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Abstract

Modern technologies and especially next generation sequencing facilities are giving a cheaper access to genotype and
genomic data measured on the same sample at once. This creates an ideal situation for multifactorial experiments designed
to infer gene regulatory networks. The fifth ‘‘Dialogue for Reverse Engineering Assessments and Methods’’ (DREAM5)
challenges are aimed at assessing methods and associated algorithms devoted to the inference of biological networks.
Challenge 3 on ‘‘Systems Genetics’’ proposed to infer causal gene regulatory networks from different genetical genomics
data sets. We investigated a wide panel of methods ranging from Bayesian networks to penalised linear regressions to
analyse such data, and proposed a simple yet very powerful meta-analysis, which combines these inference methods. We
present results of the Challenge as well as more in-depth analysis of predicted networks in terms of structure and reliability.
The developed meta-analysis was ranked first among the 16 teams participating in Challenge 3A. It paves the way for future
extensions of our inference method and more accurate gene network estimates in the context of genetical genomics.
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Introduction

Inferring gene regulatory networks
Gene regulatory networks (GRN) are simplified representations

of mechanisms that make up the functioning of an organism under

given conditions. A node in such a network stands for a gene i.e. a

DNA fragment that encodes a functional agent of the cell such as a

protein. Proteins are among the most well-studied acting

protagonists in living organisms. In large part, their synthesis is

effectively regulated by other interacting proteins. In a GRN,

edges depict causal relationships between sources and targets for

gene activities. Hence a convenient representation for GRNs are

directed graphs. The objective of the third DREAM5 challenge

was to infer causal relationships in artificial complex networks.

More generally, a biological network is defined by constituents

at different levels, such as DNA sequences, RNAs (messengers, but

also small RNAs), proteins, metabolites. Discounting epigenetic

effects, genes barely interact directly. They are rather activated or

repressed through the action of specific components acting at

other scales [1]. The work presented in this paper is focused on

gene regulatory interactions. This representation maps the action

of all cellular components onto gene space. Potential applications

still benefit from this simplified interpretation of the complex

system. For example, the search of candidate genes that target

changes in a phenotype of interest [2], the study of evolutionary

aspects of biological networks [3,4] so as to link their structure to

functional properties [5,6] all use the representation of gene

regulatory networks.

Initially, specific attention has been devoted to understanding

the dynamics [7] and principles governing gene regulation, using

either the first rules in logic to capture the absence or presence of

cycles in a Boolean formalisation of a GRN [8]. Later, [3,9] also

studied the successive refinements on gene network topology and

their functional consequences. In the past ten years, motivated by

the abundance of micro-arrays, a huge effort has been devoted to

GRN inference. The methods that were proposed and developed

include analyses based on correlations in the data [10], systems of

ordinary or partial differential equations that give a plausible

physico-chemical modelling [11], systems of linear equations [12]

and Bayesian networks (BN, [13]) to cite only a few. Additional

improvements were proposed depending on the exact nature of

the data at hand (e.g. time series, [14–16]) and biological a priori

knowledge [17].

Genetical genomics paradigm for gene network
inference

In order to decipher causal links, the above-cited methods rely

on expensive and still technically challenging time series data or on

many experiments perturbing the systems from a steady state (e.g.

by studying the effect of knocking out a gene). ‘‘An ideal

experimental design for causal inference is randomised, multifac-

torial perturbation’’ recalls the website of the third challenge of the
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Dialogue for Reverse Engineering Assessments and Methods

(DREAM5, [18]) giving a makeover to Fisher’s work on

experimental design [19] in molecular biology data analysis.

Genetic polymorphisms in a segregating population are ideal

settings for multifactorial perturbations of a living system: each

allele is a potential source of perturbation for network behaviour.

Recombination and segregation events that occur during genetic

crosses, randomise the distribution of these alleles among the lines

derived from two genetically known and diverse parents. Systems

genetics, or more precisely ‘‘genetical genomics’’ [20,21], is the

study of how such randomised genetic perturbations can directly

or indirectly affect numerous complex traits. These traits can be

either qualitative phenotypes of interest or quantitative measure-

ments reflecting the activity of cells like transcriptomics data. The

variety of patterns in trait responses on genotyped individuals in

the segregating population are used to draw causal inference. The

added value of having both genetic and perturbed phenotypic

(expression) data has already been demonstrated, in particular to

infer causality [22]. Existing works that elucidate GRN structure

based on genetical genomics data have been using Bayesian

networks (BN) using genetic data as prior information [23] or

multivariate regression in a structural equation modelling (SEM)

framework with multiple testing and greedy search steps [24].

Their efficiency and accuracy in dealing with high dimensional

data set is still very limited.

In this paper, we consider complementary approaches that

could potentially improve over state-of-the-art methodologies to

perform GRN inference from systems genetics data sets, namely (i)

penalised regressions: Lasso [25]) and the Dantzig Selector [26]

which seek linear interpretable dependencies with a controlled

level of parsimony and (ii) BN with an appropriate scoring function

and an integrated treatment of genetic and genomic data. These

approaches are used as inputs to feed a consensus statistical meta-

analysis approach that combines the best of other learning

algorithm results, and which emerged as the best performer for

the DREAM5 Challenge 3A on GRN inference in systems

genetics. Since there is still no large experimental data set for

which a reliably known large size gene network exists, the

challenge offered simulated data based on differential equation

simulation, defining Gold Standard data sets.

The first section of the paper is devoted to the results we

obtained. A discussion on the relative merits and limitations of the

proposed methods follows. The ‘‘Material and Methods’’ section

precisely describes the data and the different methods used,

including specific adaptation to the data sets and post-processing

used to produce network estimates.

Results

In this section, we present our results and the prediction

performance achieved according to the DREAM5 challenge

criteria and we then give a more in-depth analysis in order to

gain more insight on learnt GRNs. The data sets provided by the

challenge organisers, which are described in more detail in the

‘‘Material and Methods’’ section, contained simulated genotypes

in recombinant inbred line (RIL) populations of variable size (100,

300 or 999 individuals) and their associated expression levels,

which were governed by inductive or repressive effects of genes on

each other according to the topology of plausible networks to

recover. For each RIL population size, five networks with an

increasing number of edges were simulated, so a total of 15 data

sets were provided.

Since the meta-analysis that we used was the best performer of

the challenge, we focus on the results obtained using this consensus

method. To illustrate the complementarity of the different

methods (BN, Lasso and Dantzig-based regressions) that supplied

input edges to the meta-analysis, we also present several aspects of

their predictions. According to DREAM5 specifications, a

predicted network topology is defined by a list of directed edges

ranked according to a non-increasing order of confidence score.

General results
Edge lists were compared both to (i) Gold Standard files, namely

the correct list of edges used in simulated models and to (ii) the

pool of all edges that were submitted by other participating teams.

