable cells in the best case scenario.

There is also a random dispersal scenario in which invaded cells

are assigned irrespective of their asset value. The economic impact

is calculated directly in each of these scenarios by adding the asset

value over all invaded cells at a given time t. The resulting number

estimates the total asset value at risk in invaded cells. A damage

function that calculates the actual yield loss in the invaded cells is

not included here, but would be straightforward to add. The

results can be summarized in a bar chart representing the

frequency of invaded cells according to their economic value.

Results can also be presented on a map, but the user should be

aware that the location of invaded cells at time t is generated by a

spatially implicit model that does not explicitly consider spatial

processes.

Model B: Output Variable is Occupancy and Model
Considers the Geographical Distance

The second model is also an occupancy model. It simulates

radial range expansion at a constant rate c (km/yr). Since the

outcome is similar to reaction diffusion models (which generate an

invasion wave with a constant asymptotic speed [44]), model B can

Figure 3. Suitable areas for Diabrotica virgifera virgifera and value of assets. A: Area where the ecoclimatic index (EI) is above zero, B: Growth
index (GI) (source for A and B: Kriticos et al. 2012), C: Percentage of area covered by grain and forage maize, and D: Value of grain and forage maize in
euros per km2 (source for C and D: McGill University 2011).
doi:10.1371/journal.pone.0043366.g003

Generic Spread Models for Pest Risk Analysis
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be regarded as a simplified version of reaction diffusion models

and the expansion rate c as an integrated estimate of both mean

distance of dispersal and population growth. The user should

provide the initial point(s) of entry, and the model will generate

circles around this for different times t. The distance between

circles describing the invaded range in subsequent years is defined

by the radial rate of range expansion c. These circles represent the

border of the maximum range and all suitable cells located in this

range are considered invaded. In sum, this model has one

parameter, c, and needs one or more entry points of the pest as

initialization.

Model C: Output Variable is Density and Model Ignores
the Geographical Distance

The third model is a density-based population dynamics model

that describes logistic growth of the pest population independently

within each cell. In this model, all suitable cells are initially infested

at a relative density p0, expressed as a percentage of a carrying

capacity Pmax. The initial relative density p0 is specified by the risk

assessor. Population density at time t, pt, is expressed on a scale of

0–100 where 0 represents absence of the population and 100

represents the carrying capacity, Pmax. This carrying capacity is

defined as the maximum population abundance in a cell with an

average size and a given proportion of host cover. The proportion

Table 1. Parameter estimates for four spread models in seven case studies*.

Parameters

Species Group CLIMEX model Model A Model B Model C Model D

Diabrotica virgifera
virgifera

Insect Kriticos et al. 2012 [54] r = 0.33 yr21 c = 80 km/yr Pmax = 6.361010

l max = 40
Pmax = 6.361010

l max = 40 u = 80 n= 5

Anoplophora
chinensis

Insect D. Eyre, based on DeBoer
(2004) [78]

Not applied c = 1–2 km/yr Pmax = 1.9–196107

l max = 6
Pmax = 1.9–196107

l max = 6 u = 2 n= 10–
50

Anoplophora
glabripennis

Insect D. Eyre, based on DeBoer
(2004) [78]

Not applied c = 1.5–3 km/yr Pmax = 7.58–156106

l max = 5
Pmax = 7.58–156106

l max = 5
u = 1.5–3 n= 30–50

Eichhornia crassipes Plant EPPO & D. Kriticos [79] Not applied c = 30–100 km/yr Pmax = 76107 tons
(of the plant)
per grid cell
l max = 30

Pmax = 76107 tons (of
the plant) per grid cell
l max = 30
u = 30–70 n= 10–50

Meloidogyne
enterolobii

Nematode Z. Ilieva, unpublished Not applied c = 10–30 km/yr Pmax = 6.261014

l max = 9.7
Pmax = = 6.261014

l max = 9.7
u = 10–30 n= 10–50

Bursaphelenchus
xylophilus/
Monochamus

Nematode/
Vector beetle

C. Robinet unpublished,
derived from Mediterranean
template*

r = 0.27 yr21 c = 6–35 km/yr Pmax = 14.69 infested
trees per grid cell
l max = 8.76

Pmax = 14.69 infested
trees per grid cell
l max = 8.76
u = 35 n= 5

Gibberella circinata Pathogen Ganley et al. (2009) [80] Not applied Not applied Pmax = 5.216108

l max = 2.72
Pmax = 5.216108

l max = 2.72
u = 1 n = 2

*Details are given in Materials S2.
doi:10.1371/journal.pone.0043366.t001

Figure 4. Frequency distribution of the potential economic impact of pest invasion in three scenarios of model A in a case study
based on Diabrotica virgifera virgifera. The potential economic impact is quantified by accumulating the asset value in invaded cells in 2010. These
three figures correspond to (A) best case scenario, (B) worst case scenario (C) random case scenario. Spread model A is based on logistic increase
(r = 0.33 yr21) in the number of invaded cells on the map.
doi:10.1371/journal.pone.0043366.g004

Generic Spread Models for Pest Risk Analysis
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of host cover can be made cell-specific if sufficient data are

available, but it is assumed to be spatially homogeneous in the case

studies presented here. The population density within each

suitable cell is calculated using a logistic growth function with a

yearly time step and a yearly multiplication factor l:

pt~
p0 exp ( ln (l)t)

1zp0( exp ( ln (l)t){1)=100
ð2Þ

The yearly multiplication factor l varies across the PRA area in

accordance with the spatial variability of the climate, using the

annual growth index (GI) calculated in CLIMEX:

l~ exp
GI

GImax
rm

� �
ð3Þ

where rm is the maximum intrinsic growth rate over the PRA area

(realized where the conditions are best), GI is interpreted as a

scaled form of the intrinsic growth rate, consistent with Sutherst et

al. [35], and GImax is the maximum value of GI over the PRA

area, where l= exp(rm). The term in brackets
GI

GImax
rm is the

realized intrinsic growth rate in each grid cell. In practice, it may

be easier to estimate the maximum multiplication factor within the

PRA area, lmax, and estimate rm as rm = ln(lmax). In our model

implementation, lmax is the highest value of the maximum yearly

multiplication factor reached within the PRA area, or in other

words, it is the value of l where GI has its highest value within the

PRA area. This GImax depends on the PRA area considered and is

automatically generated by the model implementation (Materials

S1). Therefore, lmax should reflect the maximum multiplication

rate of the pest realized within the PRA area, irrespective of

whether a higher rate could be obtained elsewhere (i.e. outside the

PRA area).

