M. Desvaux, M. Hébraud, R. Talon, and I. R. Henderson, Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue, Trends Microbiol, vol.17, pp.139-145, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02666313

I. C. Sutcliffe, A phylum level perspective on bacterial cell envelope architecture, Trends Microbiol, vol.18, pp.464-470, 2010.

I. C. Sutcliffe, Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war, Environ Microbiol, 2011.

M. Desvaux and M. Hébraud, The protein secretion systems in Listeria: inside out bacterial virulence, FEMS Microbiol Rev, vol.30, pp.774-805, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02666448

M. J. Sibbald, A. K. Ziebandt, S. Engelmann, M. Hecker, and A. De-jong, Mapping the pathways to staphylococcal pathogenesis by comparative secretomics, Microbiol Mol Biol Rev, vol.70, pp.755-788, 2006.

M. Kleerebezem, P. Hols, E. Bernard, T. Rolain, and M. Zhou, The extracellular biology of the lactobacilli, FEMS Microbiol Rev, vol.34, pp.199-230, 2010.

D. Champion, P. A. Cox, and J. S. , Protein secretion systems in Mycobacteria, Cell Microbiol, vol.9, pp.1376-1384, 2007.

K. F. Chater, S. Biro, K. J. Lee, T. Palmer, and H. Schrempf, The complex extracellular biology of Streptomyces, FEMS Microbiol Rev, vol.34, pp.171-198, 2010.

H. Tjalsma, H. Antelmann, J. D. Jongbloed, P. G. Braun, and E. Darmon, Proteomics of protein secretion by Bacillus subtilis: separating the ''secrets'' of the secretome, Microbiol Mol Biol Rev, vol.68, pp.207-233, 2004.

H. Tjalsma, A. Bolhuis, J. D. Jongbloed, S. Bron, and J. M. Van-dijl, Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome, Microbiol Mol Biol Rev, vol.64, pp.515-547, 2000.

M. Simonen and I. Palva, Protein secretion in Bacillus species, Microbiol Rev, vol.57, pp.109-137, 1993.

K. S. Tan, B. Y. Wee, and K. P. Song, Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile, J Med Microbiol, vol.50, pp.613-619, 2001.

M. Harboe, T. Oettinger, H. G. Wiker, I. Rosenkrands, and P. Andersen, Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG, Infect Immun, vol.64, pp.16-22, 1996.

K. Schaerlaekens, M. Schierova, E. Lammertyn, N. Geukens, and A. J. , Twin-arginine translocation pathway in Streptomyces lividans, J Bacteriol, vol.183, pp.6727-6732, 2001.

I. Chen, R. Provvedi, and D. Dubnau, A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis, J Biol Chem, vol.281, pp.21720-21727, 2006.

M. Desvaux, N. J. Parham, A. Scott-tucker, and I. R. Henderson, The general secretory pathway: a general misnomer, Trends Microbiol, vol.12, pp.306-309, 2004.

M. Desvaux, M. Hebraud, I. R. Henderson, and M. J. Pallen, Type III secretion: what's in a name?, Trends Microbiol, vol.14, pp.157-160, 2006.

M. Desvaux, A. Khan, A. Scott-tucker, R. R. Chaudhuri, and M. J. Pallen, Genomic analysis of the protein secretion systems in Clostridium acetobutylicum ATCC824, Biochim Biophys Acta-Mol Cell Res, vol.1745, pp.223-253, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02680780

I. C. Sutcliffe, New insights into the distribution of WXG100 protein secretion systems, Antonie Van Leeuwenhoek, 2011.

M. Desvaux, M. Hébraud, R. Talon, and I. R. Henderson, Outer membrane translocation: numerical protein secretion nomenclature in question in mycobacteria, Trends Microbiol, vol.17, pp.338-340, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02663736

S. Bleves, V. Viarre, R. Salacha, G. P. Michel, and A. Filloux, Protein secretion systems in Pseudomonas aeruginosa: A wealth of pathogenic weapons, Int J Med Microbiol, vol.300, pp.534-543, 2010.