Receiver Operating Curves (ROC i.e. True positive vs. False

positive rates – FPR) and precision vs. recall (PR) curves were

produced for each network. The false positive rate assesses the

trend of the method to produce incorrect edges. The recall is equal

to the true positive rate and measures the power of a method to

recover the complete set of true edges. The precision (the rate of

correctly made predictions) is an indicator of the reliability of the

predictions. Curves obtained by the meta-analysis, BN, Lasso and

Dantzig approaches on the sparsest network, with 999 individuals

(Network1-A999), are shown in Figure 1.

In ROC curves, the point FPR~0, recall~1 corresponds to an

ideal situation where all and only correct edges would be

predicted. This ideal point was not reached by the meta-analysis,

however an interesting trade-off value of (FPR~0:05, recall~0:8)

was reached. The excellent FPR value was not surprising given

that the simulated networks were rather sparse. The steep slope at

the beginning of the ROC curve is a good indicator that the edge

ranking produced by the methods was reliable.

The PR curve plots the ability of the methods to produce both

reliable and comprehensive predictions. For example, with the

1,000 first edges obtained by the meta-analysis, a precision value

of 75% means that three out of four inferred edges were correct,

whilst the recall value of 25% means that one out of four original

edges was recovered.

It should be noted that since the Lasso and Dantzig approaches

produced up to 100,000 edges, so did the meta-analysis. The BN

method produced sparser edge lists: between 2,900 and 5,800
edges per network. This makes the reliability of the score assigned

to edges a key point: no one is really interested in predicting a true

edge that is ranked 50,000th. In the next section, detailed features

about our results are presented, and the emphasis is put on how

these features can serve GRN inference when a Gold Standard

network is unknown.

Table 1 presents the area under the ROC and PR curves (AUC)

of the 15 inferred networks for the meta-analysis approach. Results

clearly showed that reducing the size of the sample made the

problem much harder. At the same time, it also appeared that

increasing the edge density of the simulated network (from

Network ‘1’ with *2,000 edges to Network ‘5’ with *5,000
edges) also made the challenge of GRN inference slightly more

difficult, since prediction performances decreased.

Since the publication of the official results of the DREAM5

challenges, we have slightly improved the post-processing of our

approaches. For example, the handling of edge direction is now

identically dealt with by the two penalised regression approaches.

Consequently, the meta-analysis AUC also changed. PR trade-offs

were noticeably improved, whilst ROC slightly decreased.

The prediction of every method against the pool of all the

predictions submitted by the teams that entered the challenge was

also assessed. It was used to produce empirical p-value derived

scores [27] that reflect how good each method performed in

comparison to others and was eventually used to rank teams. Our

meta-analysis method achieved first place in the three sub-

Gene Regulatory Network Inference: A Meta-Analysis
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challenges 3A (999, 300, 100 individuals) with respective overall

scores of 140:6, 89:4 and 81:9. In sub-challenge 3A999, our scores

were the best for both ROC and PR scores. In sub-challenge

3A300, two different teams provided better results: one for the

ROC curve and one for the PR score, although none of them

achieved a better overall score than our meta-analysis.

Detailed results
In this section, we present a detailed analysis of the results

obtained on the most favourable case, which is Network 1 with

999 individuals (Network1-A999). This choice is naturally

arguable, since a common situation in a systems genetics context

is to infer relationships between genes when sample size is limited.

It however gives an upper bound on the performances achieved on

all networks and defines an ideal situation where the most reliable

observations and conclusions can be drawn.

Correct edges come first. Since predicted edge lists can be

as long as 100,000 edges and since we are interested in obtaining

reliable and interpretable predictions only, we focus on the first

500, 1,000, 2,000 and sometimes 5,000 edges. The ‘Results’

section established that such short-list of predicted interactions

simultaneously gave reasonably good coverages and acceptable

precision levels (see corresponding precision and recall values in

Figure 1). Moreover, they represent sets of edges whose sizes are

reasonably manageable in the context of a 1,000 gene regulatory

network that must be deciphered without any prior knowledge.

We tried to infer the directed network topology from the 500
first edges of the meta-analysis. 434 of them (86:8%) were correct,

but 1,614 edges among the 2,048 edges of the true network were

missing. So the recall was only 21:2%. When we used the 1,000 or

2,000 first edges, the recall increased to respectively 36:4% and

51:1% but the price to pay was a drop in precision to respectively

Figure 1. Accuracy results for the GRN inference methods: ROC curves (upper panel) and PR curves (lower panel) for Network1-
A999. Meta-analysis: green, BN: dashed red, Lasso: purple and Dantzig: blue. Points for inferred networks of 500, 1,000 and 2,000 edges are indicated.
doi:10.1371/journal.pone.0029165.g001

Table 1. AUC of the DREAM5 Challenge 3A for the meta-analysis of the SAaB team (source: [18]).

DREAM Area Under the Curve (AUC)

challenge Network ‘1’ Network ‘2’ Network ‘3’ Network ‘4’ Network ‘5’

A999 PR 0.358a/0.482b 0.258/0.364 0.195/0.292 0.183/0.260 0.178/0.244

ROC 0.933/0.902 0.885/0.845 0.844/0.808 0.821/0.784 0.813/0.768

A300 PR 0.211/0.248 0.144/0.175 0.141/0.159 0.132/0.141 0.113/0.131

ROC 0.855/0.845 0.793/0.779 0.786/0.774 0.759/0.739 0.737/0.719

A100 PR 0.085/0.074 0.060/0.054 0.053/0.045 0.054/0.046 0.054/0.044

ROC 0.754/0.750 0.718/0.713 0.696/0.694 0.676/0.671 0.670/0.666

aAUC official values issued by the DREAM organisers.
bAUC after minor corrections in our implementations.
doi:10.1371/journal.pone.0029165.t001
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74:6% and 52:4%. So inferring half of the true network led to an

inference noise of nearly 50%.

For denser networks, the precision remained the same, but the

recall decreased since the total number of edges to predict was

greater. As an example, in Network 5 (5,545 regulatory

relationships), the 2,000 first edges produced by the meta-analysis

had a precision rate of 54:2% but the total network coverage was

only 20%. In this case, raising the total number of edges to keep

for inference purpose was not a good option since using the 5,000
first edges indeed slightly increased the recall to 31:3%, but the

precision then went down to 34:7% (data not shown).