Figure 5. Spread simulation of Diabrotica virgifera virgifera for the year 2010 with model A. The invaded area (in red), non invaded area
within the area of potential establishment (in orange), and area outside the area of potential establishment (in grey) for each of the three scenarios
are shown (A: best case scenario, B: worst case scenario, C: random case scenario). The area coloured in white is outside the study area (no data).
doi:10.1371/journal.pone.0043366.g005

Generic Spread Models for Pest Risk Analysis
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This model has only one parameter affecting the dynamics

(lmax) and one initial condition, p0 where the latter is estimated

from information on the initial founder population and the

maximum pest population in an average grid cell (Pmax). Pmax is a

scaling factor that relates relative population density pt (2) and

absolute population density Pt (number/grid cell). It is not a

Figure 6. Sensitivity analysis: (A) total invaded area (km2) (for the baseline values in model A: 691,400–751,523 km2, model B (t = 8
yrs): 3,578,880 km2, model C: 59,790 km2, and model D: 2,010,382 km2), (B) total invaded maize acreage (for the baseline values in
model A: 1,868–97,385 km2, model B: 174,706 km2, model C: 2,508 km2, and model D: 122,274 km2).
doi:10.1371/journal.pone.0043366.g006

Figure 7. Sensitivity analysis: effects of parameter changes in model A on total impact. The impact (y-axis) is given as a multiple of the
impact in the base line scenario (15 billion euros in the worst case scenario, and 150 million euros in the best case scenario).
doi:10.1371/journal.pone.0043366.g007

Generic Spread Models for Pest Risk Analysis
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parameter in the true sense, but it must be estimated in order to

calculate the initial condition p0. Over time, population densities in

different cells will deviate as a result of differences in GI, i.e.

climate suitability for population growth as assessed by a

fundamental niche model such as CLIMEX. Although the results

of this model are presented on a map, the user should be aware

that patterns over the map represent spatial variation in climate

suitability for the pest and the effect of this variability on

population growth rate, and do not represent spatial dispersal

processes. The added value of this model is that it visualizes the

time that the pest needs to grow from an inconspicuous founder

population in each 0.560.5 degree grid cell to widespread

presence within such a cell.

Figure 8. Spread simulation of Diabrotica virgifera virgifera for the year 2010 using model B for (A) the baseline value of c (80 km/yr),
(B) the best case (225%), and (C) the worst case (+25%).
doi:10.1371/journal.pone.0043366.g008

Figure 9. Spread simulation of Diabrotica virgifera virgifera for the year 2010 using model C with the baseline parameter values. There
was virtually no difference between scenarios, therefore only the baselines scenario is given.
doi:10.1371/journal.pone.0043366.g009

Generic Spread Models for Pest Risk Analysis
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Figure 10. Sensitivity analysis: effect of parameter changes in models C and D on the total population. The population size (y-axis) is
given as a multiple of the population size in the base line scenario (3.261010 in model C and 1.661012 in model D). The total population represents
the total number of insects in the area of potential establishment.
doi:10.1371/journal.pone.0043366.g010

Figure 11. Distribution of Diabrotica virgifera virgifera in the year 2010 simulated with model D according to three scenarios: (A) the
intermediate scenario with lmax = 40, u = 80 km, n = 5, and Pmax = 6.361010; (B) the intermediate scenario giving the area of potential
presence (red indicates pt .1%), (C) best case scenario with lmax = 30, u = 100 km, n = 3.75, and Pmax = 7.961010; and (D) worst case
scenario with lmax = 50, u = 60 km, n = 6.25, and Pmax = 4.761010. Grey indicates no data (outside of the study area).
doi:10.1371/journal.pone.0043366.g011

Generic Spread Models for Pest Risk Analysis
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Model D: Output Variable is Density and Model Considers
the Geographical Distance

This model considers population density in space and time

based on the combination of local population growth with

dispersal. The population growth process is logistic, as in model

C. The dispersal process is modelled with an integro-difference

equation [45]:

p(x,y,tzDt)~

ð
x0

ð
y0

p(x0,y0,t)K(x{x0,y{y0)dx0dy0 ð4Þ

where x’ and y’ are potential source locations, x and y are target

locations, K is a spatial probability density (kernel) that specifies

where individuals are moving in a time step of one year and p is

the population density expressed as a percentage of the carrying

capacity, Pmax, same as in model C. As a dispersal model, we use a

t-distribution with two parameters, a length scale u (km) and a

shape parameter n:

f (x)~
1

u
ffiffiffiffiffi
pn
p

C
nz1

2

� �

C
n

2

� � 1z
1

n

x2

u2

� �{nz1
2

ð5Þ

where C is the gamma function, and x is distance from the source

point. The standard deviation of this distribution is u

ffiffiffiffiffiffiffiffiffiffi
n

n{2

r
. To

use the kernel in 2-D, it is rotated, and the integration constant is

adjusted to guarantee the probability mass equals 1:

K(x,y)~
1

u2pn

C
nz1

2

� �

C
n{1

2

� � 1z
1

n

x2zy2

u2

� �{nz1
2

ð6Þ

([46]; Materials S1). Apart from details of parameterization, this

distribution is identical to the 2Dt-distribution derived by Clark et

al. (1999) [46], Eq. 8. The 2Dt-distribution has the advantage of a

biologically plausible shape for the distribution of dispersal

distances, due to the concavity (downward curvature; second

derivative ,0) of the peak at the origin (x = 0), a trait not shared by

some frequently used distribution models from the exponential

family (e.g. the Laplace and square root exponential distributions),

and power laws [46–48]. The t-distribution approaches the fat-

tailed Cauchy distribution for n?1, and the thinly tailed normal

distribution for n?z?. The Cauchy has been often used in

spread studies (e.g. [24,49,50]). Because of its versatility, the

rotated t-distribution is very suitable for dispersal modelling in

studies on large scale spread [46]. It can be easily adjusted to

reflect smaller or larger dispersal distances (by changing u) and

larger or smaller frequency of long distance dispersal (by changing

n). The width of the distribution is regulated by the length scale u

(km). The majority of the probability mass of the kernel is within

2u from the source (Fig. 2). The fatness of the tails, which reflects

the likelihood of long-distance dispersal events, is determined by

the parametern. Small values of n result in fat tails, while large

values of n result in thin tails. Fat tails are known to generate

accelerating waves, i.e. a rate of range expansion that increase with

time as the population front is ‘‘pulled’’ progressively by the

satellite foci that are generated in the far tail of the dispersal

distribution [47]. A kernel with fat tails may be used to represent a

situation in which trade, for example, can be responsible for

occasional spread events over much longer distances than are

attained by biological spread mechanisms [23,24]. The fatness of

the tail is very difficult to discern on a linear scale (Fig. 2A), and is

almost impossible to estimate from dispersal data. Therefore n
must be estimated by calibrating the simulated spread to the

observed spread for the same organism in different areas, or for

similar organisms in the same area. The rotated t-distribution with

scale parameter u approaches the 2-D normal kernel with standard

deviation u when the shape parameter n of the t-distribution

becomes very large. It approaches a rotated Cauchy distribution

for n R 1. However, the parameter n must strictly be greater than

1, otherwise the distribution is undefined. In sum, model D has

three parameters that the user needs to estimate: lmax, u and n.

Furthermore, the user needs to provide as initial condition the

spatial location of one or more points of entry, and the

corresponding sizes of the founder populations as expressed as a

percentage of carrying capacity in an average cell, Pmax.

In the case studies, after fixing lmax we use a heuristic

calibration process to estimate the kernel parameters. Initial

values are set for the length scale u (km) and the shape parameter n

Table 2. Perturbation of invaded area with time for each
parameter.

Model Parameters t = 8 t = 18 t = 28

Model A
‘‘worst’’

Relative rate of
increase

r 0.50 0.91 0.36

Model A
‘‘best’’

Relative rate of
increase

r 0.46 0.94 0.39

Model B Spread rate c 0.35 0.26 0.12

Model C Yearly multiplication
factor

lmax 0.85 0 0.02

Carrying capacity Pmax 20.48 0 0

Model D Yearly multiplication
factor

lmax ND (*) 0.50 0 (¤)

Carrying capacity Pmax ND (*) 20.10 0 (¤)

Scale parameter u ND (*) 20.01 0 (¤)

Shape parameter n ND (*) 20.02 0 (¤)

A value of zero means that the scaled area does not change with a change of
the parameter +/210%. (*) ND means that the value is not defined because the
invaded area for the baseline value is 0. (¤) These values are all below 461023.
doi:10.1371/journal.pone.0043366.t002

Table 3. Perturbation of invaded area with time for each
model.

Model t = 8 t = 18 t = 28

Model A worst 0.50 0.91 0.36

Model A best 0.46 0.94 0.39

Model B 0.35 0.26 0.12

Model C 1.29 0 0.02

Model D ND (*) 0.70 0 (¤)

A value of zero means that the scaled area does not change with a combination
of parameters +/210%. (*) ND means that the value is not defined because the
invaded area for the baseline value is 0. (¤) Since a change in the parameter
values of model D has negligible effects on the invaded area at time t = 18 yrs
(see Table 2), it was not possible to define worst and best cases associated with
this variable, and the sensitivity was set to 0.
doi:10.1371/journal.pone.0043366.t003
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(2) after which simulations were run to refine these estimates by

calibration to known patterns of spread, taking into account

biological information and expert judgement on dispersal mech-

anisms. We used the rule of thumb u = c, where c is the rate of

radial range expansion in model B, to obtain an initial estimate of

the length scale, u. An initial value for the shape parameter n was

set taking into account the analyst’s assessment of the propensity

for long distance dispersal. A small value of n was chosen (between

1 and 5) if long distance dispersal was judged to be frequent and

the dispersal kernel was likely to have fat tails as a result. A large

value of the shape parameter was chosen (e.g. n= 100) if long

distance dispersal events were considered very unlikely, and all

dispersal would result from random walks, resulting in a normal

distribution of dispersal distances [21–23,42]. Here below we

illustrate the estimation procedure using a case study.

Detailed Case Study: the Western Corn Rootworm
Description of the case study and datasets. To show an

example of applying the generic spread models, we chose an

important maize pest species that is of great concern to Europe

and the USA, and whose invasion process is well documented, the

western corn rootworm, Diabrotica virgifera virgifera. This species is

considered to be native to Mexico, and was first detected in

Europe in 1992 (in Belgrade, Serbia) [51,52]. It has since spread

rapidly throughout central and south-eastern Europe [53].

For the climatic layer, we used a recently published CLIMEX

model for the western corn rootworm [54] in combination with

1961–1990 mean monthly climate interpolated over Europe at

0.5u by 0.5u spatial resolution by the Climate Research Unit of the

University of East Anglia (Norwich, UK) [55]. The area of

potential establishment was defined as the collection of cells where

EI.0 and maize was present. Grain and forage maize distribution

(for host distribution) and yield (for economic data on host value –

needed in model A) were retrieved from McGill University [56].

Maps of EI, GI and maize presence indicate that a large part of

Europe is suitable for establishment while the areas with the

highest value of assets are located in northern Italy and south-

western France (Figure 3).

Initial conditions in the spread models were those in 1992 (time

t = 0 in the models) and we modelled the situation in 2010 for

comparison to reality (corresponding to t = 18, see 2010 distribu-

tion in [53]). The entry point taken in models B and D was

Belgrade (N 44.82u; E 20.30u) [52].