A. Fagerlund, T. Lindback, and P. E. Granum, Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway, BMC Microbiol, vol.10, p.304, 2010.

M. F. Romine, Genome-wide protein localization prediction strategies for Gram negative bacteria, BMC Genomics, vol.12, 2011.

M. Desvaux, A. Khan, S. Beatson, A. Scott-tucker, and I. R. Henderson, Protein secretion systems in Fusobacterium nucleatum: genomic identification of Type 4 piliation and complete Type V pathways brings new insight in mechanisms of pathogenesis, Biochim Biophys Acta-Biomembr, vol.1713, pp.92-112, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02683446

M. Sarvas, C. R. Harwood, S. Bron, and J. M. Van-dijl, Post-translocational folding of secretory proteins in Gram-positive bacteria, Biochim Biophys Acta-Mol Cell Res, vol.1694, pp.311-327, 2004.

H. Antelmann, H. Tjalsma, B. Voigt, S. Ohlmeier, and S. Bron, A proteomic view on genome-based signal peptide predictions, Genome Res, vol.11, pp.1484-1502, 2001.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, and H. Butler, Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat Genet, vol.25, pp.25-29, 2000.

H. Nielsen, S. Brunak, and G. Von-heijne, Machine learning approaches for the prediction of signal peptides and other protein sorting signals, Protein Eng, vol.12, pp.3-9, 1999.

A. S. Juncker, H. Willenbrock, V. Heijne, G. Brunak, S. Nielsen et al., Prediction of lipoprotein signal peptides in Gram-negative bacteria, Protein Sci, vol.12, pp.1652-1662, 2003.

E. L. Sonnhammer, G. Von-heijne, and A. Krogh, A hidden Markov model for predicting transmembrane helices in protein sequences, Proc Int Conf Intell Syst Mol Biol, vol.6, pp.175-182, 1998.

Z. I. Litou, P. G. Bagos, K. D. Tsirigos, T. D. Liakopoulos, and S. J. Hamodrakas, Prediction of cell wall sorting signals in Gram-positive bacteria with a hidden Markov model: application to complete genomes, J Bioinform Comput Biol, vol.6, pp.387-401, 2008.

J. L. Gardy, M. R. Laird, F. Chen, S. Rey, and C. J. Walsh, PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis, Bioinformatics, vol.21, pp.617-623, 2005.

R. Nair and B. Rost, Mimicking cellular sorting improves prediction of subcellular localization, J Mol Biol, vol.348, pp.85-100, 2005.

C. S. Yu, Y. C. Chen, C. H. Lu, and J. K. Hwang, Prediction of protein subcellular localization, Proteins, vol.64, pp.643-651, 2006.

H. B. Shen and K. C. Chou, Gpos-mPLoc: a top-down approach to improve the quality of predicting subcellular localization of Gram-positive bacterial proteins, Protein Pept Lett, vol.16, pp.1478-1484, 2009.

S. Dzeroski and B. Zenko, Is combining classifiers with stacking better than selecting the best one?, Machine Learning, vol.54, pp.255-273, 2004.

A. Billion, R. Ghai, T. Chakraborty, and T. Hain, Augur -a computational pipeline for whole genome microbial surface protein prediction and classification, Bioinformatics, vol.22, pp.2819-2820, 2006.

M. Zhou, J. Boekhorst, C. Francke, and R. J. Siezen, LocateP: genome-scale subcellular-location predictor for bacterial proteins, BMC Bioinformatics, vol.9, p.173, 2008.

A. Barinov, V. Loux, A. Hammani, P. Nicolas, and P. Langella, Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria, Proteomics, vol.9, pp.61-73, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02663676

H. Bierne and P. Cossart, Listeria monocytogenes surface proteins: from genome predictions to function, Microbiol Mol Biol Rev, vol.71, pp.377-397, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02658949

S. Renier, M. Hebraud, and M. Desvaux, Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen, Environ Microbiol, vol.13, pp.835-850, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02651097

M. G. Pucciarelli, E. Calvo, C. Sabet, H. Bierne, and P. Cossart, Identification of substrates of the Listeria monocytogenes sortases A and B by a nongel proteomic analysis, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02683410

M. Desvaux, E. Dumas, I. Chafsey, C. Chambon, and M. Hebraud, Comprehensive appraisal of the extracellular proteins from a monoderm bacterium: theoretical and empirical exoproteomes of Listeria monocytogenes EGD-e by secretomics, J Proteome Res, vol.9, pp.5076-5092, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00964252

J. Schaumburg, O. Diekmann, P. Hagendorff, S. Bergmann, and M. Rohde, The cell wall subproteome of Listeria monocytogenes, Proteomics, vol.4, pp.2991-3006, 2004.

