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Université de Toulouse, INSA, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
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Université de Toulouse, INSA, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
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The local shear rate generated in a cylindrical tank equipped with a Rushton turbine was investigated using particle image

velocimetry in a shear-thinning fluid (Carbopol). This non-Newtonian fluid was used in an attempt to mimic fermentation

broths. Three Reynolds numbers corresponding to the transition regime were investigated. The hydrodynamics is analyzed,

and the velocity field is decomposed by proper orthogonal decomposition into mean flow, organized motion, and turbulence.

Then, the contributions of each flow structure to the total dissipation of kinetic energy are presented. The spatial

heterogeneity of shear rate is discussed and a new expression is proposed for shear rate. This work shows that the local

shear rate is highly heterogeneous in a tank. Future works will need to focus on other types of stirrer and investigate the

effect of scaling up reactors on the shear rate heterogeneity.

Keywords: non-Newtonian fluid, proper orthogonal decomposition, mixing, particle image velocimetry, stirred tank,

shear rate, dissipation

Introduction

In the biochemical industry, stirred tanks are commonly

used for fermentation processes as they give good mixing

and mass-transfer capacities. Over the years, numerous stud-

ies have been performed on the topic in the aim of under-

standing and quantifying the physical phenomena occurring

in this type of reactor. Because of the difficulties of studying

complex flow, most of the previous works were done in

Newtonian or laminar non-Newtonian fluids. In contrast, bio-

logical broths (e.g., filamentous cultivation), are hardly ever

Newtonian and, because of the scale, bioreactors are run in

the turbulent or locally transitional regime.

During the fermentation process, the rheology of the me-

dium evolves from viscous to highly non-Newtonian
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behavior. The increase of apparent viscosity of the fluid

tends to decrease mass-transfer performance.1 Consequently,

to maintain the oxygen level in the reactor, aeration and agi-

tation have to be increased. This leads to an increase of the

shear rate that can cause shear damage to microorganisms.2

It has been proved that the morphology and the productivity

of filamentous cultures are affected by hydrodynamic condi-

tions. Many articles have focused on this topic3–6 with both in
situ or ex situ experiments. Morphological or productivity

results are often correlated with global parameters such as

impeller speed, power draw, volume around the impeller, and

so forth. Actually, the most important parameter, which is dif-

ficult to access in biological media, is the local shear rate.

Some correlations exist in the literature to estimate the

average shear rate in the reactor. The classic Metzner–Otto7

correlation shows that the average shear rate is proportional

to the impeller speed N.

_cMO ¼ kSN: (1)

The proportionality constant depends on the type of impeller

(kS ¼ 11.5 for a Rushton turbine). Calderbank and Moo-

Young8 modified this constant with rheological parameters (K
and n from a power law model). These two approaches have

been validated in laminar experiments but also seem to be

widely used in turbulent regime. Kelly and Gigas9 used

computational fluid dynamics (CFD) to determine the average

shear rate in the transitional regime with an axial flow

impeller. They found that the Metzner–Otto correlation

resulted in an under prediction of the average shear rate. They

proposed a modified proportionality constant that fitted their

predicted data (kS ¼ 33.3). Sanchez Perez et al.10 used the data

of Kelly and Gigas9 to fit another type of correlation

_cSP ¼ 33:1N1:4; (2)

This equation was validated in the transitional regime for a

Lightnin A315 impeller.

Much of the most important work on stirred tank hydrody-

namics has been devoted to the choice of an appropriate impel-

ler or combination of impellers to maximize mixing and mass

transfer on a global scale.11–14 Because of the difficulties of

studying biological media, model fluids have often been chosen

as they are cheaper and easier to use. A number of articles have

been published on the detailed investigation of the effect of

impeller mixing on small scale structures15–19 but only a few

papers concern non-Newtonian fluids.20–23

The development of optical techniques such as particle

image velocimetry (PIV) enables the instantaneous velocity

fields to be investigated.24 Such local and instantaneous data

can be used to estimate large-scale structures25,26 by process-

ing velocities but also small-scale structures with informa-

tion on root mean square velocity gradients and vorticity at

small scales.19,27 The application of data processing methods

such as proper orthogonal decomposition (POD) to PIV data

enables mean flow, periodic flow induced by the rotation of

the impeller, and turbulence to be discriminated.15,16,28

The intention of this article is to use experimental techni-

ques such as two-dimensional (2-D) PIV coupled with data

processing based on POD to characterize the different contri-

butions of the flow to the shear rate and dissipation. A

shear-thinning fluid is chosen to behave similarly to a

fermentation broth from the rheology point of view. The

determination of the spatial distribution of local shear rate

(mean, organized, turbulent, and total shear rate) enables the

energy dissipation and the turbulent kinetic energy (TKE)to

be calculated in a vertical plane of the vessel. Shear rates

measured at different places in the vessel are compared with

published correlations.

Theoretical Analysis

Hydrodynamic regime

For a stirred tank, the Reynolds number is defined as follows

Re ¼ qlND
2

l
; (3)

with N the rotational speed of the impeller and D its diameter.

ql is the density of the liquid and l its dynamic viscosity. In

Newtonian fluids, the flow is considered to be fully turbulent

for large values of the Reynolds number, Re [ 104, and

laminar if Re \ 10. The transition regime between fully

turbulent and laminar flow patterns is thus large. One can

consider that when Re \ 10, the whole tank is in laminar

regime whereas when Re[ 104, the whole tank is in turbulent

flow. The transition regime may correspond to spatial

heterogeneity of flow regime in the tank with turbulent flow

close to the impeller and laminar flow far from it. It is

typically the case when yield stress fluids are used (presence of

cavern).

Power number, dissipation, and shear rate

Knowing the power number of the impeller, the power

draw can easily be calculated from

P ¼ qlNpN
3D5; (4)

with N the agitation speed and D the impeller diameter. In the

fully turbulent regime, the power number Np is constant,

whereas in laminar flow, it is inversely proportional to the

Reynolds number.

The volume average of the dissipation rate of kinetic

energy hei expressed in W/kg or m2/s3, is related to the

power through

eh i ¼ P

qlVl

; (5)

with Vl the volume of liquid in the tank.

In laminar flow, the local value of the dissipation rate of

kinetic energy can be written as

�e ¼ 2

ql
� l Sij Sij; (6)

where Sij are the components of the mean strain rate (or

stretching) tensor S

Sij ¼
1

2
� @Ui

@xj
þ @Uj

@xi

8

>

>

:

9

>

>

;
: (7)

This dissipation rate can be easily measured by optical

techniques such as PIV. In turbulent flow, the local value of

the dissipation rate of TKE can be written as

�e ¼ 2

ql
� l s0ijs

0
ij; (8)



with

s0ij ¼
1

2
� @u0i

@xj
þ
@u0j
@xi

8

>

>

:

9

>

>

;
: (9)

It is much more difficult to estimate the dissipation rate of TKE

experimentally by optical techniques such as PIV, because this

assumes that instantaneous and local gradients of turbulent

velocity can be measured at the smallest scales of the flow.