Parameterisation of model A for D. virgifera

virgifera. Model A uses a logistic equation for the number of

invaded cells. This equation is linearized (Eq. 7) to estimate r from

invasion data:

ln
Nt

Nmax{Nt

� �
~ ln

N0

Nmax{N0

� �
zr t ð7Þ

where Nt is the number of invaded cells at time t and Nmax the

number of suitable cells in the PRA area. We assume that only one

cell was initially infested in 1992, therefore we have N0 = 1. In

2010, N18 = 358 cells were invaded, based on the observed

distribution map in 2010 [53]. The number of cells within the

area of potential establishment was Nmax = 3104 cells, calculated

from CLIMEX outputs (EI) and maize distribution (Figure 3). We

find r = 0.33 yr21.

Parameterisation of model B for D. virgifera

virgifera. In Europe, the observed spread of D. virgifera virgifera

is not spatially homogenous [53] because maize is not uniformly

distributed and the role played by environmental factors and

control measures varies in different areas. In a PRA context, we

are primarily interested in potential spread independent of human

intervention so that it is then possible to estimate the costs and

Table 4. Experts’ assessment regarding the level of difficulty of parameter estimation in their case study (numbers indicate how
often a score was given).

Model Parameters Easy Somewhat difficult Difficult Impossible n

Model A Relative rate of increase r – 2 – 1 3

Model B Spread rate c 3 2 2 1 8

Model C Yearly multiplication factor lmax – 2 6 – 8

Carrying capacity Pmax 1 3 4 – 8

Model D Shape parameter n – – 8 – 8

Scale parameter u 4 1 3 – 8

doi:10.1371/journal.pone.0043366.t004

Table 5. Experts’ assessment of the uncertainty of parameter estimates in their case study (numbers indicate how often a score
was given).

Model Parameters Low uncertainty High uncertainty n

Model A Relative rate of increase r 1 1 2

Model B Radial rate of range expansion c 4 3 7

Model C/D Carrying capacity Pmax 4 4 8

Yearly multiplication factor lmax 2 6 8

Model D Shape parameter n - 8 8

Scale parameter u 4 4 8

doi:10.1371/journal.pone.0043366.t005
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benefits under control scenarios. Without containment measures,

the spread of the D. virgifera virgifera ranged from 60 to 100 km per

year assuming maize is continuously distributed [57–60]. Since the

average natural spread rate of D. virgifera virgifera in Europe is

approximately 80 km/year [60], we took c = 80 km/year.

Parameterisation of model C for D. virgifera

virgifera. According to Hemerik et al. [61], the maximum

yearly multiplication factor, lmax, for D. virgifera virgifera is

approximately 40 in the Balkans, but lower in northern regions.

For instance, Kruegener et al. [62] calculated a multiplication

factor of 7.5 for German conditions. Since lmax represents the

maximum multiplication factor over the PRA area, we chose the

value of 40. In other areas, the multiplication factor decreases with

decreasing GI, down to 0 where GI = 0.

The initial population density (p0, %) is defined by:

p0~100 P0 =Pmax where P0 is the initial founder population,

e.g. 100 beetles, in each suitable cell, and Pmax is the carrying

capacity, the maximum number of individuals in a cell. We

calculated Pmax from observations in Serbia and Hungary, where

beetle densities of 20–50 beetles per plant were counted [63–65].

Assuming a maize density of 55 000 plants ha21 was common in

Serbia in the 1990s [66], the abundance of adult beetles reached

1.16106 ha21 of maize. In Italy, the maximum was estimated at

2.756106 ha21 of maize. Based on these data, the maximum

number of beetles was assumed to be 200 m22 of maize (as a mean

value of the calculated data), equivalent to 26108 beetles per km2

of maize. The maximum population size in a grid cell (Pmax) is the

product of the area of the cell (km2), the proportion of the cell

covered by the host (we assume 20% of the area of a grid cell

where maize is present is grown with maize), and the maximum

population density of the pest per unit host area (km-2). The mean

area of the cell is determined by the grid resolution. The CLIMEX

model for D. virgifera virgifera has a grid resolution of 0.5u longitude

by 0.5u latitude [54]. The size of the cells varies with the cosine of

the latitude and decreases from South to North. The average cell

size in the simulated area of Europe is 1 578 km2 (this value is

calculated by the implemented model code). Thus, we have

Pmax = 6.361010 beetles per cell and p0 = 1.661027%.

Parameterisation of model D for D. virgifera

virgifera. The population dynamics parameter lmax and the

estimates of carrying capacity Pmax and initial population p0 (%)

are the same as in model C. In addition we need a length scale u

(km) and a shape parameter n (2), characterizing the dispersal

kernel. These parameters can be estimated from dispersal data if

these are available, but usually dispersal data on the pertinent scale

(the continental) are lacking. Another option is to estimate the

dispersal parameters from data on invasion. As the rate of

population expansion results from a complex interaction between

the three parameters lmax, u and n [47], the parameters are

estimated from invasion data using a calibration approach.

In the case of D. virgifera virgifera, since we suspect that a large

proportion of individuals disperse over long distances within

Europe [30,67], we used n= 5, giving a fat-tailed kernel. For the

scale parameter, we took u = 80 km [60]. These initial guesses

provided satisfactory simulations and no further adjustments were

made.

Sensitivity analysis. We tested the sensitivity of model

behaviour to parameter changes in each of the four spread

models for Diabrotica virgifera virgifera. When we tested the

sensitivity to more than one parameter for a given model, we

first made a one-at-a-time analysis and took the baseline

estimate(s) for the other parameter(s). For comparison, we

considered three response variables in 2010: (1) the total area

invaded (for models A, B, C, D), (2) the total pest population

(for models C and D), and (3) the total economic damage (for

model A only) over the entire PRA area. The total area

invaded was calculated in two ways: (i) as the total area of

invaded cells in km2, (ii) as the total maize area invaded. For

models C and D, we defined a threshold above which a species

was considered to be present and readily detectable. As a

threshold, we took an arbitrary value of 1% of the carrying

capacity Pmax. To estimate the total pest population, we

considered the population level in each cell based on the

carrying capacity Pmax adjusted for the maize area in the cell

[56], and then we summed this quantity over the PRA area. To

estimate the potential total economic impact, we calculated the

value of assets at risk in the invaded cells, again using data from

McGill University [56]. When plotting the results of sensitivity

analysis, we scaled the response variable to the output in the

Table 6. Experts’ assessment of the level difficulty to obtain
data for model parameterisation in their case study (numbers
indicate how often a score was given).