E. Calvo, M. G. Pucciarelli, H. Bierne, P. Cossart, and J. P. Albar, Analysis of the Listeria cell wall proteome by two-dimensional nanoliquid chromatography coupled to mass spectrometry, Proteomics, vol.5, pp.433-443, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02683133

G. Portillo, F. Calvo, E. , D. 'orazio, V. Pucciarelli et al., Association of ActA to the peptidoglycan revealed by cell wall proteomics of intracellular Listeria monocytogenes, J Biol Chem, 2011.

M. Trost, D. Wehmhoner, U. Karst, G. Dieterich, and J. Wehland, Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species, Proteomics, vol.5, pp.1544-1557, 2005.

H. Tjalsma and J. M. Van-dijl, Proteomics-based consensus prediction of protein retention in a bacterial membrane, Proteomics, vol.5, pp.4472-4482, 2005.

P. Glaser, L. Frangeul, C. Buchrieser, C. Rusniok, and A. Amend, Comparative genomics of Listeria species, Science, vol.294, pp.849-852, 2001.

S. H. White and G. Von-heijne, The machinery of membrane protein assembly, Curr Opin Struct Biol, vol.14, pp.397-404, 2004.

V. Goder and M. Spiess, Topogenesis of membrane proteins: determinants and dynamics, FEBS Lett, vol.504, pp.87-93, 2001.

M. Desvaux and M. Hébraud, Analysis of cell envelope proteins, Handbook of Listeria monocytogenes, vol.12, pp.359-393, 2008.

M. Higy, T. Junne, and M. Spiess, Topogenesis of membrane proteins at the endoplasmic reticulum, Biochemistry, vol.43, pp.12716-12722, 2004.

J. Boekhorst, M. W. De-been, M. Kleerebezem, and R. J. Siezen, Genome-wide detection and analysis of cell wall-bound proteins with LPXTG-like sorting motifs, J Bacteriol, vol.187, pp.4928-4934, 2005.

T. Bae and O. Schneewind, The YSIRK-G/S motif of staphylococcal protein A and its role in efficiency of signal peptide processing, J Bacteriol, vol.185, pp.2910-2919, 2003.

A. Dedent, T. Bae, D. M. Missiakas, and O. Schneewind, Signal peptides direct surface proteins to two distinct envelope locations of Staphylococcus aureus, EMBO J, vol.27, pp.2656-2668, 2008.

L. Braun, S. Dramsi, P. Dehoux, H. Bierne, and G. Lindahl, InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association, Mol Microbiol, vol.25, pp.285-294, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02696287

R. Jonquieres, H. Bierne, F. Fiedler, P. Gounon, and P. Cossart, Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria, Mol Microbiol, vol.34, pp.902-914, 1999.

M. Marino, M. Banerjee, R. Jonquieres, P. Cossart, and P. Ghosh, GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands, EMBO J, vol.21, pp.5623-5634, 2002.

M. Desvaux, E. Dumas, I. Chafsey, and M. Hébraud, Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure, FEMS Microbiol Lett, vol.256, pp.1-15, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02667211

N. W. Rigel and M. Braunstein, A new twist on an old pathway -accessory Sec systems, Mol Microbiol, vol.69, pp.291-302, 2008.

N. Y. Yu, J. R. Wagner, M. R. Laird, M. G. Rey, and S. , PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes, Bioinformatics, vol.26, pp.1608-1615, 2010.

S. Hua and Z. Sun, Support vector machine approach for protein subcellular localization prediction, Bioinformatics, vol.17, pp.721-728, 2001.