The shear rate being a key parameter of this study, a first

estimation can be proposed based on global quantities. The

global shear rate _ch i can be derived as

_ch i ¼
ffiffiffiffiffiffi

eh i
m

r

; (10)

where m is the kinematic viscosity of the fluid.

In laminar flow, a useful expression of the global shear

rate _ch i can be derived.

_ch i ¼
ffiffiffiffiffiffi

eh i
m

r

¼
ffiffiffiffiffiffiffiffiffiffiffi

P

m qlV

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NpN3D5

m p
4
T3

s

: (11)

In the laminar regime, the power number follows the trend

Np ¼
C

Re
¼ C m

N D2
: (12)

Thus, in laminar regime, the global shear rate _ch i can be

expressed as

_ch i ¼
ffiffiffiffiffiffi

eh i
m

r

¼
ffiffiffiffiffiffiffiffiffiffiffi

4 C

27 p

r

N: (13)

This expression is formally similar to the Metzner–Otto

correlation (see Eq. 1). For a Rushton turbine in laminar

regime, the coefficient C is close to 60–70; thus, the

coefficient of N in Eq. 13 is equal to

ffiffiffiffiffiffiffiffi

4 C
27 p

q

¼
ffiffiffi

3
p

. In

turbulent regime, it is more difficult to derive a general

expression. Another difficulty of this study is related to the

non-Newtonian behavior of the fluid.

Shear-thinning fluids

Biological media (e.g., filamentous fungi) generally have

pronounced non-Newtonian rheological behavior. The rela-

tionship between shear rate and shear stress can be deter-

mined by a rheometer. Shear-thinning fluids are usually

described by the power law model. The apparent viscosity

la is modelled as

la ¼ KPL _cj jnPLÿ1; (14)

with KPL the consistency and nPL the power law index. For

shear-thinning fluids with a yield stress, which is the case for

the fluid studied in this work, the Herschel–Bulkley equation

better describes the apparent viscosity for low shear rates

la ¼ s0 � _cj jÿ1 þ KHB _cj jnHBÿ1; (15)

with s0, the yield stress of the fluid.

For shear-thinning fluids, the Reynolds number is usually

calculated by replacing the viscosity in Eq. 3 by the apparent

viscosity la at the average shear rate. The average shear

rate can be calculated from the Metzner–Otto correlation

(see Eq. 1).

The Eq. 1 was established in the laminar regime but is

also used in the turbulent regime and in mass transfer corre-

lations. Other approaches have been reviewed by Herbst

et al.29 and will be discussed later in this article. Using Eqs.

14 and 1, modified generalized Reynolds number can be

written as

Re ¼ qlN
2ÿnD2

K � knÿ1
S

: (16)

Due to the fact that the apparent viscosity la is estimated for

the average shear rate, the definition of the Reynolds number

is open to discussion.

Mean flow and flow number

Different techniques have been used to determine velocity

profiles close to the impeller since the pioneering works of

Dyster et al.23 and Koutsakos and Nienow.22 The velocity

profiles have been presented in terms of nondimensional

ratios of U/Utip, where Utip is the tip velocity of the impeller.

A dimensionless discharge or flow number can be deduced

from the pumping capacity of the impeller

Fl ¼ Q

N � D3
; (17)

where Q is the pumping flow rate. For a Rushton turbine, the

pumping flow rate is defined as follows

Q ¼ p Dþ sð Þ
Z w=2

ÿw=2

U dz; (18)

where s is the distance between the impeller and the velocity

measurement and w is the width of an impeller blade.

POD decomposition and organized/coherent structures

POD is a linear procedure which decomposes a series of n
instantaneous velocity fields into a modal base.30 These in-

stantaneous velocity fields can be acquired using the 2-D

PIV technique in a plane. The plane of measurement con-

tains l lines and c columns. In each point, the two compo-

nents U and W (in the x and z directions) of the velocity

vector are measured. Thus, the number of instantaneous ve-

locity components is M ¼ 2l�c. Each instantaneous velocity

field data correspond thus to a 3-D tensor with l lines and c
columns, and in each point (l,c) two components of the ve-

locity vector (U, W). These raw data tensor can be reshaped

to build a vector V with a length M. Following Sirovich,31

one can estimate a two point correlation matrix C(M,M), the

components Cij of which are defined as

Cij ¼
1

n

X

n

k¼1

V
ðkÞ
i V

ðkÞ
j : (19)

n represents the number of instantaneous measurement planes

that are needed to estimate statistical values (n is of the order

of 400–1000). Each diagonal component of the matrix C

corresponds to the contribution of each component of the

velocity to the total variance or kinetic energy. The trace of C
is thus the total kinetic energy contained in the 2-D plane of

measurement. It is possible to derive the eigenvalues kI and



eigenfunctions UI of the correlation matrix C, where I is the

index of each mode of this decomposition. By construction,

each eigenfunction UI is a vector and it has the same size than

the vector V. This vector can be inversely reshaped to build a

3-D tensor with l lines and c columns, and in each point (l,c)
two components of the vector V which will be noted (UI,WI).

Thus, reshaped UI looks like a velocity field in the plane of

measurement but it is important to note that UI is a modal

basis, the eigenfunctions UI having no dimension. In contrast,

the eigenvalues kI are expressed in m2/s2 and quantify the

contribution of each mode I to the total kinetic energy in the

plane of measurement.

For a better understanding, some useful properties are

recalled in the next paragraph. First, the eigenfunctions are

normalized and orthogonal. If (,) represents the inner prod-

uct, then

ðUI;UJÞ ¼ dIJ: (20)

If a
ðIÞ
k is the result of the projection of the k-th instantaneous

velocity field on the I-th mode, then each scalar a
ðIÞ
k

32 can be

derived as follows

a
ðIÞ
k ¼ ðUI;UkÞ: (21)

An important property of POD decomposition is that the

coefficients aIk are uncorrelated. Thus, the statistical average

over the n realizations of each factor gives

a
ðIÞ
k a

ðJÞ
k

� �

¼ kIdIJ: (22)

This property stresses that each mode makes a specific

contribution to the mean field kinetic energy independently. If

the eigenvalues are put in decreasing order, the number of

modes necessary to estimate a significant percentage of the

total kinetic energy can be estimated. One of the main

advantages of POD lies in the ability to reconstruct the kth

instantaneous velocity field in terms of a decomposition of M

components defined as

Uk ¼
X

M

I¼1

a
ðIÞ
k UI: (23)

In general, the first mode can be associated with the mean

velocity field.17 This is a classic result when the POD is

carried out with the instantaneous velocity fields. Moreau and

Liné28 have shown that POD can be an efficient way to

separate the periodic velocity fluctuations induced by the

impeller rotation without performing conditional or phase-

averaged measurements. The two following modes (second

and third) were shown to reveal large-scale rotating struc-

tures.28 Their length scale was quite similar to the periodic

trailing vortex size. In addition, the second and third

eigenvalues were shown to be equal, meaning that the energy

of the flow represented by these modes was the same. To

calculate the different contributions of the fluid motion to the

shear rate, it is important to reconstruct the instantaneous

velocity as a sum of three main components

Uk ¼ a
ð1Þ
k U1 þ

X

3

I¼2

a
ðIÞ
k UI þ

X

M

I¼4

a
ðIÞ
k UI; (24)

where the first term (Mode I ¼ 1) corresponds to the mean

flow, the second term (Modes I ¼ 2 and 3) corresponds to the

coherent structures (trailing vortices), and the third term

(Modes I[ 3) may be attributed to turbulence.