Model Easy Feasible Difficult
Very
difficult

Model not
applicable1 n

Model A – 1 1 – 6 8

Model B 4 3 – – 1 8

Model C – 4 4 – – 8

Model D – 3 3 2 – 8

1Model A was deemed not applicable in 6 out of 8 cases, mostly because of the
effort involved in obtaining spatially explicit data on the value of assets at risk.
The spread model component of model A is relatively simple to apply, but was
not tested separately.
doi:10.1371/journal.pone.0043366.t006

Table 7. Experts’ feedback on the suitability of four models in practical pest risk assessment based on their experience on specific
case studies (numbers indicate how often a score was given).

Model

Suitable for PRAs
and should become a
common tool in PRAs

Suitable for PRAs and
I may use it in the future

Suitable for PRAs
but needs improvement(s)

Not suitable for
PRAs n

Model A – 1 – 1 2

Model B 3 3 – 1 7

Model C – 6 2 – 8

Model D 2 2 3 1 8

doi:10.1371/journal.pone.0043366.t007
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default parameterization. To obtain the non scaled values, the

scaled values should be multiplied by the baseline result.

One-at-a-time analyses: perturbation of response

variables for t = 18 years. In the sensitivity analysis of model

A, we took r = 0.25, 0.30, 0.36, and 0.41 yr21 (225%, 210%,

+10%, +25% as compared to the base line value of 0.33 yr21). In

the sensitivity analysis of Model B, we used c = 60, 72, 88, and 100

km/year (225%, 210%, +10%, +25% as compared to the base

line value of 80 km/yr). In the sensitivity analysis of model C, we

used lmax = 30, 36, 44, and 50 (225%, 210%, +10%, +25% as

compared to the base line value of 40). Furthermore, in model C,

we conducted a sensitivity analysis for the carrying capacity in

each cell: Pmax = 4.761010, 5.761010, 6.961010 and 7.961010

(225%, 210%, +10%, +25% as compared to the base line value

of 6.361010). Changing Pmax affects the initial value for p0, the

relative population density (as compared to Pmax). In the sensitivity

analysis of model D, we included the simulations for different lmax

and Pmax as reported for model C. Furthermore, we studied the

sensitivity to changes in the kernel length scale u and the shape

factor n. We used u = 60, 72, 88 and 100 km, and n= 3.75, 4.5, 5.5

and 6.25 (225%, 210%, +10%, +25% as compared to the base

line values of u = 80 km and n= 5). Although the chosen values for

the parameter n are not integers, the volume underneath the

rotated t distribution remains equal to one and can therefore be

used as a dispersal kernel.

One-at-a-time analyses: perturbation of the invaded area

with time. To summarize and compare the sensitivity of the

models to each parameter, we calculated the difference between

the scaled areas when the parameter values are increased and

decreased by 10%. The scaled area is the ratio of the total area of

invaded cells calculated with a change of the parameter value by

this area with the baseline parameter value. The area is the only

response variable that could be used to compare all the models.

We considered t = 8, 18 and 28 years to explore the change in the

area invaded with time.

Multi-parameter changes: perturbation of potential

spread for t = 18 years. Furthermore, we generated for each

model three maps corresponding to the best, most likely and

worst cases based on changes in multiple parameters to their

‘‘best case’’, ‘‘worst case’’ and ‘‘most likely’’ settings. Here, best

case and worst case represent minimum and maximum

expected spread, respectively, while ‘‘most likely’’ refers to the

combination of parameter values considered most plausible by

the species experts.

Multi-parameter changes: perturbation of invaded area

with time. To summarize and compare the overall sensitivity

of the models to their parameters, we calculated the difference

between the scaled invaded areas simulated with the ‘‘worst

case’’ and the ‘‘best case’’. These cases were defined by the

combination of the parameter values (+/210%) which gave

respectively the largest and the smallest invaded areas. We

chose t = 8, 18 and 28 years to explore the perturbation of

invaded area with time.

Experts’ Feedback
The generic spread model was applied to other species

representing a wide variety of groups: insects, nematodes,

pathogens and plants. The objective was to assess how well the

spread modelling concepts could be applied to a broad range of

invasive species and determine whether these generic spread

models can fulfil experts’ requirements in the context of PRA. A

total of six species were tested in addition to D. virgifera virgifera: the

citrus longhorn beetle, Anoplophora chinensis and the Asian longhorn

beetle, Anoplophora glabripennis; the root-knot nematode, Meloidogyne

enterolobii, the insect-vectored pine wood nematode, Bursaphelenchus

xylophylus; water hyacinth, Eichhornia crassipes, and the fungus

Gibberella circinata, causal agent of pitch canker disease. The

parameters were estimated in collaboration between PRA experts

and modellers (Table 1, details in Materials S2). We collected

feedback about how difficult the experts found the parameterisa-

tion, how uncertain the estimations were, how difficult it was to

obtain enough information to apply the models, and whether the

experts considered the spread models potentially useful in PRA. A

total of eight experts gave feedback: two experts for A. chinensis and

one for each of the six other case studies.

Results

Application to the Western Corn Rootworm
Simulations with model A. This model calculates a logistic

increase in the number of invaded cells across the map, assigning

invasions according to the value of the assets in the cells. In the

worst case scenario, which assigns new invasions preferentially to

cells with high asset value (Fig. 4), a large part of France,

Germany, northern Italy, and central Europe were invaded (Fig. 5),

representing an asset value at risk in the invaded area of 15.2

billion euros. In the best case scenario, which assigns new invasions

preferentially to cells with a low asset value (Fig. 4), peripheral

areas in the East and South were invaded (Fig. 5), representing an

asset value at risk in the invaded area of 150 million euros. The

random case was intermediate as it assigns invasions randomly

across Europe (Fig. 4, 5). The number of cells invaded in the three

economic scenarios was the same, but their location was different,

in accordance with the asset value.