R. S. Gupta, Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes, Antonie Van Leeuwenhoek, vol.100, pp.171-182, 2011.

D. Goudenège, S. Avner, C. Lucchetti-miganeh, and F. Barloy-hubler, CoBaltDB: Complete bacterial and archaeal orfeomes subcellular localization database and associated resources, BMC Microbiol, vol.10, p.88, 2010.

O. Rahman, S. P. Cummings, D. J. Harrington, and I. C. Sutcliffe, Methods for the bioinformatic identification of bacterial lipoproteins encoded in the genomes of Gram-positive bacteria, World Journal of Microbiology & Biotechnology, vol.24, pp.2377-2382, 2008.

T. N. Petersen, S. Brunak, G. Von-heijne, and H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat Methods, vol.8, pp.785-786, 2011.

V. R. Matias and T. J. Beveridge, Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space, Mol Microbiol, vol.56, pp.240-251, 2005.

M. Desvaux, Contribution of holins to protein trafficking: secretion, leakage or lysis?, Trends Microbiol, vol.20, pp.259-261, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02646832

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, and Z. Zhang, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

S. R. Eddy, Hidden Markov models, Curr Opin Struct Biol, vol.6, pp.361-365, 1996.

E. M. Zdobnov and R. Apweiler, InterProScan -an integration platform for the signature-recognition methods in InterPro, Bioinformatics, vol.17, pp.847-848, 2001.

E. De-castro, C. J. Sigrist, A. Gattiker, V. Bulliard, and P. S. Langendijk-genevaux, ScanProsite: detection of PROSITE signature matches and ProRuleassociated functional and structural residues in proteins, Nucleic Acids Res, vol.34, pp.362-365, 2006.

N. J. Mulder, R. Apweiler, T. K. Attwood, A. Bairoch, and A. Bateman, New developments in the InterPro database, Nucleic Acids Res, vol.35, pp.224-228, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434830

A. Bateman, L. Coin, R. Durbin, R. D. Finn, and V. Hollich, The Pfam protein families database, Nucleic Acids Res, vol.32, pp.138-141, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01294685

J. Schultz, F. Milpetz, P. Bork, and C. P. Ponting, SMART, a simple modular architecture research tool: identification of signaling domains, Proc Natl Acad Sci U S A, vol.95, pp.5857-5864, 1998.

J. D. Selengut, D. H. Haft, T. Davidsen, A. Ganapathy, and M. Gwinn-giglio, TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes, Nucleic Acids Res, vol.35, pp.260-264, 2007.

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, SCOP: a structural classification of proteins database for the investigation of sequences and structures, J Mol Biol, vol.247, pp.536-540, 1995.

D. Wilson, M. Madera, C. Vogel, C. Chothia, and J. Gough, The SUPERFAMILY database in 2007: families and functions, Nucleic Acids Res, vol.35, pp.308-313, 2007.

C. H. Wu, A. Nikolskaya, H. Huang, L. S. Yeh, and D. A. Natale, PIRSF: family classification system at the Protein Information Resource, Nucleic Acids Res, vol.32, pp.112-114, 2004.

K. Oneill, W. Klimke, and T. Tatusova, Protein clusters: a collection of proteins grouped by sequence similarity and function, 2007.

R. L. Tatusov, D. A. Natale, I. V. Garkavtsev, T. A. Tatusova, and U. T. Shankavaram, The COG database: new developments in phylogenetic classification of proteins from complete genomes, Nucleic Acids Res, vol.29, pp.22-28, 2001.

N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, D. Castro et al., The PROSITE database, Nucleic Acids Res, vol.34, pp.227-230, 2006.

C. H. Wu, R. Apweiler, A. Bairoch, D. A. Natale, and W. C. Barker, The Universal Protein Resource (UniProt): an expanding universe of protein information, Nucleic Acids Res, vol.34, pp.187-191, 2006.

J. D. Bendtsen, H. Nielsen, G. Von-heijne, and S. Brunak, Improved prediction of signal peptides: SignalP 3.0, J Mol Biol, vol.340, pp.783-795, 2004.