Experimental Set-Up

Mixing tank

The tank used in this study consisted of a standard cylin-

drical tank equipped with four equally spaced baffles (width

B ¼ 0.045 m ¼ T/10). The cylindrical tank was made of

poly(methyl methacrylate) and had a diameter T ¼ 0.45 m

and a liquid height H ¼ T ¼ 0.45 m. The cylindrical vessel

was placed in a cubic tank filled with water to minimize

optical refraction. The clearance, C, was equal to the impel-

ler diameter. More information about the mixing tank dimen-

sions is provided in previous papers.17,18,33

In this work, a Rushton turbine (D ¼ 0.15, m ¼ T/3, w ¼
0.03 m) was used. Three agitation speeds (150, 205, and 250

rpm) were chosen to investigate three different Reynolds

numbers (100, 173, and 237) estimated from Eq. 16.

Velocity profiles measured with Carbopol will be com-

pared to profiles measured with water (N ¼ 150 rpm, Re ¼
56250).

For further image processing, for example, for velocity

calculation, calibration of the images is absolutely necessary

as the processing requires a distance measured in mm units

and not in pixel units. In this work, the calibration was done

with a 2-D calibration plate that contained about 225 marked

positions (1 mm holes). An image of the calibration plate

was recorded with a complete image focused and a small

camera lens aperture. This was done to calibrate the image

and correct image distortions due to projection perspective

and/or camera lens errors.

PIV technique

The principle of the 2-D PIV technique is to acquire in-

stantaneous velocity fields throughout a region illuminated

by a planar laser sheet. Seeding particles are introduced into

the flow and their motion is used to estimate the kinematics

of the local fluid. The particles are chosen to be neutrally

buoyant and to scatter the light efficiently.

The motion of particles is measured using a photographic

method by recording two images of the fluid flow with a

short time interval between them. Image pairs are then proc-

essed by dividing the complete image into squared interroga-

tion areas. In each 16-pixel-wide interrogation area, the

cross-correlation technique enables the most probable parti-

cle displacement to be calculated.

The PIV system used in this study consisted of a laser and

an image acquisition system provided by LaVision (LaVision

GmbH, Goettingen, Germany). The system included an Nd-

Yag laser (Quantel, 10 Hz, 200 � 2 mJ), a synchronization

system and a charge-coupled-device camera (Imager Intense,

12 bits, 1376 � 1040 px2). The camera was equipped with a

Nikon lens (Micron Nikon 60 or 105 mm). Fast Fourier

transform cross-correlation was used to interrogate the two

images, which were divided into interrogation areas (16 �
16 px2).

Silver-coated, hollow, glass spheres (S-HGS-10, 10 lm)

were used as seeding particles. They were provided by Dan-

tec Dynamics (Skovlunde, Denmark). These particles have a

sufficiently small relaxation time that they may be consid-

ered to follow the motion of the fluid faithfully.



From each image pair, the velocity vectors were computed

with Davis7VR software (LaVision GmbH, Goettingen, Ger-

many) using multipass processing and an overlap of 50%.

For all experiments, 400–1000 image pairs were recorded,

and statistical convergence of the velocity was checked. A

spatial resolution dx of 0.7 mm was chosen in the impeller

stream and 1 mm outside. The delay between the two frames

in an image pair was chosen in relation to the impeller

speed.

In Table 1, the global values of shear rate, apparent vis-

cosity, and dissipation rate for each rotational speed N are

estimated. Indeed, two different dissipation rates are

reported: the first one is the dissipation rate in the whole

tank. However, because the fluid presents a yield stress, cav-

erns can appear. The size of the caverns was estimated

experimentally and the ratio of the volume of the cavern Vc
over the volume of the tank V is reported in Table 1. The

dissipation rates limited to the volume of the cavern are thus

estimated. At lowest rotational speed, (N ¼ 150 rpm, Re ¼
100), the cavern represents 64% of the volume of the tank

whereas at the largest rotational speed, (N ¼ 250 rpm, Re ¼
237), it reaches 81% of the volume. Clearly, these Reynolds

numbers correspond to strong spatial heterogeneity inside the

tank. The plane of measurements (6 � 6 cm2) is located

close to the impeller, in the region of the jet, where the in-

tensity of the flow is maximum. In this region, the PIV ve-

locity data will be processed to determine the mean flow, the

fluctuating flow induced by the impeller rotation (organized

motion), and eventually the turbulence. The existence of an

inertial range of turbulence close to the impeller at such

modest Reynolds numbers is open.

Non-Newtonian fluid

In the present work, Carbopol 980 (0.08%; Noveon Inc.,

Waterloo, ON) was chosen because of its high transparency

even at high apparent viscosity. Carbopol 980 comes as a

fine polymer powder. Once the polymer has been added to

water, a neutralizer must be added to thicken the solution.

The preparation began with a slow addition of the desired

amount of Carbopol 980 to distilled water. The solution was

mixed for 4–6 h until all the powder was dissolved in the

liquid. Then, the agitation was stopped to allow the bubbles

to escape and to completely hydrate the molecules. Then,

the solution was neutralized to a pH of 6–9 with 50 mL of

5N NaOH solution injected in the middle of the vessel

according to the manufacture’s recommendations.

Rheological measurements

Rheological measurements were carried out using a Haake

Mars III rheometer (Thermo Scientific, Germany) in con-

trolled shear rate mode. A serrated plate geometry (P60/Ti

L) was used to avoid wall slip effects at low-shear rate.34,35

The temperature was fixed at 20�C. To check the stability of

the liquid viscosity, three samples were taken from the tank:

one at the beginning, one in the middle, and one at the end

of the experiments. Rheological data were fitted to the Her-

schel–Bulkley equation and the power law models.

Results

Rheological properties of the fluid

Apparent viscosity and shear stress are presented vs. shear

rate for three samples of the fluid in Figure 1. The fluid is

non-Newtonian, shear thinning and with a yield stress. The

rheological data were fitted to the power law model (Eq. 14)

in the range of 10–700 sÿ1 and to the Herschel–Bulkley

model (Eq. 15) for the whole range of shear rates (0.02–700

sÿ1). Fitted parameters are presented in Table 2. Both mod-

els are compared with experimental data in Figure 1. The

Herschel-Bulkley model shows better agreement for the

whole range of shear rates.

Mean flow

Mean flow velocity components can be derived by a clas-

sical statistical average of the instantaneous velocity fields.