In/Out-degree distributions. If initially the only

knowledge that was available on the simulated networks was

that they had a modular structure, the organisers later revealed

how they were generated, including simulated in/out degree

distributions. It is therefore informative to compare Gold Standard

networks to predicted networks in terms of node degree

distributions. Figures 2 and 3 compare plots of respectively in-

and out-degree distributions for the true Network1-A999 and for

networks inferred from the first 500, 1,000 and 2,000 edges

predicted by the meta-analysis. The first result was that the larger

the set of edges, the more accurate the predicted network topology:

inferred degree distributions got closer to the correct ones when

the edge list was increased. This would obviously not be true if we

had considered much longer edge lists (which have poorer

precision levels): a list of tens of thousands of edges would give

too high a network connectivity, and degree distributions would be

skewed. With the number of edges that we considered,

distributions were skewed towards 0 and some nodes were

isolated even when 2,000 edges were kept (see the paragraph on

largest connected components, below).

The in- and out-degree distributions of the true network and its

modularity are global essential features of its topology. This

modular structure appeared with as few as the first 500 edges and

was clearly visible with the first 2,000 edges, as it is illustrated in

Figure 4. However, the method had difficulties in locally capturing

relationships for a node that had many incoming links: it was quite

difficult to unmask regulatory hubs. For example, the true network

had a dozen genes with more than 7 incoming edges and our

predictions among the first 2,000 edges revealed only one node

with 5 incoming links. Moreover, the true network had one 57-

outgoing relationship hub and using the 2,000 first meta-analysis

edges, we predicted only 30 such links for this hub. A consequence

of this difficulty in predicting highly connected nodes was that our

predictions overestimated the number of nodes with few regulatory

connections.

Despite this, the meta-analysis performed relatively well at

inferring networks with relatively accurate in- and especially out-

degree distributions. In real biological data sets applications, if one

had some prior knowledge about the true degree distributions (e.g.

from another well-studied organism) plotting inferred node degree

distributions would probably be a good tool for assessing network

overall quality.

Largest connected component. In the considered Gold

Standard 1,000 gene networks, all nodes were connected.

Moreover, in real biological data sets, it is often acknowledged

that a GRN has a giant connected component [28] e.g. for

robustness reasons. So being able to predict such a structure is a

Figure 2. In-degree distribution of Network1-A999. The distribution is plotted on the log scale on the y-axis since the in-degree distribution
was assumed to be exponential in the true network (black crosses). Coloured symbols stand for the first 500 (light green diamond shape), 1,000
(middle green triangles) and 2,000 (dark green circles) edges inferred by the meta-analysis.
doi:10.1371/journal.pone.0029165.g002
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positive point for an inference method, even if all interactions are not

simultaneously active [29]. The previous analysis on in-/out-degree

also suggested to look at the size of the largest connected component

when the number of considered edges increased. Figure 5 shows

how this size evolves with the number of considered edges for the 15
different networks of the challenge. Clearly, three trends appear in

our results, depending on sample size. In the 999 individuals case,

the largest connected component captured almost all nodes when

more than 1,500{2,000 edges were considered, whatever the true

graph connectivity. In the 100 individuals case, no large connected

component appeared, even when considering 3,000 edges (with very

low precision levels near 10%). For 300 individuals, it was a middle-

of-the-road case. A large connected component appeared

reasonably quickly with additional edges, but the behaviour

changed with the true network connectivity.

Up to this point, we only presented global measures on the

networks. In the next paragraph, we present results that show that

prediction accuracy may also be influenced by local factors such as

the type of mutation that occurred, either in the promoter region

or in the coding sequence of the gene.

Edge inference accuracy depends on mutations that

impact gene activity. We analysed the quality of inferred

gene regulations depending on the type of mutation that occurred

for the source (regulator) gene and the target (regulated) gene. We

inferred the type of mutation of a gene: we labelled the gene ‘cis’ if

the mutation is in its promoter region (hence the mutation shows a

cis-regulatory effect), and ‘trans’ if it lies in its coding region. A trans-

mutation modifies the sequence of the gene which, as a regulator,

affects the expression of target genes in the GRN. This leads to a

trans-regulatory effect. Some authors (e.g. [24]) call such regulation

a ‘cis-trans’ effect, but we used ‘trans’ for simplicity.

For each gene, we tested the cis-regulatory effect of its marker

using an analysis of variance, as described in the ‘‘Materials and

Methods’’ section (Bayesian networks subsection). Genes not

detected as cis-regulated were labelled ‘trans’. This gave a predicted

number of trans-acting genes consistent with the announced

frequency of 75% when the sample size was large enough to

precisely infer this rate. When sample size was smaller, we

underestimated cis-acting regulation frequency.

Figure 6 shows that ‘cis’ ? ‘trans’ links were predicted more

reliably than other types of relationships. This may be explained by

the fact that the regulator of the target gene had a large variation

due to the strong effect of its cis mutation, and that its regulatory

effect was not obfuscated by a cis-regulation on the target gene. The

‘cis’ ? ‘cis’ framework was the worst from the prediction accuracy

point of view. It may correspond to strong correlations due to

genetic linkage but not to direct causal regulations.

Complementarity of the inference methods combined in

the meta-analysis. The meta-analysis took as input the

inferred networks of three different methods: the Bayesian

networks (BN), the Lasso regression, and the Dantzig selector-

based regression. These methods ranked the edges differently and

this was what allowed the meta-analysis to perform well.

Figure 7 displays a Venn diagram that presents specificity and

overlaps between the sets of the first 1,000 edges predicted by the

BN, Lasso, and Dantzig approaches, respectively. Similar figures

were obtained with the first 500 or 2,000 edges instead (data not

shown). It appeared that the edges simultaneously predicted by all

three approaches were very reliable: 90% of them were correct. So

were edges shared by the BN and Dantzig approaches. Edges

predicted by just one method were less precise (less than 50%
precision), and pure Lasso predictions were even poorer.

Figure 3. Out-degree distribution of Network1-A999. The distribution is plotted on a log-log scale since it was expected to be a power-law
distribution in the true network (black crosses). Coloured symbols stand for the first 500 (light green diamond shape), 1,000 (middle green triangles)
and 2,000 (dark green circles) edges inferred by the meta-analysis. Points having ‘0’ out-degree were transformed to 0:5.
doi:10.1371/journal.pone.0029165.g003
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The most interesting observation was that there was a clear

complementarity between the three considered approaches. They

shared a core prediction set, but each of them provided a specific

contribution to the meta-analysis output.

Computing times. Table 2 presents computing times for the

different approaches. These computation times were averaged

over the five different networks in each of the three different sub-

challenges. Computation times were very similar for the different

networks, although the number of edges in the network to infer

varied from less than 2,000 to more than 5,000. The CPU-times

for the BN and Lasso methods had a nearly linear dependency

upon sample size and should scale-up easily to larger data-sets.

This seemed less obvious for the Dantzig selector approach but

this was mostly because this recent method has been directly and

bluntly implemented using a general linear programming solver.

The use of a dedicated algorithm such as DASSO [30] would

likely lead to an approach that scales as smoothly as the Lasso

approach.