K. Hiller, A. Grote, M. Scheer, R. Munch, and D. Jahn, PrediSi: prediction of signal peptides and their cleavage positions, Nucleic Acids Res, vol.32, pp.375-379, 2004.

L. Kä-ll, A. Krogh, and E. L. Sonnhammer, A combined transmembrane topology and signal peptide prediction method, J Mol Biol, vol.338, pp.1027-1036, 2004.

M. Gomi, M. Sonoyama, and S. Mitaku, High performance system for signal peptide prediction, SOSUIsignal. Chem-Bio Info J, vol.4, pp.142-147, 2004.

H. B. Shen and K. C. Chou, Signal-3L: a 3-layer approach for predicting signal peptides, Biochem Biophys Res Commun, vol.363, pp.297-303, 2007.

K. C. Chou and H. B. Shen, Signal-CF: A subsite-coupled and window-fusing approach for predicting signal peptides, Biochemical and Biophysical Research Communications, vol.357, pp.633-640, 2007.

G. Von-heijne, A new method for predicting signal sequence cleavage sites, Nucleic Acids Res, vol.14, pp.4683-4690, 1986.

D. J. Mcgeoch, On the predictive recognition of signal peptide sequences, Virus Res, vol.3, pp.271-286, 1985.

H. Viklund, A. Bernsel, M. Skwark, and A. Elofsson, SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology, Bioinformatics, vol.24, pp.2928-2929, 2008.

D. Plewczynski, L. Slabinski, A. Tkacz, L. Kajan, and L. Holm, The RPSP: Web server for prediction of signal peptides, Polymer, vol.48, pp.5493-5496, 2007.

K. Frank and M. J. Sippl, High-performance signal peptide prediction based on sequence alignment techniques, Bioinformatics, vol.24, pp.2172-2176, 2008.

J. D. Bendtsen, H. Nielsen, D. Widdick, T. Palmer, and S. Brunak, Prediction of twin-arginine signal peptides, BMC Bioinformatics, vol.6, p.167, 2005.

R. W. Rose, T. Bruser, J. C. Kissinger, and M. Pohlschroder, Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twinarginine translocation pathway, Mol Microbiol, vol.45, pp.943-950, 2002.

P. G. Bagos, E. P. Nikolaou, T. D. Liakopoulos, and K. D. Tsirigos, Combined prediction of Tat and Sec signal peptides with hidden Markov models, Bioinformatics, vol.26, pp.2811-2817, 2010.

A. De-jong, S. A. Van-hijum, J. J. Bijlsma, J. Kok, and O. P. Kuipers, BAGEL: a web-based bacteriocin genome mining tool, Nucleic Acids Res, vol.34, pp.273-279, 2006.

J. D. Bendtsen, L. Kiemer, A. Fausboll, and S. Brunak, Non-classical protein secretion in bacteria, BMC Microbiol, vol.5, p.58, 2005.

L. Yu, Y. Guo, Y. Li, G. Li, and M. Li, SecretP: identifying bacterial secreted proteins by fusing new features into Chou's pseudo-amino acid composition, J Theor Biol, vol.267, pp.1-6, 2010.

D. Restrepo-montoya, C. Pino, L. F. Nino, M. E. Patarroyo, and M. A. Patarroyo, NClassG+: A classifier for non-classically secreted Gram-positive bacterial proteins, BMC Bioinformatics, vol.12, p.21, 2011.

M. H. Saier, M. R. Yen, K. Noto, D. G. Tamang, and C. Elkan, The Transporter Classification Database: recent advances, Nucleic Acids Res, vol.37, pp.274-278, 2009.

Z. Yuan, J. S. Mattick, and R. D. Teasdale, SVMtm: support vector machines to predict transmembrane segments, J Comput Chem, vol.25, pp.632-636, 2004.

H. Zhou and Y. Zhou, Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method, Protein Sci, vol.12, pp.1547-1555, 2003.

T. Hirokawa, S. Boon-chieng, and S. Mitaku, SOSUI: classification and secondary structure prediction system for membrane proteins, Bioinformatics, vol.14, pp.378-379, 1998.

