S. A. Addinsoft, F. Paris, and M. L. Anson, The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin, The Journal of General Physiology, vol.22, pp.79-89, 1938.

L. Bateman, A. Ye, and H. Singh, In vitro digestion of ?-lactoglobulin fibrils formed by heat treatment at low pH, Journal of Agricultural and Food Chemistry, vol.58, issue.17, pp.9800-9808, 2010.

L. M. Beltrán-barrientos, A. Hernández-mendoza, M. J. Torres-llanez, A. F. González-córdova, and B. Vallejo-córdoba, Invited review: Fermented milk as antihypertensive functional food, Journal of Dairy Science, vol.99, issue.6, pp.4099-4110, 2016.

B. Bulut-solak and N. Akin, International Journal of Health Geographics, International Journal of Health & Nutrition, vol.3, issue.1, pp.1-7, 2012.

D. C. Dallas, N. M. Murray, and J. Gan, Proteolytic systems in milk: Perspectives on the evolutionary function within the mammary gland and the infant HHS public access, J Mammary Gland Biol Neoplasia, vol.20, pp.133-147, 2015.

A. Darrouzet-nardi, M. P. Ladd, and M. N. Weintraub, Fluorescent microplate analysis of amino acids and other primary amines in soils, Soil Biology and Biochemistry, vol.57, pp.78-82, 2013.

P. P. De-laureto, V. De-filippis, M. Di-bello, M. Zambonin, and A. Fontana, Probing the molten globule state of a-lactalbumin by limited proteolysis, Biochemistry, vol.34, issue.39, pp.12596-12604, 1995.

A. Deglaire, S. C. De-oliveira, J. Jardin, V. Briard-bion, M. Emily et al.,

D. Dupont, Impact of human milk pasteurization on the kinetics of peptide release during in vitro dynamic term newborn digestion, Electrophoresis, vol.37, issue.13, pp.1839-1850, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01358601

F. Diarrassouba, G. Remondetto, L. Liang, G. Garrait, E. Beyssac et al., Effects of gastrointestinal pH conditions on the stability of the ?-lactoglobulin/vitamin D3 complex and on the solubility of vitamin D3, Food Research International, vol.52, issue.2, pp.515-521, 2013.

L. Egger, O. Ménard, C. Delgado-andrade, P. Alvito, R. Assunção et al., The harmonized INFOGEST in vitro digestion method: From knowledge to action, Food Research International, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01435380

L. Egger, O. Ménard, C. Delgado-andrade, P. Alvito, R. Assunção et al.,

R. Portmann, The harmonized INFOGEST in vitro digestion method: From knowledge to action, Food Research International, vol.88, pp.217-225, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01435380

A. Guerra, L. Etienne-mesmin, V. Livrelli, S. Denis, S. Blanquet-diot et al., Relevance and challenges in modeling human gastric and small intestinal digestion, Trends in Biotechnology, vol.30, issue.11, pp.591-600, 2012.

M. R. Guo, P. F. Fox, A. Flynn, and P. S. Kindstedt, Susceptibility of ?-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin, Journal of Dairy Science, vol.78, issue.11, pp.76860-76866, 1995.

E. Hallén, A. Lundén, T. Allmere, and A. Andrén, Casein retention in curd and loss of casein into whey at chymosin-induced coagulation of milk, Journal of Dairy Research, vol.77, pp.71-77, 2010.

B. Hernández-ledesma, I. Recio, and L. Amigo, ?-Lactoglobulin as source of L. Ozorio, et al, Food Research International, vol.133, p.109188, 2008.

, Amino Acids, vol.35, issue.2, pp.257-265

B. Ismail and S. S. Nielsen, Invited review: Plasmin protease in milk: Current knowledge and relevance to dairy industry, Journal of Dairy Science, 2010.

S. M. Kamau, S. C. Cheison, W. Chen, X. Liu, and R. Lu, Alpha-lactalbumin: Its production technologies and bioactive peptides, Comprehensive Reviews in Food Science and Food Safety, vol.9, issue.2, pp.197-212, 2010.

K. Kastberg-møller, F. P. Rattray, J. C. Sørensen, and Y. Ardö, Comparison of the hydrolysis of bovine ?-casein by camel and bovine chymosin: A kinetic and specificity study, Journal of Agricultural and Food Chemistry, 2012.

D. Konukoglu and H. Uzun, Endothelial dysfunction and hypertension, Advances in Experimental Medicine and Biology, vol.956, pp.511-540, 2016.

K. Kuwajima, The molten globule state of ?-lactalbumin, FASEB Journal, 1996.

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, vol.227, issue.5259, pp.680-685, 1970.

A. R. Madureira, T. Tavares, A. M. Gomes, M. E. Pintado, and F. X. Malcata, Invited review: Physiological properties of bioactive peptides obtained from whey proteins, Journal of Dairy Science, vol.93, issue.2, pp.437-455, 2010.

B. Mann, S. Athira, R. Sharma, R. Kumar, and P. Sarkar, Bioactive peptides from whey proteins, pp.519-547, 2019.

C. Mellinger-silva, L. O. Rosa, M. Stephan, A. I. Brígida, L. M. Cabral et al., Dual function peptides from pepsin hydrolysates of whey protein isolate, International Dairy Journal, vol.48, pp.73-79, 2015.

O. Ménard, T. Cattenoz, H. Guillemin, I. Souchon, A. Deglaire et al., Validation of a new in vitro dynamic system to simulate infant digestion, Food Chemistry, vol.145, pp.1039-1045, 2014.

M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn et al.,

I. P. Jorge, A standardised static in vitro digestion method suitable for food-an international consensus, Food & Function, vol.5, 2014.

A. B. Nongonierma and R. J. Fitzgerald, The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A, Review. Journal of Functional Foods, vol.17, pp.640-656, 2015.

M. B. O'keeffe and R. J. Fitzgerald, Whey protein hydrolysate induced modulation of endothelial cell gene expression, Journal of Functional Foods, vol.40, pp.102-109, 2018.

L. Ozorio, N. R. Pereira, J. E. Silva-santos, A. I. Brígida, C. Mellinger-silva et al., Enzyme inactivation and drying technologies influencing the vasorelaxant activity of a whey protein hydrolysate in semi-pilot scale, International Dairy Journal, vol.93, pp.11-14, 2019.

L. Ozorio, L. P. Silva, M. V. Prates, C. Bloch, C. Y. Takeiti et al.,

L. M. Cabral, Whey hydrolysate-based ingredient with dual functionality: From production to consumer's evaluation, Food Research International, vol.122, pp.123-128, 2019.

M. Phelan and D. Kerins, The potential role of milk-derived peptides in cardiovascular disease, Food & Function, vol.2, issue.3-4, p.153, 2011.

J. Sanchón, S. Fernández-tomé, B. Miralles, B. Hernández-ledesma, D. Tomé et al., Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation, Food Chemistry, vol.239, pp.486-494, 2018.

R. Sinha, C. Radha, J. Prakash, and P. Kaul, Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation, Food Chemistry, vol.101, issue.4, pp.1484-1491, 2007.

T. Tavares and F. Malcata, Whey proteins as source of bioactive peptides against hypertension. Bioactive Food Peptides in Health and Disease, pp.75-114, 2013.

C. C. Udenigwe and A. Mohan, Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition, Journal of Functional Foods, vol.8, issue.1, pp.45-52, 2014.

L. Ozorio, Food Research International, vol.133, p.109188, 2020.