The meta-analysis is almost instantaneous as it only needs to

parse edges lists for BN, Dantzig and Lasso to produce its own

network and edge scores. However, it can not be run

independently of other methods.

Discussion

We have proposed a GRN reconstruction method that relies on

a meta-analysis of the output of three different reconstruction

methods (namely BN, Lasso and Dantzig). As best performers of

the DREAM5 Challenge 3A, we have shown that the presented

methodology can adequately deal with large size gene network

inference in a systems genetics (or genetical genomics) framework,

i.e. when both marker data, that reflects mutations occurring in a

segregating population, and gene expression data are available.

As expected, network reconstruction clearly improves when

sample size increases. This is a decisive argument for planning

genetical genomics experiments with enough individuals in the

segregating population. Our results suggest that a sample of size

300 is at least needed to infer a first list of 500 reliable edges (at a

precision level of nearly 65%) for a 1,000 gene network using the

meta-analysis approach.

Figure 4. Network1-A999 visualisation. (A) to (C) are networks inferred by the meta-analysis using the first 500 (A), 1,000 (B) and 2,000 (C) edges.
(D) to (F) represent the same predicted networks showing only correctly inferred edges. (G) is the true network. For clarity, vertices have been
removed.
doi:10.1371/journal.pone.0029165.g004
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These good results could only be achieved thanks to the

integration of three different complementary statistical inference

techniques. This is certainly a key explanation for the results

obtained. First of all, these predictions were produced by two

different classes of methods, each capable of exploiting specific

different features.

N structure learning of a Bayesian network: in this probabilistic

framework, a directed acyclic graph is used to represent

probabilistic relationships between discrete variables. The directed

acyclic graph structure restricts the class of predicted GRN to

structures that do not contain feedback loops. However, the use of

directed graphs allows for predicting causal relationships between

variables, as expected in the DREAM5 challenge.

Discrete Bayesian networks are also inherently limited by the

usual encoding of probabilistic relationships between causes

(parents) and effects using a conditional probability table for each

node in the network. Such a table includes a number of

parameters that grows exponentially with the number of causes.

Since sample size is limited, only a limited number of parameters

can be reliably estimated, and the approach is therefore inherently

limited to graphs where every variable is explained only through a

limited number of parents. For the Bayesian Information Criterion

(BIC) a maximum number of 5 or 6 parents, depending on the

choice of 3 or 4 classes for expression level variables, could be

predicted with a sample size of 300 [31]. The BDeu score that we

used for the structure learning is known to allow more parents

[32], however we never attained the hard constraint of 9 parents

that we imposed in our algorithm. This restriction was necessary

Figure 5. Size of the largest connected component inferred by the meta-analysis for the 15 DREAM5 Challenge 3A networks vs.
number of edges. Colours encode sample sizes: blue for 100 individuals, red for 300 and green for 999. Line style and symbols on curves represent
networks: solid line squares for Networks ‘1’, short dashed line with circles for Networks ‘2’, dotted line with triangles for Networks ‘3’, alternate
dashed and dotted line with plus for Networks ‘4’ and long dashed line with crosses for Networks ‘5’.
doi:10.1371/journal.pone.0029165.g005

Figure 6. Analysis of precision/recall of the meta-analysis
approach for DREAM5 Challenge 3A with 999 individuals/
Network1 data. Predicted gene regulations are classified into four
groups depending on the label of the regulator and the target gene. A
gene is labelled ‘cis’ if its marker has a cis-regulated effect on its
expression level. Otherwise, gene is labelled ‘trans’. An edge between
two ‘cis’ labelled genes is classified ‘cis ? cis’, between two ‘trans’
labelled genes: ‘trans ? trans’ and so on.
doi:10.1371/journal.pone.0029165.g006

Gene Regulatory Network Inference: A Meta-Analysis
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for computational efficiency, as learning Bayesian network

structure is NP-hard [33].

The positive part of this flexible encoding of probabilities

distributions is that it enables the capture of non-linear

relationships between variables, an expected behaviour of true

biological samples.

N penalised linear regressions (Lasso and Dantzig): as a mirror to

Bayesian networks, these approaches infer undirected graphs, with

no causal relationships, but the predicted structures may contain

cycles. They are restricted to linear relationships between

variables, but this restriction keeps the number of parameters

small. The number of neighbours of a variable is not a priori

limited, and predicting hubs is possible. Ultimately, these models

are efficient in the sense that the associated inference algorithms

are polynomial time algorithms [30,34].

Unexpectedly, despite the relationships between the two

penalised linear regression methods [35], which should provide

close estimates in a sparse setting, the Venn diagram in Figure 7

clearly shows that each method predicts different sets of edges

showing complementarity even in their own class.

The idea of combining results from different methods has

already been tested by the DREAM organisers themselves in a

previous different DREAM challenge, in what they called ‘‘the

community intelligence’’ [36]. With the best performers among

the competitive teams, the DREAM organisers computed a a very

simple and robust combined score based on rank sum. Their

predictions outperformed individual teams when results of best

performers were complementary and not optimal. We based our

meta-analysis on a more sophisticated score that was accurate

because our source methods had weighted edges with a

probability-like score. Clearly, combining linear (Lasso/Dantzig)

and non-linear (BN) methods allowed the meta-analysis we

proposed to better detect causal relationships.

BN and penalised regressions also produced a very different

total number of predicted edges. The number of predicted edge

has a tremendous impact on DREAM challenge scores. BN

predictions hardly reached a few thousand edges whilst Lasso and

Dantzig approaches produced more than 100,000 edges each. To

illustrate this, the area under the curve for true positive rate versus

false positive rate in Figure 1 (top) was clearly smaller for BN

predictions. Edge list of smaller length can be an explanation of

poorer scores. The meta-analysis used the entire list of scores

produced by BN, Lasso and Dantzig approaches. The edge

ranking score (described in the ‘‘Material and Methods’’ section)

we used gave better results than any of the individual approaches,

except for the very first predictions (recall below 7% on Figure 1

bottom) ; in this latter situation, the Dantzig approach obtained

slightly better precision (less than 1% improvement).

General features of the true network are ususally correctly

recovered. For example, predicted networks have good in- and

out-degree distributions and the expected construction of a big

connected was quickly observed with only 1,000 or 2,000
predicted edges. In addition to individually ranking correct edges

first, the meta-analysis is also able to retrieve global structural

attributes of the network.