G. E. Tusnády and I. Simon, The HMMTOP transmembrane topology prediction server, Bioinformatics, vol.17, pp.849-850, 2001.

B. Rost, R. Casadio, P. Fariselli, and C. Sander, Transmembrane helices predicted at 95% accuracy, Protein Sci, vol.4, pp.521-533, 1995.

D. T. Jones, Improving the accuracy of transmembrane protein topology prediction using evolutionary information, Bioinformatics, vol.23, pp.538-544, 2007.

H. Shen and J. J. Chou, MemBrain: improving the accuracy of predicting transmembrane helices, PLoS One, vol.3, p.2399, 2008.

H. Viklund and A. Elofsson, OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar, Bioinformatics, vol.24, pp.1662-1668, 2008.

B. Cao, A. Porollo, R. Adamczak, M. Jarrell, and J. Meller, Enhanced recognition of protein transmembrane domains with prediction-based structural profiles, Bioinformatics, vol.22, pp.303-309, 2006.

S. M. Reynolds, L. Kall, M. E. Riffle, J. A. Bilmes, and W. S. Noble, Transmembrane topology and signal peptide prediction using dynamic bayesian networks, PLoS Comput Biol, vol.4, p.1000213, 2008.

A. Bernsel, H. Viklund, J. Falk, E. Lindahl, and G. Von-heijne, Prediction of membrane-protein topology from first principles, Proc Natl Acad Sci U S A, vol.105, pp.7177-7181, 2008.

K. Hofmann and W. Stoffel, TMbase -A database of membrane spanning proteins segments, Biol Chem Hoppe-Seyler, vol.374, p.166, 1993.

D. Juretic, L. Zoranic, and D. Zucic, Basic charge clusters and predictions of membrane protein topology, Journal of Chemical Information and Computer Sciences, vol.42, pp.620-632, 2002.

A. Bernsel, H. Viklund, A. Hennerdal, and A. Elofsson, TOPCONS: consensus prediction of membrane protein topology, Nucleic Acids Res, vol.37, pp.465-468, 2009.

M. M. Babu, M. L. Priya, A. T. Selvan, M. Madera, and J. Gough, A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins, J Bacteriol, vol.188, pp.2761-2773, 2006.

P. Fariselli, G. Finocchiaro, and R. Casadio, SPEPlip: the detection of signal peptide and lipoprotein cleavage sites, Bioinformatics, vol.19, pp.2498-2499, 2003.

P. D. Taylor, C. P. Toseland, T. K. Attwood, and D. R. Flower, LipPred: A web server for accurate prediction of lipoprotein signal sequences and cleavage sites, Bioinformation, vol.1, pp.335-338, 2006.

M. I. Hutchings, T. Palmer, D. J. Harrington, and I. C. Sutcliffe, Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold 'em, knowing when to fold 'em, Trends Microbiol, vol.17, pp.13-21, 2009.

F. D. Berven, O. S. Karlsen, A. H. Straume, K. Flikka, and J. C. Murrell, Analysing the outer membrane subproteome of Methylococcus capsulatus (Bath) using proteomics and novel biocomputing tools, Archives of Microbiology, vol.184, pp.362-377, 2006.

P. G. Bagos, K. D. Tslrigos, T. D. Liakopoulos, and S. J. Hamodrakas, Prediction of lipoprotein signal peptides in Gram-positive bacteria with a hidden Markov model, Journal of Proteome Research, vol.7, pp.5082-5093, 2008.

J. P. Van-pijkeren, C. Canchaya, K. A. Ryan, Y. Li, and M. J. Claesson, Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118, Appl Environ Microbiol, vol.72, pp.4143-4153, 2006.

I. Plyusnin, L. Holm, and M. Kankainen, LOCP -locating pilus operons in Gram-positive bacteria, Bioinformatics, vol.25, pp.1187-1188, 2009.

J. L. Gardy and F. S. Brinkman, Methods for predicting bacterial protein subcellular localization, Nat Rev Microbiol, vol.4, pp.741-751, 2006.