Let Uk and Wk be the horizontal (radial) and vertical compo-

nents of each velocity vector measured in a plane. The sta-

tistical average of the velocity is defined at each point (x,z)
of the plane as

Uðx; zÞ ¼ 1

n

X

n

k¼1

Ukðx; zÞ; (25)

Table 1. Operating Conditions and Average Values of Shear Rate, Apparent Viscosity, Dissipation Rate, and
Volume Ratio of the Cavern

Fluid N (rpm) _ch i From Eq. 1 sÿ1 hlai Pa s hei W kgÿ1 (Whole Tank) hei W kgÿ1 (Cavern) Vc/V

Carbopol 150 29 0.56 0.09 0.14 0.64
205 40 0.45 0.24 0.31 0.76
250 48 0.39 0.42 0.52 0.81

Water 150 29 0.001 0.09 0.09 1

Figure 1. Apparent viscosity and shear stress versus

shear rate for three samples of Carbopol 980

at 0.08%.

Table 2. Rheological Parameters fitted to Eqs. 14 and 15

Fluid s0 (Pa) nPL or nHB

KPL or KHB

(Pa sn)

Power law model – 0.29 6.12
Herschel-Bulkley model 5.9 0.45 2.29



and

Wðx; zÞ ¼ 1

n

X

n

k¼1

Wkðx; zÞ: (26)

In Figure 2a, the vertical profiles of the mean radial velocity for

water at 150 rpm and Carbopol 980 at 150, 205, and 250 rpm

are plotted vs. the normalized vertical coordinate z*¼2z/w at a

given radial position r/R ¼ 1.07 close to the impeller. The

maximum velocity obtained in water (0.9) agrees well with a

previous work.17 For the three velocities in the 0.08% Carbopol,

the mean velocity profiles are relatively similar. At 150 rpm, the

velocity measured in 0.08% Carbopol is lower than in water.

This proves that there is an influence of the rheology on the

mean flow. In Figure 2b, the vertical profiles of mean radial

velocities in 0.08% Carbopol are compared to measurements in

water at r/R ¼ 1.0. At the impeller level, and in 0.08%

Carbopol, the vertical velocity is nil for N ¼ 150 rpm. This

indicates that the flow is purely radial in this condition. At the

same velocity,W is quite different and seems to be close toW in

0.08% Carbopol at 205 rpm. For the two higher velocities, the

shape is quite similar to that of the water measurement.

The flow number quantifies the pumping capacity of an

impeller. It is possible to estimate the pumping flow rate

(given by Eq. 18) and to deduce the impeller flow number,

Fl, (Eq. 17). In the case of water (Re ¼ 56,250), the flow

number is close to 0.7 which is a usual value for a Rushton

turbine. However, for the three impeller velocities corre-

sponding to Reynolds numbers between 100 and 250, in the

transitional regime, the flow number is roughly constant (Fl

¼ 0.5) but slightly smaller than the flow number obtained

with water. This value of the impeller flow number cannot

be predicted by an existing correlation obtained with non-

Newtonian fluids, such as carboxy methyl cellulose (CMC)

and Natrosol by Koutsakos and Nienow.22 As discussed by

Venneker et al.,21 the flow number increases sharply with

the Reynolds number in the laminar flow regime (Re \ 10–

100), then increases gradually in the transition regime, and

finally reaches a plateau in the turbulent regime (Re [ 104).

The difference between our results and Koutsakos and Nie-

now’s22 data may be due to the flow index of the fluids.

Considering that Fl depends strongly on high velocities, flow

indices calculated with the power law model are considered.

In our case, nPL ¼ 0.29, whereas in Koutsakos and Nienow22

nCMC ¼ 0.42–0.57 and nNatrosol ¼ 0.37–0.56. As proposed

by Venneker et al., 21 a family of curves Fl(Re) may exist,

one for each value of the flow index n.

POD decomposition and reconstruction

The percentage variation of the kinetic energy associated

with the M modes is plotted on Figure 3 in terms of normal-

ized eigenvalues k�I defined as

k�I ¼
kI

P

M

J¼1

kJ

: (27)

Each symbol corresponds to a value of the impeller rotational

speed N. In terms of eigenvalues, as shown in Table 3, the first

mode contains 91, 80, and 69 percent of the total kinetic

energy for a rotational speed corresponding to 150, 205, and

250 rpm, respectively. This first mode will be analyzed in the

second part and will be shown to correspond to the mean flow.

A characteristic feature of Figure 3 is that the following two

modes (second and third) have roughly the same amount of

kinetic energy whatever the rotational speed (see Table 3). In

addition, the kinetic energy of these modes is one decade

lower than that of the first mode. These Modes 2 and 3 will be

analysed in the third part and shown to correspond to

organized motion. Whatever the impeller rotational speed N,
each of the following modes contains less kinetic energy.

These modes will be discussed in the fourth part.

Figure 2. Radial and vertical components of mean velocity for water at 150 rpm and Carbopol 980 at 150, 205, and

250 rpm at r/R 5 1.07: (a) radial velocities and (b) vertical velocities.



In terms of eigenfunctions, each reshaped eigenfunction

UI can be plotted in the plane of measurement. As aforemen-

tioned, each reshaped UI is composed of vectors whose com-

ponents will be noted (UI,WI). Each eigenfunction UI has the

same size as each instantaneous velocity field (l,c). The

eigenfunctions UI associated with different modes I are plot-

ted in Figure 4.

As will be discussed later, the first mode of the POD

decomposition of the velocity fields is close to the mean

flow (U1 plotted in Figure 4a). Modes 2 and 3 (U2 and U3

plotted in Figures 4b, c) exhibit large rotating structures that

are almost symmetric with respect to the plane of the impel-

ler. Mode 4 (Figure 4d) looks like a flapping jet similar

behavior was observed in water.28 Modes higher than 4 are

no longer symmetric and do not seem to represent any

organized motion. To highlight the difference between the

organized Modes 2–3 and higher modes, two Modes 11 and

12 are plotted (U11 and U12 plotted in Figures 4e and 4f)

and will be related to the turbulence.

The distinction between organized motion and turbulence

is a basic question in the analysis of the flow and in the

understanding of mixing. To propose quantitative arguments

to separate organized motions from turbulence, both eigen-

values kI (or a
ðIÞ
k coefficients) and eigenfunctions UI need to

be analyzed in depth. The distribution of the a
ðIÞ
k coefficients

will be plotted for different modes I.
The a

ðIÞ
k coefficients are plotted in Figure 5. For the first

mode, it can be seen that the distribution of a
ð1Þ
k is weakly

dispersed around a constant value, close to 34 m/s. For the

Modes 2 and 3, the distributions of the a
ð2Þ
k (a

ð3Þ
k not shown)

coefficients associated with Modes 2 (and 3) are centered on

0 and exhibit higher percentages near the highest and lowest

values of a
ð2Þ
k . The distributions of the a

ðIÞ
k coefficients asso-

ciated with modes higher than 4 are still centered on 0 but

exhibit higher percentages for values of a
ðIÞ
k close to zero.