One obviously has to be careful about conclusions drawn from

simulated data, as provided in the DREAM5 challenge. While

experimental data on GRN slowly accumulates and expression

measures become increasingly easy and inexpensive using RNA-

Seq, to the best of our knowledge, neither sufficiently large

experimental data sets that systematically combine gene expression

and polymorphism measures, nor experimentally confirmed large

GRN are available yet. In the area of genetical genomics data-sets,

[37] exploited 160 RILs from a cross between two Arabidopsis

thaliana accessions with 291 available markers and 24,065 gene

transcript levels. Similarly, [38] gathered 45,000 gene expression

levels, 194 micro-satellite markers for 60 F2 mice and [39] recently

analysed 110 RILs derived from a cross between two rice

accessions with 1,655 markers and 16,372 expression traits. The

three former examples were far from inferring a genome-scale

GRN. These examples stress the gap between present research

results obtained on real data sets that give only local regulatory

relationships and simulation settings that indicate a potential for

genome-scale GRN reconstruction on larger data sets. From our

experience in analysing such data sets, several features can be quite

different in real data sets and in simulated data sets, such as those

proposed in the Challenge 3 of DREAM5.

Figure 7. Venn diagram between the three sets made up of the
first 1,000 edges inferred from one of the three approaches: BN
(red circle), Lasso (blue circle) and Dantzig (green circle). Within
each region of the diagram, the number of correctly inferred edges
(over the bar) and the total number of edges (under the bar) are given.
1,134 (top right) is the number of missing edges for the union of the
three approaches.
doi:10.1371/journal.pone.0029165.g007

Table 2. Computation times for the different approaches (per
network).

Method DREAM5 sub-challenge

A100 A300 A999

BN 209 709 1809

Lasso 59 129 309

Dantzig 3009 13009 66009

Meta less than a couple of seconds

CPU times are given for a 2,96 Ghz Intel(TM) processor with 4 GB memory
installed.
doi:10.1371/journal.pone.0029165.t002
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One such feature is the unrealistic one marker per gene

assumption: in practice, the total number of markers is unrelated

to the number of genes and may be either quite low, or very high

(see [40] for figures on plants and references therein with over a

million SNPs for humans). A solution to the former case would be

to infer pseudo-markers but still less comprehensive information

would result from it. On the other hand, Next Generation

Sequencing data sets are promising in that they would propose

several markers per gene. Our modelling need be extended to use

haplotypic markers instead of marker data to fully use the available

multi-allelic information at different genotyped loci.

It should be pointed out that our prediction relies on

probabilistic models, which are in no way related to the

mechanistic ODE-based model used for generating the data set.

In essence, none of our models is therefore using the ‘‘true model’’,

which is the usual case when handling real data sets.

A potentially more challenging question lies in the number of

genes in the network. As we have just pointed out, the analysis of a

large number of genes requires large sample sizes, at higher costs.

When dealing with GRN with thousands of genes and only a few

hundreds of individuals in the population, the ultra-high

dimension limit linking the sample size, the number of genes

and the network sparsity is hit so that even sparse models can not

be faithfully recovered anymore [41]. In the three formerly cited

papers ([37–39]), if the number of parents/regressors associated to

each gene was to exceed 4, the estimation would theoretically be

impossible. Bootstrap techniques might help in providing sparse

robust estimates in such settings [42–44]. A prior selection of

relevant genes, using genes that are differentially expressed or

selecting genes known to play a role in the biological process under

study, could considerably improve GRN inference. The risk here

is that if an important variable (e.g. integrative hub) is missing in

the data set, confounding effects will likely lead to false positive

edge predictions even when combining several methods into a

powerful meta-analysis. The use of hidden variables, that could

account for unmeasured gene expressions, has shown limited

performances when the number of genes in the network is high

(over a few tens of genes) ; interesting preliminary results can be

found in [45,46]. There is a substantial need for methodological

developments in this direction.

Following the added value of integrating several inference

methods, a natural way to improve predictions would be to include

additional inference methods which would complement the

methods we used in the present study. Causality inference is

probably the area where our current combination of inference

tools could benefit from additional contributors. Indeed, the linear

regression inferences essentially ignore causality, while Bayesian

networks are able to predict causality when no Markov

equivalence ambiguity appears. One should ideally be able to

actively exploit the fact that the seed for causality from

polymorphism to expression is known a priori. Before this, different

existing inference techniques, such as kernel methods [47] and

Random Forests [48], which have already been used in similar

contexts [49,50], would be excellent candidates.

Materials and Methods

Notations and data simulation
The data sets provided by the DREAM5 Challenge 3 organisers

are available at http://wiki.c2b2.columbia.edu/dream/index.

php/D5c3.

Directed networks of p~1,000 genes were generated according

to a ‘‘modular scale-free topology’’ [18]. After the challenge, the

organisers gave additional information on the generation process:

networks were simulated with a power law (scale free) out-degree

distribution, but an exponential in-degree distribution. Moreover,

simulated networks were modular. Fifteen such networks were

generated and the distribution parameters were chosen so that the

total number of edges range from 2,000 (Network ‘1’ category) to

5,000 (Network ‘5’ category). Each network was associated to a

specific population size n of either n~100 (sub-challenge A100),

n~300 (sub-challenge A300) and n~999 (sub-challenge A999). In

all cases, the sample size n was smaller than the total number of

genes p and the
n

p
ratio, which is important for estimation, varied

from
1

10
for sub-challenge A100 to

999

1000
for sub-challenge A999.

For each network and each population size, genotypes for n
RILs with 1,000 bi-allelic markers evenly distributed on 50
chromosomes were simulated using linkage information. Each RIL

was an homozygous mosaic of paternal and maternal alleles.

Parental alleles were different all along the genome. Each marker

polymorphism was assumed to be associated with a single gene

mutation located either in the promoter region (probability 25%)

or in the coding region (probability 75%). A polymorphism in the

promoter region of a gene affects its basal transcription rate,

leading to a ‘cis-like’ regulatory effect on the gene activity, while a

polymorphism in the coding region affects the strength of the effect

of the gene on its targets in the network, leading to a ‘trans-like’

effect. The marker data for RIL i [ f1, . . . ,ng and gene

j [ f1, . . . ,pg is denoted Mij and has value 0 or 1. The genotype

matrix M is hence a n|p matrix with 0=1 entries.

Gene expression levels were simulated at steady state of a

dynamical system represented by a set of ODEs (see exact formula

in [18] and details in [51]). These ODEs account, via different

parametrisations, for different intensities in activation or repression

effects, genetic variant influences and additional noise. The

expression data matrix G consists in a n|p matrix.

Polymorphisms between RIL individuals define multifactorial

perturbations. Each allelic combination defines a different

parametrisation in the ODE model, with the same network

skeleton. In addition to random term effects that represent

technical or biological variability, this provokes changes in the

observed gene expression patterns from one individual to another

that in turn influence each other according to the causal network.

The observed values G were those obtained at steady-state of the

complex system. Figure 8 depicts such observed patterns for four

individuals (1 to 4) of the population for Network1-A999 of the

challenge.