A change in the value of the relative rate of increase of the

number of invaded cells (r) resulted in large changes in the invaded

area (Fig. 6A), and the effect was the same across the economic

scenarios. Only three percent of the cells in the area of potential

establishment were invaded if r was reduced by 25%, whereas 34%

were invaded if r was increased with 25%, versus 12% invaded

cells in the baseline scenario. The invaded maize area differed

between the economic scenarios because cells differ in the area of

maize within them. While cells without maize are not eligible for

assigning new invasions, the model can preferentially assign pest

invasion to cells with high or low areas and value of maize. In the

best case scenario, very little maize acreage (0.059%) was invaded

if r was decreased by 25% whereas 7% of the total maize growing

acreage was invaded if r was increased by 25% (Fig. 6B), versus

0.8% for the baseline value of r. In the worst case scenario, 15% of

the maize growing acreage was invaded if r was decreased by 25%

whereas 75% of the maize growing acreage was invaded if r was

increased by 25% (Fig. 6B) versus 42% for the baseline value of r.

In terms of economic impact, this change also had a major effect:

6.5 to 24.8 billion euros in the worst case scenario and 9 to 1,360

million euros in the best case scenario (Fig. 7). Model A was thus

sensitive to changes in its growth parameter, especially in the best

case scenario (Figs. 6, 7).

Simulations with model B. This model calculates invasion

according to spatial expansion of the invaded area at a constant

radial rate of range expansion. Simulations with model B indicated

that D. virgifera virgifera had spread over a large part of Europe by

2010 (Fig. 8). More than half of the area of potential establishment

was invaded within 18 years if no containment measures were

applied. A change in the radial expansion rate c in the sensitivity

analysis greatly affected the total invaded area in 2010, from 37 to

75% of the cells invaded, and from 57 to 90% of the maize area

invaded if the radial rate of expansion was either decreased or

increased by 25% compared to its baseline value (Figs. 6, 8).
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Model B was therefore moderately sensitive to changes in the

radial rate of range expansion.

Simulations with model C. This model simulates local

population growth in each cell, based on an initial presence of the

pest at low density throughout the area of potential establishment.

Results indicate that large parts of Europe (especially Central

Europe, Poland, Germany, France, and Italy) are favourable for

the population growth resulting in high densities (Fig. 9) as soon as

2005–2007, i.e. 13–15 years after entry. It should be noted,

however, that actual entry was at one location, whereas this model

assumes that entry has occurred in every cell. A change in the

parameters had limited effect on the results in 2010 because most

of the area of potential establishment was invaded (data not

shown). The model was more sensitive in 2000 (t = 8 years after

entry). The simulated total population in 2000, integrated over the

PRA area, varied from 3.1 to 3.361010 beetles when changing

Pmax but the abundance varied a little more, from 1.0 to 7.761010

beetles when changing lmax (Fig. 10). The proportion of invaded

cells (where pt .1%) varied from 0.3 to 1.7% and the proportion

of invaded maize growing area varied from 0.2 to 2.5% when

changing lmax and there were only marginal effects when

changing Pmax (Fig. 6). On the whole this model was moderately

sensitive to changes in the parameters.

Simulations resulting from model D. According to this

model, a large part of Central Europe is invaded by 2010 (Fig. 11).

The population spread far from the source point in Belgrade and it

had – in the simulation - invaded (albeit at low density) nearly the

whole area of potential establishment by 2004 (map not shown

here). When considering presence only where the model simulated

a density above 1% of the carrying capacity, the potential range of

D. virgifera virgifera in 2010 was consistent with the known spatial

extent of the population in this year (Fig. 11B, [53]). In terms of

population density, none of the parameters had a very strong

effect. The range of population size over the PRA area was 0.2 to

5.761012 with the largest variation for lmax, moderate variation

for u and very low variation within this range for Pmax and n
(Fig. 10). In terms of total invaded area, lmax had the strongest

effect (Fig. 6), with the proportion of invaded cells ranging from 6

to 53% and the invaded maize acreage ranging from 17 to 76%.

Since the total population increased with lmax, we used the highest

value (+25%) for the worst case and the lowest value (225%) for

the best case. For Pmax, since there was no clear effect on the total

population but the invaded area decreased when increasing Pmax,

we considered the lowest value (225%) for the worst case and the

highest value (+25%) for the best case. Changing parameter u

produced no clear effect on the invaded area but the total

population decreased when increasing u, due to spillover of

individuals outside the area of potential establishment. We

considered the lowest value (225%) for the worst case and the

highest value (+25%) for the best case. Changing n had no clear

effect on the invaded area but the total population increased when

increasing n, again due to less spillover as a result of thinner tails,

so we considered the highest value (+25%) for the worst case and

the lowest value (225%) for the best case. In the best case

scenario, the population density was lower everywhere in the PRA

area (Fig. 11) and in the worst case, the population density was

higher than in the most likely scenario but the overall pattern was

similar.

Comparison of Models’ Sensitivity: Perturbation of the
Invaded Area with Time

The sensitivity varied greatly between the models, the param-

eters and the three time periods (Tables 2, 3). Model A was

globally the most sensitive, especially when time t = 18 years.

Model B was moderately sensitive to its parameter and its

sensitivity decreased with time. Model C was highly sensitive to

both parameters at time t = 8 years but caused little change to the

invaded area (Table 2). We obtained the same result when

simultaneously changing the parameters (Table 3). In this model,

all the area of potential establishment is invaded by a low pest

density at time = 0, the population density increases rapidly until

the threshold for establishment is reached. As a result, for a large

time t, changes to the values of the parameters have little effect on

the invaded area. Model D was not very sensitive to parameter

change, except for the yearly multiplication factor at time t = 18

years (Table 2). Simultaneously changing the values of the

parameters accentuated its sensitivity (Table 3). For earlier times

(t = 8), the population density was too low and remained below the

threshold for establishment. Since the invaded area for the

baseline values was 0,it was not possible to calculate the scaled

area. For later times (t = 28), the population had time to spread

nearly everywhere in the area of potential establishment and the

model was thus insensitive to small variations in its parameters.