Such shapes of probability density functions are discussed in

a textbook on turbulence.36 It is clear that the distributions

of the a
ð2Þ
k (and a

ð3Þ
k ) coefficients look like the probability

density of a sine wave, whereas the distributions of the a
ðIÞ
k

coefficients (I larger than 4) exhibit Gaussian shapes that are

characteristic of turbulent motions.

Complementary information helpful to discriminate organ-

ized motion from turbulence lies in the UI eigenfunctions: ra-

dial profiles of the two components (UI,WI) of different UI

eigenfunctions are plotted in Figure 6 to compare the contri-

butions of Mode 1 associated with the mean flow, Modes 2

and 3 associated with the organized motion and higher modes

associated with turbulence. The radial component of the first

mode is roughly constant, equal to 0.02; considering the

almost constant value of a
ð1Þ
k , it corresponds to a radial veloc-

ity equal to 0.02 � 34 m/s ¼ 0.68 m/s characteristic of the

mean flow in the liquid jet induced by the impeller. The verti-

cal component of this first mode is almost zero. The radial

and vertical components of Modes 2 and 3 exhibit purely si-

nusoidal behaviors. A higher mode has been plotted (Mode

12). The radial and vertical components of Mode 12 present

many different wavelengths, the larger ones between to 0.1 R

and 0.3 R. Such orders of magnitude of wavelength may be

related to Taylor macroscale induced by the Rushton turbine.

It is important to keep in mind that the amplitudes of

(UI,WI) components of UI eigenfunctions are, respectively,

0.02 and 0.01. This is due to the fact that the norm of each

eigenfunction in a whole plane of measurement is equal to

unity. Thus

X

l

i¼1

X

c

j¼1

UIði; jÞ2 þWIði; jÞ2
h i

¼ 1: (28)

Consequently, the order of magnitude of each vector

component is 1=
ffiffiffiffiffi

l c
p

� 10ÿ2.

Mean flow characteristics associated with Mode 1

It must be recalled here that the first eigenfunction U1

(plotted in Figure 4.a) looks like a velocity field but the

velocity field associated with Mode 1 is given by

Uk ¼ a
ð1Þ
k U1: (29)

The statistical averaged value of the first series of coefficients

a
ð1Þ
k is reported in Table 4, for the three values of the impeller

rotational velocity N. The values of a
ð1Þ
k are given in m/s. As

previously shown, the magnitude of the eigenfunction

components is of the order of 1=
ffiffiffiffiffi

l c
p

� 10ÿ2. Consequently,

the order of magnitude of the velocity is 0.5 m/s. It is

consistent with the tip velocity magnitude (1.17, 1.62, and

1.96 m/s for N ¼ 150, 205, and 250 rpm). In addition, the ratio

a
ð1Þ
k /Utip is shown to be almost constant.

Figure 3. Evolution of the normalized eigenvalue

according to the mode number.

Table 3. Percentage of Kinetic Energy Associated with Each Mode

N (rpm)

% of Kinetic Energy Kinetic Energy (m2/s2)

Mode 1 Modes 2þ3 Modes[3 All modes

150 91 7 2 1250
205 80 13 7 3053
250 69 21 10 5798



The distribution of the a
ð1Þ
k coefficients is plotted in Figure

5a. The mean value is 33.74; the maximum and minimum

values are 31 and 37. As shown in Table 4, the standard

deviations are small and represent less than 10% of the

mean values. The individual values of the coefficients a
ð1Þ
k

are thus almost equally distributed between the minimum

and the maximum. Compared to the coefficients of the

higher modes, a
ð1Þ
k coefficient can be considered as roughly

constant. In addition, each value of these coefficients a
ð1Þ
k is

close to a square root of the first eigenvalues, as expected

because the coefficients a
ð1Þ
k show small variations around

their mean value.

Recall that each realization of the velocity field may be

reconstructed with a constant mean flow value plus organ-

ized and/or turbulent fluctuations. Clearly, the first mode can

be associated with the mean flow. The vertical profiles of

the reconstructed velocity associated with the first mode can

be plotted (see Figure 2) and compared to the vertical profile

of the statistical averaged value of the velocity. The radial

and axial velocities reconstructed with the first mode are

Figure 4. Plots of the modes 1, 2, 3, 4, 11, and 12 from POD: (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4, (e)

Mode 11, and (f) Mode 12 for N 5 150 rpm.



plotted on Figure 2 in a vertical plane r/R ¼ 1.07, for the

three values of impeller rotational velocity. Figure 2 con-

firms that the first mode of the decomposition based on POD

corresponds exactly to the mean flow.

The analysis of the viscous dissipation rate of kinetic

energy and shear rate associated with the mean flow will be

tackled in the final discussion.

Organized motion associated with Modes 2 and 3

van Oudheusden et al.37 have shown that, when POD

modes are coupled (same order), they correspond to orthogo-

nal components of a periodic process. In our experiments

(Figure 3), the second and third eigenvalues have the same

magnitude whatever the rotational velocity N. However, as
the 2-D PIV are not time resolved, it is not possible to plot

the sinusoidal variations of scalars a
ð2Þ
k and a

ð3Þ
k . Neverthe-

less, following van Oudheusden et al.,37 it is possible to plot

the k realizations of pairs (a
ð2Þ
k , a

ð3Þ
k ) showing that this pair

of eigenfunctions is orthogonal. Each series of points corre-

sponding to n ¼ 700 instantaneous values lies on a circle

(see Figure 7) as

a
ð2Þ
k

2

2 k2
þ a

ð3Þ
k

2

2 k3
¼ 1: (30)

The radius of the each circle, given by
ffiffiffiffiffiffiffiffiffi

2 k2
p

�
ffiffiffiffiffiffiffiffiffi

2 k3
p

,

increases with the impeller rotational speed N.
The periodic nature of these coherent structures associated

with Modes 2 and 3 could be expressed as sinusoidal varia-

tions a(2) (uk) and a(3) (uk) as shown in previous papers15,16

a
ð2Þ
k ¼ að2Þ ukð Þ ¼

ffiffiffiffiffiffiffiffiffi

2 k2
p

sin ukð Þ (31)

and

a
ð3Þ
k ¼ að3Þ ukð Þ ¼

ffiffiffiffiffiffiffiffiffi

2 k3
p

cos ukð Þ: (32)

Where uk is the phase angle. The parameters a(2) (uk) and a(3)

(uk) have the dimension of velocities (m/s). It is thus possible

to reconstruct the temporal evolution of the organized motion

U
ðorgÞ
k ¼

X

3

I¼2

a
ðIÞ
k UI ¼

ffiffiffiffiffiffiffiffiffi

2 k2
p

cos ukð ÞU2 þ
ffiffiffiffiffiffiffiffiffi

2 k3
p

cos ukð ÞU3:

(33)

These velocity fields are plotted in Figure 8, at three instants

corresponding to phase angle values (0, p/4, and p /2). The

detachment of two counter-rotating organized structures is

clearly highlighted, this process being periodic and induced by

the blades of the impeller. The coefficients (a
ð2Þ
k , a

ð3Þ
k ) are

sinusoidal and orthogonal. This explains why the distribution

of the (a
ð2Þ
k , a

ð3Þ
k ) coefficients plotted in Figure 5 exhibits a

probability density function characteristic of sine waves.