The goal of the challenge was to reconstruct the network that

gave birth to the observed measures as a list of edges sorted

according to a relative ‘‘confidence’’ score. This score was only

used for ranking edges.

We now present our strategy to reconstruct the networks

namely the preprocessing of the data, the probabilistic graphical

models that we implemented, their post-processing and the meta-

analysis that was carried out to make the best out of the different

modelling approaches.

Bayesian networks
Our first statistical modelling of the data relies on a directed

graphical model known as Bayesian networks. Our model captures

expression levels and genetic data in discrete variables, related

through conditional probability tables capturing regulating and

polymorphism effects, including possibly non-linear effects. The

structure and parameters of the underlying graph were estimated

using a score-based structure learning algorithm similarly to what

was done in [13] in the context of pure expression data analysis.

Gene Regulatory Network Inference: A Meta-Analysis
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The precise score, discretisation policy, and algorithm used are

described below.

Bayesian networks and structure learning with the

Dirichlet score. A Bayesian network denoted by B~(G,PG) is

defined by a directed acyclic graph G~(V ,E) with nodes

representing p random discrete variables V~fV1, . . . ,Vpg,
linked by a set of directed edges E, and a set of conditional

probability distributions PG~fP1, . . . ,Ppg. The variables involved

in each conditional probability table Pi are defined by the

directed acyclic graph: Pi~P(VijPa(Vi)), where Pa(Vi)~
fVj [V j (Vj ,Vi) [Eg is the set of parent nodes of Vi in G. A

Bayesian network B represents a joint probability distribution on

V such that:

P(V )~ P
p

i~1
P(VijPa(Vi)) ð1Þ

Learning the structure of a Bayesian network consists in finding

a directed acyclic graph G maximising P(GjD) where D represents

the observed data. We have:

P(GjD)~
P(DjG)P(G)

P(D)
!P(DjG)P(G) ð2Þ

Figure 8. Graphical representation of expression data on a subpart of Network1-A999 for four individuals. Node colour represents
simulated gene expression level (in green scale, light for small values and dark for high values) for individuals 1 (upper left), 2 (upper right), 3 (bottom
left) and 4 (bottom right). Red circles highlight two spots in the network that vary due to different underlying marker polymorphisms.
doi:10.1371/journal.pone.0029165.g008
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The first term P(DjG) of Equation 2, is called the marginal

likelihood. The Bayesian Dirichlet score (BDeu, where ‘eu’ stands

for Equivalent Uniform) gives the same score for Markov

equivalent Bayesian networks and assumes a uniform prior on

the conditional probability parameters. It is defined by the

following expression:

BDeu(G)~P(DjG)~ P
p

i~1
P
qi

j~1

C(aij)

C(nijzaij)
P
ri

k~1

C(nijkzaijk)

C(aijk)

with nijk, the number of occurrences of the configuration

(Vi~k,Pa(Vi)~j) in the n samples, nij~
Pri

k~1 nijk, aij~
a

qi

,

and aijk~
a

riqi

, where ri is the domain size of variable Vi and qi is

the size of the Cartesian product of the i parent domains

(qi~PVj[Pa(Vi )
rj ). The BDeu score requires a specific value for

a, called the equivalent sample size, which, in practice, is often

arbitrarily set to one. However, [52,53] established the sensitivity of

the BDeu score with respect to this parameter: the connectivity of

the inferred DAG increases with a growing a. [53] suggested a way

to compute an optimal a value, making the assumption that a is

smaller than the sample size. Following this idea, we defined a range

of a values starting from its maximum value, set to the largest

sample size (i.e. a~103), and decreasing it on a logarithmic scale. In

our experiments, we varied a in the range f10{16,10{15, . . . ,103g
in order to get 20 networks, from a very sparse to a denser structure.

This defined the a-grid for the Bayesian network approach. We

defined the score of an edge using majority voting on these graphs

(see below). Without any additional information, a uniform

probability over all possible DAGs was assumed in Equation 2.

Bayesian network modelling and discretisation policy.

The set of discrete random variables V was composed of one

variable per gene-activity, denoted Gi, and one variable for each

genetic marker, denoted Mi, for all i [ f1, . . . ,pg with p the number

of genes (p~1000). Following challenge 3A assumption, each gene,

with expression Gi, was associated with a single genetic marker Mi.

Since we used discrete BN, we had to discretise Gi. As shown in

[54], for the same score-based structure learning algorithm, the

choice of a discretisation method can dramatically modify the

quality of the inferred network. Instead of choosing a single

discretisation method, we chose an adaptive method depending on

the type of gene-activity distribution for each gene. Observing

complex distributions in the data sets, we distinguished two types of

distributions. If we detected a unimodal (normal-like) distribution,

we used an adapted k-means algorithm to obtain a three-class

discretisation, which also ensured a minimum class size (5% sample

size) and a maximum size for extreme classes (30%). In the case of a

multimodal distribution, we used the more general framework of

Gaussian mixture models to find a maximum of four classes. Since

the BDeu score depends on domain sizes, we tuned the parameters

of our discretisation method to favour a four-class discretisation so

that most of the Gi variables had the same domain size.

Structure learning and restricted search space. Learning

Bayesian network is an NP-hard problem with a super-exponential

search space of potential DAG structures [33] and even a greedy

search heuristic method can be very time consuming when the

number of variables p is large. In order to get reasonable

computation times and also take into account biological

knowledge, we reduced the search space by several assumptions.

A preliminary analysis of variance was used to predict cis-

regulatory markers: detected positive markers (Bonferroni correct-

ed p-value v0:001) were those giving the most significant signal in

a 7 marker-width window, centred on the gene, to avoid false

marker influence due to genetic linkage.

We used this cis-effect information to constrain structure search:

since each cis-marker Mi had an effect on its associated gene

activity Gi only, we constrained our model to use an Mi?Gi edge

and forbade other edges outgoing from Mi. In the opposite case,

when the marker Mi was not detected as cis-regulatory marker we

only forbade the Mi?= Gi edge.

Following the approach of [55], for each gene expression Gi, we

selected a list of candidate parents composed of genes Gj (resp.

markers Mj ) with a contribution to BDeu P(GijGj) (resp.

P(GijMj)) assuming a single parent Gj (resp. Mj ) greater than

P(Gi) assuming no parents. Moreover, due to the fact that

markers in the same chromosome region had a tendency to be

selected together because of linkage correlations, we chose the best

marker in a 50 cMorgan sliding window. We did not try to learn

edges between marker variables since it is useless for our purpose.

We used the structure learning algorithm ‘greedy hill-climbing’

of Banjo [56]. We started from an empty DAG and fixed a

maximum number of parents to 9 to avoid overwhelming

computational costs, in order to find the best DAG locally

maximising Equation 2 for each value in the a-grid.