Consequently, the choice of time t to evaluate the sensitivity of the

models was very important overall.

Experts’ Feedback
The application of the spread models to other case study species

showed that the models could be applied for a broad range of

plant pests and invasive plants (Table 1; details in Materials S2).

Data availability and difficulty of parameter estimation were

important issues. Model A requires data on host or habitat value

and was applied on only two out of the seven test species because

economic data on assets at risk were difficult to obtain. This model

was applied without too much difficulty for Diabrotica virgifera

virgifera, for which the economic data were readily available [56].

The model was also applied – but with some difficulty – to pine

wood nematode, but not in the other case studies. The easiest

parameter to estimate was the radial rate of range expansion, c, in

Model B, because it can be directly derived from range expansion

data. The most difficult parameter to estimate was the measure for

the fatness of the tail of the dispersal kernel, n, in model D

(Table 4), not surprisingly, because there is no direct method and

applicable data with which to estimate it. The multiplication factor

lmax was also found relatively difficult to estimate, whereas the

scale parameter u of the dispersal kernel was deemed easier to

estimate. The shape parameter (n) of the dispersal kernel and the

annual multiplication factor (lmax) were rated as having high

uncertainty (Table 5). The models A–D differed in the ease with

which data can be obtained to inform the parameter estimation

(Table 6). Model A was considered not applicable due to lack of

data in five of the seven case studies. Of the other three models,

model B was relatively easy or feasible to apply whilst models C

and D were feasible to difficult. Although model B was generally

the easiest to apply, it could not be applied to G. circinata (Tables 1,

4–6) because this pathogen mostly disperses between nurseries and

a radial expansion process was deemed inconsistent with its

dispersal mode by the risk assessor. Table 7 summarizes experts’

feedback on the usefulness of the models in PRA. Model A was

rated by two experts, with different results. Experts considered

models B, C and D suitable for PRA, but risk assessors asked for

more guidance in parameter estimation and examples to help

them parameterizing and using models C and D.

Discussion

The generic spread models presented here, give a set of different

scenarios that can help risk assessors to determine the potential
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temporal or spatial expansion of pests in a pest risk assessment.

The spatially implicit model for logistic growth of the amount of

occupied area (Model A) provides a direct assessment of the assets

at risk, but it requires spatially explicit data on their economic

value. The difficulty of obtaining such economic data was the

main reason why risk assessors found this model difficult to use in

their case study, despite the simplicity of the underlying logistic

spread model. The range expansion model B provides an easy way

to map the potential geographic spread of the pest through time,

but it suffers from lack of biological realism, especially if the pest

enters an area that is marginally suitable for survival and growth

and where the rate of range expansion would be lower than that

predicted by this model. The spatially implicit model for logistic

density increase (Model C) can be used to identify areas where the

pest can grow rapidly to damaging levels. The spatially explicit

model for population growth and dispersal (Model D) simulates

both spatial and temporal dynamics more realistically using only

three biological parameters: lmax, u and n. Out of all these simple

models, model D can be considered to be the most sophisticated.

The increase of model complexity provides more flexibility and the

ability to describe a wider range of processes. Thus, complex

models can potentially give better descriptions of pest spread. For

instance, model D can simulate both short and long distance

dispersal. These two dispersal mechanisms cannot be simulated by

the other models. However, increasing model complexity means

that more parameters are needed, more data are required for their

estimation and the overall uncertainty in the parameter values can

play an important role. To assist the PRA process, spread models

should be applicable to a wide variety of species for which more or

less amount of information are available. Consequently, these

models should stay as simple as possible. In this study, these

models complement each other by using different assumptions and

initial conditions to provide predictions of population growth and

spatial expansion of pests over time, thus providing a more

comprehensive assessment of potential spread. Together these

models allow a more profound and better informed interpretation

of spread and invasion risks than a single model could do, leading

to a more robust basis for exploring invasion scenarios within a

PRA.

The key difficulty in using these models in PRA is estimating the

parameters. There is no universal method for estimation since this

depends on the available data. As shown for D. virgifera virgifera,

values of parameters are not directly published in the literature,

and a good understanding of the parameters’ meaning in the

context of the model is needed to extract the required values from

data. It would be of great help to risk assessors if a database were

developed listing parameter values for example species that might

then guide parameterization for species with similar population

dynamics and dispersal traits. The shortlist of seven case study

species in the current paper provides a beginning for such a list.

The sensitivity analysis shows that is extremely important to

obtain correct estimates of the parameters. The relative rate of

increase (r; model A) is the most sensitive parameter (Tables 2, 3)

and needs very careful estimation. Although model D has the

largest number of parameters, its global sensitivity was not

considerably higher (Table 3). Parameters associated with long

distance dispersal are known to affect the asymptotic invasion

wave speed and have a great impact on the potential spread [68–

69]. However, in model D, the shape parameter n, governing the

proportion of long distance dispersers, does not have the strongest

effect on the invaded area (Table 2). Because of the tight

interaction between growth and dispersal processes, the parame-

ters associated with dispersal (u and n) mostly affected the overall

population density (at least for the range of values tested in this

study).

A key requirement for using models for prediction is that their

validity for this purpose should be demonstrated. This validation

can be divided into predictive validity and structural validity. The

key challenge for predictive validity is the availability of data.