The analysis of the viscous dissipation rate of kinetic

energy and shear rate associated with the organised motion

will be tackled in the final discussion.

Higher order modes motion

Following the decomposition, we propose a reconstruction

of the turbulence based on all the modes higher than 3.

U
ðturbÞ
k ¼

X

M

I¼4

a
ðIÞ
k UI: (34)

In the plane of measurement, each turbulent vector U
ðturbÞ
k is

composed of two components (u
0
k,w

0
k). The distributions of

radial (u
0
k) and vertical (w

0
k) turbulent velocities are plotted in

Figure 9 in a point located in the stream of the impeller. These

distributions are Gaussian and similar to turbulent compo-

nents. Referring to the central limit theorem, the Gaussian

characteristic function can be expressed as

Bðu0Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 p r2u
p exp ÿ u0

2

2 r2u

8

>

>

>

:

9

>

>

>

;

: (35)

Figure 5. Distribution of the aIk coefficients for modes

1, 2, 11 at N 5 150 rpm: (a) Mode 1, (b) Mode

2, and (c) Mode 12.



The probability density functions (pdf) of radial (u
0
k) and

vertical (w
0
k) turbulent velocities are plotted on Figure 9, for a

point located close to the upper right corner of the impeller.

The Gaussian distributions have been plotted on the same

graphs, with the experimental values of the standard deviations

of each velocity fluctuation (ru ¼ 0.024 m/s and rw ¼ 0.022

m/s). There is good agreement between the experimental and

the Gaussian pdfs.
From these experimental values of turbulent fluctuations

of the velocity, the TKE can be estimated as

kðturbÞ ¼ 3

4
u02 þ w02

� �

: (36)

The vertical profile of the square root of the TKE normalized

by the tip velocity
ffiffiffiffiffiffiffiffiffiffiffi

kðturbÞ
p

=Utip is plotted in Figure 10a, close

to the impeller at a given radial position r/R ¼ 1.07. This ratio
ffiffiffiffiffiffiffiffiffiffiffi

kðturbÞ
p

=Utip gives an order of magnitude of the turbulent

intensity between 5 and 20%. Recall17 that, in the case of

water at N ¼ 150 rpm, in the same tank but in fully turbulent

flow, the ratio
ffiffiffiffiffiffiffiffiffiffiffi

kðturbÞ
p

=Utip had the same shape, but the

maximum values reached 40–50%. Such a trend of
ffiffiffiffiffiffiffiffiffiffiffi

kðturbÞ
p

=Utip vs. Reynolds numbers was expected because

the turbulent intensity quantifies the level of turbulence.

Carbopol data correspond to a transitional flow pattern (100\

Re \ 250), whereas water data correspond to fully turbulent

flow (Re ¼ 56,250). Once again, the transition regime in a

tank can be understood as heterogeneous flow. Close to the

impeller, the flow is turbulent whereas far from it, it may be

laminar.

The dissipation rate of TKE (Eq. 6) can be estimated

directly from the experimental values of the instantaneous

velocity. The vertical profile of the dissipation rate of TKE

normalized by N2 D3 is plotted in Figure 10b, at the same

position as the profile of TKE (r/R ¼ 1.07). Outside the jet

of the impeller, the values of e(turb)/(N3 D2) are similar and

close to 1–2. In the region of the jet induced by the impeller,

e(turb)/(N3 D2) presents maxima that can reach 5–10. It is

interesting to compare these values to a global estimation of

the dissipation. It can be shown that

eðtotÞ

 �

N3 D2
¼ 4 Np

27 p
: (37)

In the case of a Rushton turbine, the power number Np is close

to 5 and, thus, the global value of the normalized dissipation

rate is equal to 0.23, whatever the value of the impeller

velocity. The profiles of e(turb)/(N3 D2) show that the local

dissipation rate of TKE can be 5 to 20–40 times its global

averaged value.

In our experiments, the velocity field was investigated in a

region located close to the impeller. In Figure 3, only the

eigenvalues corresponding to the highest rotational speed (N
¼ 250 rpm) show a—11/9 power scaling which is a charac-

teristic of inertial range of turbulence, as shown by Knight

and Sirovich,38 even at such a modest Reynolds number. In

this case, the knowledge of local values of both TKE and its

rate of dissipation enable us to estimate the characteristic

Figure 6. Comparison of radial profiles of (a) radial UI and (b) vertical WI components of different eigenfunctions kI
for Modes 1, 2, 3, and 12 for N 5 150 rpm.

Table 4. Analysis of the First Mode Coefficients aIk in m/s

N
(rpm)

First Mode Analysis (Values Are in m/s)

a
ð1Þ
k /Utip

Mean Value
a
ð1Þ
k (m/s)

Square Root
of the First
Eigenvalue

Standard
Deviation
of a

ð1Þ
k

150 33.74 33.73 1.325 29
205 49.02 49.4 5.14 30
250 63.14 63.25 4.06 32

Figure 7. Distribution of pairs of coefficients (a
ð2Þ
k , a

ð3Þ
k )

for the n realizations and for each impeller

rotational speed N (150, 205, and 250 rpm).



scales of the turbulence, the Taylor microscale and the Kol-

mogorov microscale defined as

kTaylor ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10 ma kðturbÞ

eðturbÞ

r

(38)

gTaylor ¼
ma

3

eðturbÞ

8

>

>

:

9

>

>

;

1=4

: (39)

These two length scales were calculated. In the jet of the

impeller, the Taylor microscale varied between 2 and 4 mm,

whereas the Kolmogorov microscale varied between 0.5 and 2

mm. All these scales being larger than the interrogation area of

the PIV, the previous processing is validated.

Discussion

The aim of this discussion is to estimate the spatial distri-

bution of the shear rate (the apparent viscosity can be

deduced directly from the shear rate using Eq. 14 or 15).

The first question is related the spatial heterogeneity of the

shear rate. The second concerns the space averaged values

of the shear rate and the corresponding value of the

Figure 8. Plots of the velocity fields and stream function associated with the organized flow from Modes 2 and 3:

(a,b) u 5 0, (c,d) u 5 p /4, and (e,f) u 5 p/2.



Reynolds number. Up to now, the space averaged value of

the shear rate has been based on the Metzner–Otto correla-

tion7 (see Eq. 1).

In the case of a shear-thinning fluid, the rate of viscous

dissipation of kinetic energy e is

e ¼ 2 ma S : S: (40)

This viscous dissipation rate of kinetic energy e can be

estimated at each point of the plane of measurement.

Similarly, the shear rate _c can be estimated locally as

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 S : S
p

: (41)

As only 2D PIV were performed in the study, the shear rate is

estimated with the experimental measurements of
@ U1

@ x1
; @ U1

@ x2
; @ U2

@ x1
; @ U2

@ x2
, the last velocity gradient @ U3

@ x3
being

estimated by assuming the divergence of the velocity to be nil.