The directed edges from the resulting 20 DAGs learnt for the 20
different values of a were directly mapped onto genes to define a

network relating the p genes: an edge from Mi to Gj in the learnt

structure created an edge from Gi to Gj in the network. So, despite

the fact that the underlying graphical model can only represent an

acyclic directed structure, the final network may contain cycles.

We computed the frequency of every directed edge in the inferred

gene networks obtained by different values of the equivalent

sample size a. This allowed us to perform a simple majority vote;

directed edges were sorted based on their frequency, breaking ties

by using average influence scores as defined in [57].

Structural equation modelling
This section first presents the structural equation model used to

describe relationships among variables and the penalisation techniques

that allowed for simultaneous parameter estimation and variable

selection. We then explain how we implemented them in practice.

In the framework of Structural Equation Models (SEM), one

response (or dependent) variable Y is assumed to depend upon m

regressors X ’s with linear dependency in the parameters:

E Y jX½ �~f (X )

~
Xm

j~1

Xjhj

ð3Þ

Equation 3 is linear in parameters h that are unknown and need

to be estimated. Explanatory variables X can be quantitative or

qualitative.

Having observed X and Y for a sample of size n, the usual

estimation procedure is the ordinary least square (OLS) method

which minimises the residual sum of squares (RSS):

RSS(h)~
Xn

i~1

(yi{
Xm

j~1

xijhj)
2

~
Xn

i~1

T(Y{Xh)(Y{Xh)

~jjY{Xhjj2‘2

ð4Þ
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where yi and xij are the observed values of Y and Xj for the ith

individual.

Differentiating Equation (4) with respect to h leads to the unique

least square estimate

ĥhrss~(T XX ){1 T XY ð5Þ

On data sets where nvm, as in our case, X may be not full

rank. T XX is then singular and the estimate in Equation (5) can be

replaced by: ĥh~X {Y where X { is the Moore-Penrose pseudo

inverse of X . Beyond intensive computation, another difficulty

arises when eigenvalues of X close to 0 cannot be estimated

precisely enough because of numerical instability, inducing large

uncertainty about X { and consequently ĥh. Ultimately, the

unbiased estimate ĥh is not worth the effort because of the induced

variance in coefficient estimates or predictions.

Since our goal was to obtain an interpretable (i.e. reasonable

number of significant explanatory variables) and stable (i.e. small

changes in data should have low impact on analysis results) model

that leads to as accurate as possible predictions, we allowed some

bias-variance trade-off using regularization. One approach to

regularization is to introduce a constraint on regression coefficients.

For example ridge regression minimises the RSS in Equation 4

imposing that jjhjj‘2
ƒt for some tw0. The smaller t, the greater the

level of shrinkage of regression coefficients. Conversely, larger

values of t allow more complex models that are penalised if they do

not bring enough gain into the RSS. The model selection problems

therefore come down to choosing appropriate values for t.
However, ridge regression does not select variables: every regression

coefficient is shrunk but not set to 0 so the model is not really

simpler. Direct variable selection procedures, such as ‘‘best subset’’

tackle the issue of a huge number of regressors included in the model

but as a discrete process they can be subject to a high variance in the

produced estimates.

Among the many possible techniques to achieve variable

selection in a stable model, we chose to focus on the Lasso [25]

and on the Dantzig Selector [26]. Other penalization techniques

(for example see [43,58,59]) are known to be more suitable for

high dimensional data that have inherent inner collinearity, but

need additional parameter tuning. Our goal was first to focus on

simple, efficient but powerful techniques in order to assess their

merits on this problem.

Lasso penalised regression. The Lasso is very similar to

ridge regression. It also minimises the RSS but allows for deviation

up to a penalty term controlled by a constraint on the ‘1 norm of

parameters h (instead of the ‘2-norm for ridge regression). The

Lasso automatically selects variables and continuously shrinks their

associated regression coefficients. Depending on the penalization

strength, it enforces an increasing number of parameters to be 0.

Lasso estimates are defined as follows:

ĥhLasso~ arg min
h
jjY{Xhjj‘2 , subject to jjhjj‘1ƒt ð6Þ

or equivalently (Lagrangian transform):

ĥhLasso~ arg min
h
jjY{Xhjj2‘2zljjhjj‘1 ð7Þ

While Equation (6) explicits the constraint on the parameters

norm, Equation (7) introduces the penalty parameter l: the larger

l, the greater the amount of shrinkage, and the simpler the

selected model will be. More precisely, l is an upper bound on the

correlation between regressors not included in the model and the

regression residual. Interpreting t of Equation (6) is also possible by

considering t0~jjĥhrssjj‘1
. Hence setting t to t0=2 roughly shrinks

active coefficients in the regression by 50% [44]. The Lasso

solutions do not vary equally upon input scales. Standardisation of

the inputs settles this problem. For the Lasso (and for the Dantzig

selector below), we therefore standardised the input regressors.

Solving Equation (7) is a quadratic programming problem but

efficient algorithms exist for computing the entire solution path as

l varies. We used the the Least Angle Regression (LAR, [34])

algorithm available in the glmnet package version 1.4 [60] and

implemented in R (version 2.11.0, http://www.r-project.org/).

In the challenge, confidence scores had to be assigned to

inferred edges, so we did not use a model selection criterion but

instead created a score reflecting the importance of the

explanatory variable. This score was the frequency for this

variable to be included in the model for different values of the

penalization parameter. This could be done along the entire LAR

solution path. We used a fixed grid of l values. For comparability

with the Dantzig selector and BN approaches, we used a grid of 20
evenly spaced values for l, ranging from 0 (no penalization) to

lmax, the smallest value of l that prevents any regressor to be

included in any regression.

Dantzig selector. The Dantzig selector [26] is a recent

regression method which, as the Lasso approach, relies on the ‘1

norm of the parameters to capture model complexity. In its

standard description, the Dantzig selector minimises the ‘1 norm

of the parameters subject to constraints bounding the absolute

value of the correlation between residuals and explanatory

variables. Similarly to the definition of the Lasso given in

Equations (6) and (7), the Dantzig Selector is:

ĥhDantzig~ arg min
h
jjhjj‘1 : jjT X (Y{Xh)jj‘?ƒd
n o

ð8Þ

where d is a bound on the correlation between the residual vector

and each explanatory variable. With no bound (d??), the

Dantzig selector estimates all coefficients to zero, because of the

minimised ‘1 norm. With the strongest bound (d~0), Dantzig

enforces a zero correlation between residuals and explanatory

variables, a condition which is also satisfied by ordinary least

square estimates (as it is equivalent to enforcing a zero derivative of

the squared error term minimised in OLS regression). Equation (8)

can be written in its dual form:

ĥhDantzig~ arg min
h
jjT X (Y{Xh)jj‘? : jjhjj‘1ƒt
n o

ð9Þ

This writing is similar to the Lasso of Equation (6), replacing the

RSS by the maximum varying component of its gradient.