Validation requires that a model is first parameterized with data

and then tested with independent data (e.g. [70]). Due to the

scarcity of usable data, especially for predictive validation in the

context of PRAs, we have not attempted such a validation in this

study. Validation therefore mainly results from structural validity:

all the models rely on or derive from well-established models with

a strong theoretical basis (such as logistic growth, diffusion model

or dispersal kernel). Comparing the model outputs also give an

indirect indication of their validity. This detailed comparison of

the models was not undertaken in this study, except in the user

evaluation, which can be considered to be a ‘‘soft’’ and non-

quantitative comparison. In ecological modelling, different models

can be proposed for a process, and the best model for the data

selected. A sophisticated and satisfying way for model selection is

the use of likelihood to assess model fit and penalize models for the

number of parameters, e.g. using Akaike’s Information Criterion

[71,72]. Unfortunately, the application of such a formal model

selection framework is problematic for comparing the four models

proposed in this study because the models have different outputs

(two simulate occupancy and two simulate density), and they have

different initial conditions: one spatially random (model A); one

spatially implicit (model C), and two initialized at a point (models

B and D). These differences make a formal comparison of model

outputs meaningless. The key issue is whether the model is ‘‘fit for

purpose’’ and this depends critically, not only on model prediction

quality, but as much on the requirements of the end user. We

therefore conducted an expert elicitation to assess user opinion as

to the question of whether models are potentially useful in PRA

practice. Caution is needed to interpret the low number of

assessments (only 8), but, overall, the assessment is a positive one.

It was frequently stated that PRA analysts would need greater

guidance in using the models. Further model testing and building a

database of case studies could be very useful for providing

guidance. The usability of these models in the PRA context is

shown not only by the experts’ testing and feedback but also by the

availability of a decision support scheme (DSS) on quantitative

spread modelling integrated in a generic PRA DSS (see [73]).

Application of the spread models should take account of

technical issues that relate to the spatial resolution of the grid cells.

The size of the cells should be small enough to avoid calculation

errors but large enough to avoid unreasonably long time durations

of simulations (especially for model D). The models were

implemented in the statistical language R [74] and two versions

of the code have been written: a decimal degree version (which

simulates the spread over a regular grid in decimal degrees) and a

metric version (which simulates the spread over a regular 10 km

grid in the European system projection LAEA). An advantage of

the first version is that it is broadly applicable to any part of the

world while an advantage of the second version is that it generates

maps at the European scale that can be more easily combined with

other risk maps [36].

The models presented currently use the outputs of a CLIMEX

model to define the area of potential establishment and the

population growth. Adapting the spread models to another

bioclimatic model such as those available in NAPPFAST [75] is

straightforward in principle as long as the bioclimatic model can

provide similar information, in particular indices with interpreta-

tions similar to the growth and eco-climatic indices of CLIMEX,
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where the growth index characterizes the potential for population

growth during the favourable season(s) while the eco-climatic

index integrates this potential for population growth with stresses

during unfavourable seasons [38].

The four spread models presented here represent a selection

from the potential range of techniques that could be applied. It is

possible to explore other modelling techniques. For example, the

difficulties the experts had in using model A were confounded by

the need for spatially explicit data on the value of assets at risk. In

addressing this issue, it is possible to abandon the need for spatially

explicit data for the value of assets at risk, and simply combine the

spread function in model A (simplicity in parameterisation) with a

total asset value figure as a means of estimating the intermediate

scenario costs through time. Similarly, it is possible to apply the

other spatially implicit model (C) to ordinated assets to assess the

best and worst case scenarios. Ultimately, the choice of modelling

method should depend on the PRA question at hand (spread or

impact?), the availability of data, and the preference of the risk

assessor for more or less detail in the modelling approach.

While several biologically based models have been developed to

study the invasion processes of exotic pests, few are simple and

general enough to be applicable in the context of PRA. We should

however be wary of employing techniques that are unnecessarily

complex, especially when there are difficulties in selecting reliable

values for sensitive parameters (Table 5), and when there have

been so few examples of spread models validated with independent

data [31–32].

Carrasco [31] developed a modelling framework for pest

invasion that includes a phenological model as well as a dispersal

kernel. This model was applied to two insect species and one

bacterium. The model has 14 parameters [76]. This large number

of parameters is likely to render the parameterization in a PRA

context too laborious and challenging except for very well-known

pests.

Pitt [15] developed a GIS based modelling environment for

assessing pest invasions, named Modular Dispersal in GIS (MDiG

- http://fruitionnz.com/mdig/). The system combines four

modules: (1) a growth module which describes birth, death and

density dependent processes, (2) a local contiguous dispersal model

for a specified proportion of individuals, (3) a Poisson distribution

to generate dispersal events and dispersal kernels to determine the

distance travelled, and (4) a survival probability based on

suitability or survival maps. MDiG has been applied to spread

of the Argentine ant, Linepithema humile (Mayr) [50] and to the

spread of butterfly bush, Buddleja davidii [32]. MDiG was not

designed to assist a risk assessor in a PRA.

Waage et al. [25] combined spread and economic models to

simulate the potential impact of pests and estimate the benefits and

costs of government action. The spread model consists of a

reaction-diffusion model combined with a model that generates

satellite populations. The spread pattern described by this model is

spatially implicit, but nonetheless has a strong resemblance to the

most sophisticated model in the suite of models described in the

current paper, model D. As is the case for our model D, the

framework of Waage et al. [25] is challenging to apply in many

instances, due to lack of data. Nevertheless, these authors reported

spread patterns for a wide variety of taxa, including terrestrial

invertebrates and plants, plant diseases, vertebrates, animal

diseases and aquatic species. In actuality, however, for many

terrestrial invertebrates and plants reported in this study, only the

observed radial expansion rate is known and there is no

information available about other parameters of this model such

as the population’s intrinsic growth rate, the diffusion coefficient,

the total area occupied, or the rate of satellite generation. In such a

case, it may be advisable to use a simpler model, such as one of the

three models A, B, or C, proposed in this paper [71]. The small

number of parameters and the conceptual simplicity of these

models may assist in making the parameterisation and the results

more robust and credible [77]. Further work is needed to test these

ideas, and conduct the work that is required to collect the data and

validate models. We believe that after sufficient testing and

development of expertise, some of these models may be used in the

future not only for making PRAs more quantitative, transparent

and reliable but also to help target surveillance and management

measures more accurately to areas at greatest risk of invasion.
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