The apparent viscosity la can be estimated locally as a

function of the local shear rate _c. The spatial heterogeneity of

both the shear rate _c and the apparent viscosity la can be

addressed. In fully turbulent flow [17], the dissipation rate of

TKE is larger than the dissipation rates of organized motion

and mean flow, which are negligible. It will be interesting here

to estimate the respective contributions of the mean flow,

organized motion and turbulence to the shear rate _c in

transition regime.

The instantaneous strain rate (or stretching) tensor S has

components Sij that are defined as

Sij ¼
1

2
� @ Ui

@ xj
þ @ Uj

@ xi

8

>

>

:

9

>

>

;
: (42)

Considering the POD, each instantaneous velocity vector

component can be expressed in terms of the modes as

Ui;k ¼
X

M

I¼1

a
ðIÞ
k UI;i: (43)

After some derivations taking into account the fact that the

coefficients aIk of the POD decomposition are uncorrelated

(Eq. 22), we obtain

Figure 9. Radial and axial turbulent velocity distributions in the impeller stream level for N ¼ 150 rpm.

Figure 10. Profiles of normalized turbulent kinetic energy and dissipation rate in 0.08% Carbopol at three agitation

speeds.



e ¼ eðmeanÞ þ eðorgÞ þ eðturbÞ ¼ 2 ma _cð Þ S : S ¼

2 ma _cð Þ S : Sþ SðorgÞ : SðorgÞ þ s0 : s0
h i

: ð44Þ

This result is very important for the rest of the analysis.

Similarly, it can be shown that the shear rate _c can be

decomposed into three parts as follows

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_cðmeanÞ2 þ _cðorgÞ
2

þ _cðturbÞ
2

q

: (45)

The local distributions of shear rate associated with mean

flow, organized motion, and turbulence are plotted on Figure

11a, 11b, 11c for an rotational speed N ¼ 150 rpm.

Figure 11. Local shear rate corresponding to: (a) the mean flow for N 5 150 rpm, (b) the organized flow for N 5

150 rpm, (c) the turbulent flow for N 5 150 rpm, (d) the instantaneous flow for N 5 150 rpm, (e) the in-

stantaneous flow for N 5 205 rpm, and (f) the instantaneous flow for N 5 250 rpm.



In terms of maximum values, the turbulent shear rate

reaches 150 sÿ1, whereas the mean flow shear rate is up to

100 sÿ1 and the organized motion shear rate is less than 50

sÿ1. The first remark is that the shear rates (and viscous dis-

sipation of kinetic energy) associated with the mean motion

and organized motion are far from negligible compared to

the turbulence. This result is significantly different from

fully turbulent flow. In terms of spatial distribution, the

mean flow shear rate is high in the regions of large velocity

gradients along the boundaries of the liquid jet induced by

the Rushton turbine. The shear rate associated with the

organized motion is high close to the impeller in the region

of the core of the jet; radially, it vanishes at a distance equal

to R/4. The shear rate associated with turbulence is high

over a large region of production of turbulence. The total

shear rate is plotted on Figure 11d. It is mainly controlled

by the mean flow and the turbulence. When the Reynolds

number increases, Figure 11e, f, the contribution of the tur-

bulence increases and the trace of the border of the jet

decreases. The slightly upward direction of the liquid jet is

also discernible on these figures.

The maximum values of the shear rate are close to 200,

400, and 800 sÿ1 for impeller velocities N of 150, 205, and

250 rpm. In fact, the shear rate is a function of the viscous

dissipation rate and the apparent viscosity, which itself is a

function of the shear rate. We can write

_c ¼
ffiffiffiffiffi

e

ma

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q e

K _cnÿ1

r

: (46)

Thus, it can be deduced that the shear rate is related to the

viscous dissipation and to the impeller velocity as

_cnþ1 ¼ q e

K
; (47)

as published in previous papers.10,39

In turbulent flow, if the dissipation rate was proportional

to N3 D2, the shear rate _c would vary as N
3

nþ1. The flow

behavior index n being 0.29 with the power law model, the

exponent of N would be 2.3. When the impeller velocity is

multiplied by 250/150 ¼ 1.6, the maximum shear rate is

multiplied by 3.5–4, whereas 1:6
3

nþ1 � 3. This means that the

local dissipation is, not exactly but almost, proportional to

N3. This result was observed in Figure 10 where the dissipa-

tion rates of TKE seemed to be normalized by N3 D2 in the

major part of the plot, except in a restricted region (located

in the impeller plane) where the ratio e/(N3 D2) was twice as

large for the highest impeller velocity as for the lowest one.

To conclude on the variation of the shear rate with the

impeller velocity N, the histogram of shear rate was plotted

(not shown) in the region of the impeller that has been

extensively analyzed in this paper (ÿ3 \ z* \ 3 and 1 \ r/
R \ 1.4), but also in two vertical planes located above (z*

[ 3), and one vertical plane located below (z* \ ÿ3) the

plane of measurement. In the region of the impeller (ÿ3 \

z* \ 3), three characteristic values of shear rate were noted:

_cmax which corresponds to the maximum value of the shear

rate, _cjet which corresponds to the largest peak (most proba-

ble value in the jet of liquid), _cimpeller which corresponds to

the lowest peak (most probable value outside the jet of

liquid). In the three other planes (z*[ 3 and z* \ ÿ3), _cfar
corresponds to the single peak (most probable value in

the three planes far from the impeller). These different

characteristic shear rates are plotted in Figure 12 vs. the

power per unit volume as it seems to be a key parameter.

_cmax and _cjet exhibit the same trend with a power law for

which the exponent is close to 1/(n þ 1). The shear rates

calculated from Eqs. 1 and 47 lie between the experimental

determination of _cimpeller and _cfar. The correlation10 gives a

value between _cimpeller and _cjet. However, this correlation was

established for an axial impeller. Thus, the constant in Eq. 2

may vary with the impeller type.

In Figure 10b, we observed that, locally, the ratio e/(N3

D2) is close to 5 for the three agitation speeds in z* ¼ �0.5.

This local value is 20 times larger than the global value hei/
(N3 D2), which is constant and close to 0.25. With this in

mind, the normalized dissipation can be approximated by

e

N3D2
� 20

eh i
N3D2

� Np; (48)

for a standard vessel with H/T ¼ 1 and D/T ¼ 1/3.

In Eq. 47, e can be replaced by Np�N3D2. Thus, the shear

rate becomes

_c ¼ q Np D
2

K

8

>

>

:

9

>

>

;

1
nþ1

N
3

nþ1: (49)

It can be noted that this expression is close to correlation 24 in

Ref. 10. In our case, Eq. 49 gives a reasonable trend for _cjet and
_cimpeller. In Table 5, apparent viscosities and Reynolds numbers

are calculated for the new expression of the shear rate and

compared to the values obtained previously with the Metzner–

Otto correlation.7

The new shear rate, corresponding to the most probable

value of the shear rate in the impeller zone, being larger

than the values predicted by the Metzner–Otto correlation,

the apparent viscosity is decreased and the Reynolds number

increased. When the new correlation of shear rate is taken

into account, the Reynolds numbers are slightly increased

but remain in the transition regime between laminar and tur-

bulent flow.