As initially shown in [26], the Dantzig selector is able to produce

an accurate estimate in the n%p context with a bounded error

term, provided that the model is actually sparse. The Dantzig

selector also has the property that it reduces regression to linear

programming, a polynomial optimisation problem [61] for which

efficient dedicated solvers exist. Recently, [35] showed that the

Lasso and the Dantzig selector share similar properties: the Lasso
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estimate automatically satisfies Dantzig correlation constraints,

and similar error boundaries can be obtained in both cases

(although with larger constant terms for the Lasso). For this reason,

the Dantzig selector tends to be considered as extremely similar to

the Lasso. However [44] noticed that coefficient regularization

paths are quite smooth along Lasso solution while they can

become irregular with the Dantzig selector.

To solve each regression problem, we generated a linear

program (LP) as described in [26]. The generated LP was far from

optimised. Beyond the p variables for vector h, it included n
variables for the residual vector and p variables to encode

boundaries on correlations. 2p boundaries were used to effectively

limit correlations and an extra set of n linear equalities encoding

residual definition. The size of this encoding depended on p and n
but could easily depend just on p (by symbolic precomputation of

the scalar product between residuals and explanatory variables).

By setting all parameters h to 0 while minimising d, it is simple

to compute the minimum value of d such that all regression

coefficients are set to 0 (denoted as dmax). We then solved the

Dantzig selector problem using the GPL linear programming

solver glpk for 20 evenly spaced values of d in ½0,dmax� (for

comparability reasons with the BN and Lasso approaches),

providing a set of 19 non-trivial estimates for the parameters in h.

Application of structural equation models to systems

genetics data. We now show how we used penalised regressions

to infer a GRN from the DREAM5 Challenge 3A data sets.

We regressed each gene expression level Gi for i [ f1 . . . pg
using as regressors every other gene expression level and every

gene marker. This gene-by-gene approach ignores correlations

and therefore corresponds to the minimisation of a specific

penalised pseudo-likelihood [62]. Its main advantage is to reduce

the whole penalised likelihood minimisation to p univariate

penalised linear regressions.

Let G denotes the n|p observed matrix of the gene expression

levels and M the n|p matrix of marker genotypes; the linear

regression model for gene i is:

Gi~GbizMaizei ð10Þ

~
Xp

g~1
g=i

bigGgz
Xp

g~1

aigMgzei

where bi is the p-vector of linear effects of other expression levels

on Gi (forcing bii~0 to avoid trivial self-regression), ai is the p-

vector of linear effects of markers on Gi and ei is the Gaussian

residual error term.

To make the link with previous notations in this section, Y now

iteratively becomes one of the Gi variables, X becomes the n|2p
matrix (G,M) and the regression coefficients h now become (b,a).
The network is then encoded in non-zero entries of estimated

matrices b : ~ b1, � � � ,bp

� �
and a : ~ a1, � � � ,ap

� �
. The only

consistency condition is that bii~0 for all i.

From the estimated b and a matrices, the gene-to-gene network

was inferred. More precisely, when aij=0 for some i and

j _[[ _ff1 . . . pg, we inferred edge i?j in the gene network and

assigned it a count of 1. If both aij and aji are equal to zero, then

the b matrix was explored. If bij=0 or bji=0, we inferred both

edges i?j and j?i and assigned them a count of 1=2. Finally we

computed for each edge, the count mean in the chosen l-grid for

Lasso or on the d-grid for Dantzig. This means that we put a high

confidence level in directed edges inferred from marker to a gene

expression level and that we inferred edges between gene

expression data by symmetrising and halving their strength. This

choice is somewhat arbitrary and can certainly be improved, as we

commented in the discussion.

Meta-analysis: integrating several network inference
methods

We used a Fisher’s Inverse Chi-Square meta-test [63] to

combine the BN, Lasso and Dantzig predicted networks. This

meta-test was initially introduced to combine the test values

obtained from independent experiments. It consists of summing

the opposite of the logarithm of the corresponding p-values.

In the output data for the DREAM challenge, we considered

the ‘‘reliability’’ parameter as 1 minus p-value since it is a measure

of uncertainty in the ½0; 1� range. We denoted

M~ BN,Lasso,Dantzigf g and rm
ij

� �
the edge reliability param-

eters associated to the method m [M. We then computed the sum

Sij~
X
m[M

log (1{rm
ij )

The meta-analysis picks up edges from the different approaches

and computes a consensus ranking scheme that depends on

individual scores of the methods and agreement between them.

Finally the meta-analysis edge reliability parameters are defined

as rij~1{ exp (Sij) and were used to produce a ranked list a edges

for each inferred network. Since the organisers limited the edge list

length that could be submitted to 100,000 among the 999,000
possible edges in each network (no self loops were considered), we

arbitrarily cut the list according to the ranking when necessary. In

practice, we never predicted more than 107,000 edges.

Accuracy assessment: scoring methods
Once submitted to the DREAM5 challenge organisers, edge

lists were compared both to (i) Gold Standard files, namely the

correct list of edges used in simulated models and to (ii) the pool of

all edges that were submitted by other participating teams.

The Gold Standard comparison allows to assess prediction

accuracy based on two measures, namely the ‘‘area under the

curve’’ (AUC) score for the Receiver Operating Curve (ROC i.e.

true positive versus false positive rates) and the precision versus

recall (PR) curve. The second comparison evaluates predictions on

the basis of their intrinsic merit and on their ability to bring in

specific predictions compared with the pool of all predicted edges.

Let TP, FP, FN and TN denote respectively the true positives

(correctly inferred edges), false positives (edges inferred by

mistake), false negatives (missed edges) and true negatives

(correctly non-predicted edges), then (i) False positive Rate

(~
FP

FPzTN
, (ii) Precision ~

TP

TPzFP
and (iii) Recall ~ True

positive rate ~
TP

TPzFN
. Notice that the orientation of edges is

significant in the comparison so that an edge g1?g2 is not

considered as correct if the true edge is g2?g1.

The second comparison assesses the prediction of every method

against the pool of all the predictions submitted by competing

teams. It was used to produce p-values that reflect how well each

method performed in comparison to others. More precisely, the

lower the p-value for a team prediction AUC, the higher the

probability that it could not be reached by a random network built

by picking up edges (at the same rank) from the pool of all

submitted networks. The p-values for all 15 different networks

were then log-transformed and summed in absolute value. The

Gene Regulatory Network Inference: A Meta-Analysis
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higher the resulting score, the better the method performed over

the challenge. A detailed description of the scoring scheme for the

DREAM5 challenges can be found in [27].
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