In addition, in the regions located outside the liquid jet,

and in particular far from the impeller, the turbulence level

is weak. The order of magnitude of the shear rate can be sat-

isfactorily estimated by the expression derived in the intro-

duction (Eq. 13). This result indicates that the flow regime is

not uniform in the tank, with low turbulence or even laminar

Figure 12. Evolution of the four shear rates measured

in 0.08% Carbopol vs. the volumetric power

dissipation in the vessel.

Data are compared to published correlations.



regions far from the impeller. In this article, focusing on the

hydrodynamics in the impeller region, we will not go deeper

into the subject of the development of laminar flow in the

extremities of the vessel even when the flow close to the

impeller is not.

As discussed in the experimental set-up section, four inter-

rogation areas have been investigated using PIV in a vertical

plane. It is thus possible to estimate the mean shear rate in

the impeller stream zone (ZS) located between z* ¼ 3 and

z* ¼ ÿ3 as well as the mean shear rate in the total zone

investigated (Ztot) located between z* ¼ 15 and z* ¼ ÿ10.

Knowing the local value of shear rate, the apparent viscosity

can be calculated locally according to the rheological model

and then averaged in each region. In Table 6, the average

values of local apparent viscosities la _cð Þh i are compared

with apparent viscosities la _ch ið Þ calculated with average

local shear rate _ch i in the zone ZS and Ztot. Even if the total

volume of the vessel is not entirely represented by the zones

ZS and Ztot, these average values may be representative of

what is going on in the tank.

It can be noted that the average shear rate _ch i in ZS is

closed to the shear rate calculated from Eq. 49 and �10

times larger that the shear rate _ch i in Ztot, average over the

total volume. In Table 6, it is shown that _cZS

 �

can roughly

be normalized by N3/(1þn), and _cZtoth i by N. This result con-

firms the previous conclusion regarding the different evolu-

tion of the four characteristic shear rates in Figure 12. In the

impeller stream zone (ZS), the shear rate is directly linked to

the power draw according to Eq. 49 meanwhile the average

shear rate _cZtoth i in the whole tank (Ztot) is proportional to

the rotational speed as in Eq. 1.

In the impeller stream zone (ZS), the apparent viscosity

la _cð Þh i was calculated by averaging local values of apparent

viscosities and by taking the apparent viscosity correspond-

ing to the average value of local shear rate la _ch ið Þ. In the

impeller stream zone ZS, both ways of calculation leads to

the comparable values of apparent viscosities. This proves

that in this zone ZS, the local shear rate is relatively homo-

geneous. In zone Ztot, the two ways of calculation differ

from 2 to 4. This difference can be explained by the hetero-

geneity of shear rates in the vessel.

There is one order of magnitude of difference between the

apparent viscosities la _cð Þh i averaged in the impeller stream

zone ZS and in the whole tank Ztot ; consequently, we can

wonder on the way of calculating the Reynolds number.

Conclusions

In this study, the mixing of a non-Newtonian, shear-thin-

ning fluid (Carbopol) has been investigated in the transitional

regime between laminar and turbulent flow in a stirred tank

equipped with a Rushton turbine. Rheological measurements

were performed to determine the rheological parameters of

Carbopol, relating the apparent viscosity to the shear rate.

2-D PIV experimental analysis was performed in the

impeller stream of the Rushton turbine at three agitation

speeds. Statistical averaging of the instantaneous velocities

enabled the mean flow to be evaluated, which was analyzed

in terms of velocity profiles and flow numbers. Data were

also compared to water measurements and published works.

POD was carried out to decompose the velocity into dif-

ferent modes corresponding to mean flow, organized flow,

and turbulence. The decomposition gave eigenvalues and

eigenfunctions for each mode. Eigenvalues are associated

with the contribution of each mode to the total kinetic

energy while eigenfunctions refer to the velocity field (even

if they have no dimension). Comparison between the veloc-

ity reconstructed with Mode 1 and statistical average values

shows that the first mode can be associated with the mean

flow. Modes 2 and 3 are strongly coupled and exhibit large

rotating structures that are generated by the blade motion.

Velocities reconstructed with higher modes follow Gaussian

characteristics that can be attributed to turbulence. Using

modes higher than 3, it was possible to calculate the spatial

distributions of TKE and turbulent dissipation rate.

Through POD, the rate of viscous dissipation of kinetic

energy and the shear rate associated with the three motions

of the flow were calculated. Unlike in the fully turbulent re-

gime, the organized and mean flows cannot be neglected in

the calculation of the total viscous dissipation rate of kinetic

energy in transitional regime. The local shear rate was deter-

mined in the whole tank. At each impeller velocity, four

shear rates were estimated from experiments, a maximum

value and three characteristic values: in the jet, outside the

jet in the impeller region, and far from the impeller. These

values were compared to existing correlations and a new

expression proposed based on physical analysis.

This work highlights the difficulty of estimating averaged

shear rate in a stirred tank. The heterogeneity of shear rate

measured in the whole tank may explain the number of mod-

els found in the literature for the estimation of an averaged

shear rate. Even if the shear rate is measured accurately,

Table 5. Comparison between the Shear Rate Calculated with Eq. 1 and from the Correlation Proposed in this Work

N (rpm) _cMO Eq. 1 (sÿ1) la _cMOð Þ (Pa s) Re _ch i Eq. 49 (sÿ1) hlai (Pa s) Re

150 29 0.56 100 83 0.27 212
205 40 0.45 173 174 0.16 489
250 48 0.39 237 269 0.12 814

Apparent viscosities and Reynolds numbers are calculated following both models.

Table 6. Comparisons between Apparent Viscosities Calculated for the Average Shear Rate and Average
Local Apparent Viscosities

N (rpm)

Zs Ztot
Zs Ztot

_cZSh i
N3=ð1þnÞ

_cZtoth i
N

la _cZS

 �ÿ �

la _cZS
ÿ �
 �

la _cZtoth ið Þ la _cZtotð Þh i _cZS

 �

_cZtoth i
150 0.27 0.29 0.88 2.7 85.5 15.7 10.1 6.3
205 0.18 0.20 0.69 2.6 159 21.5 9.1 6.3
250 0.13 0.17 0.56 2.25 270 29 9.75 6.9



there is still a long way to go to understand which shear rate

really plays a role in the shear sensitivity of microorganisms

or for mass transfer prediction. For future works, other

impellers should be tested at the same volumetric power

draw to compare shear rate ranges. The question of flow pat-

tern in a mixing tank remains ‘‘puzzling,’’ particularly when

the flow is heterogeneous. It is the case in our experiments,

where the use of a yield stress fluid (Carbopol) induces

caverns: outside the cavern there is no flow but inside the

cavern the flow may be turbulent close to the impeller and

laminar far from the impeller.

This work also furnishes quantitative data that can be used

to validate CFD studies at the same level. Once validated,

CFD codes could be used to simulate higher scales. This

may help to understand the influence of the shear rate on the

scale-up design.
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