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Abstract

L. monocytogenes is a facultative intracellular bacterium responsible for listeriosis. It is able to invade, survive and replicate in
phagocytic and non-phagocytic cells. The infectious process at the cellular level has been extensively studied and many
virulence factors have been identified. Yet, the role of InlK, a member of the internalin family specific to L. monocytogenes,
remains unknown. Here, we first show using deletion analysis and in vivo infection, that InlK is a bona fide virulence factor,
poorly expressed in vitro and well expressed in vivo, and that it is anchored to the bacterial surface by sortase A. We then
demonstrate by a yeast two hybrid screen using InlK as a bait, validated by pulldown experiments and immunofluorescence
analysis that intracytosolic bacteria via an interaction with the protein InlK interact with the Major Vault Protein (MVP), the
main component of cytoplasmic ribonucleoproteic particules named vaults. Although vaults have been implicated in
several cellular processes, their role has remained elusive. Our analysis demonstrates that MVP recruitment disguises
intracytosolic bacteria from autophagic recognition, leading to an increased survival rate of InlK over-expressing bacteria
compared to InlK2 bacteria. Together these results reveal that MVP is hijacked by L. monocytogenes in order to counteract
the autophagy process, a finding that could have major implications in deciphering the cellular role of vault particles.
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Introduction

Listeria monocytogenes is a Gram-positive bacterium responsible for

listeriosis, a severe food-borne human infection with an overall

mortality rate of 30% [1]. L. monocytogenes has evolved efficient

strategies to survive in the intestine and cross the intestinal, blood-

brain and placental barriers [2,3] leading to clinical features of the

disease that include gastroenteritis, septicemia, central nervous

system infections, and mother-to-child infections [4]. Inside the

host, this facultative intracellular bacterium is able to invade

phagocytic and non-phagocytic cells, replicate intracellularly, and

spread directly from cell-to-cell, thereby escaping the immune

response [3]. L. monocytogenes has thus emerged as a paradigm to

study host-pathogen interactions and fundamental processes in cell

biology [5]. For instance, the study of actin rearrangements upon

entry and intracellular movements [6–9] is an example of how

understanding a bacterial-induced process can yield insight into

basic cellular processes. Namely, the listerial virulence factor ActA

triggers the recruitment of Arp2/3 complex and Ena/VASP to

mediate actin polymerization and propel the bacterium from one

infected cell to another without exposure to the extra-cellular

milieu [8,10]. Interestingly, as shown recently ActA also disguises

the bacteria from autophagic recognition within the cytosol as

ActA- bacteria becomes rapidly ubiquitinated and targeted to

autophagy [9,11]. It is currently viewed that ubiquitin-associated

bacteria recognized by the autophagy machinery are trapped by

autophagosomal membrane for delivery into the lytic compart-

ment where they undergo degradation by autolysosomes [11,12].

Interestingly, a variety of studies had noticed that autophagic

markers can accumulate around intracytosolic L. monocytogenes,

unless bacteria were forming actin tails [13,14]. Consequently, it

has been hypothesized and shown that L. monocytogenes avoids

ubiquitination and autophagic recognition by expressing ActA,

and ActA mutants are efficiently targeted by autophagy [11].

While the role of ActA in autophagy is now established, the role

that many other surface proteins play during Listeria infection

remains fragmentary [15].

The vault particle is the largest cytoplasmic ribonucleoprotein

complex known to date [16]. Originally identified as contaminants

of clathrin-coated vesicles preparation, these complexes were

named vault particles because of their barrel shaped morphology

resembling the ceiling of cathedrals [17]. Mammalian vaults are

composed of the highly conserved major vault protein (MVP)

constituting more than 70% of the mass of the particle [16,18,19]

which spontaneously forms vault particles without the need of

other vault components [20]. The two other vault components are

the telomerase associated protein (TEP-1) [21] and the vault

poly(ADP)ribose polymerase (vPARP) [22–24]. Vault preparations
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have additionally been shown to contain several small untranslated

RNAs [25,26]. Vaults exist in thousands of copies per cell and are

widely expressed in all eukaryotic organisms, from Dictyostelium

discoideum to mammals, except plants, Saccharomyces cerevisiae,

Caenorhabditis elegans and Drosophila melanogaster [27]. Diverse roles

have been proposed for MVP and/or vaults [27], including roles

in drug resistance [28], cellular differentiation [29], innate

immunity [30], virus infections [31], signaling cascades [28,32–

35] and cell survival [33,36]. However, the precise cellular

function(s) of MVP and vaults remains poorly understood. In

addition, the MVP2/2 mice are viable, healthy and show no

obvious abnormalities [37,38].

The genome sequence of L. monocytogenes EGD-e has revealed

the presence of 25 genes encoding proteins of the internalin family

[39]. Proteins of this family, which are characterized by the

presence of leucine-rich-repeats (LRRs), are mostly surface

proteins [40]. Their binding to the bacterial surface is mediated

by different anchoring domains, in particular the LPXTG motif

which allows a sortase A mediated covalent attachment to the

peptidoglycan [41]. The invasion protein, Internalin, is one such

protein [42]. Comparative post-genomic studies have established

that several members of the L. monocytogenes internalin family are

absent in L. innocua, a closely related non-pathogenic species [40].

Lmo1290 is an internalin gene absent in L. innocua, herein referred

to as inlK, which is expressed at very low levels in brain-heart-

infusion medium [43,44] and induced during infection [43].

In this study we investigated the role of InlK in the infectious

process. We first explored the expression of InlK and the virulence

phenotype of the inlK deletion mutant. We then searched for

potential host partners of InlK and identified MVP. We

demonstrated that the InlK/MVP interaction occurs in the

cytosol of infected cells at the bacterial surface. Moreover, our

results reveal that MVP recruitment protects L. monocytogenes from

autophagic recognition, leading to an increase in bacterial survival

in infected cells.

Results

L. monocytogenes inlK encodes a virulence factor
The gene lmo1290 ( = inlK) is 1797 bp long. It is located 331 bp

downstream from gene lmo1289 which is followed by a transcrip-

tional terminator. Lmo1290 is also followed by a transcriptional

terminator upstream from the divergently transcribed oatA gene

which encodes a peptidoglycan O–acetyltransferase (Figure 1A)

[45]. The inlK gene is present in all 22 L. monocytogenes genomes

sequenced to date and absent from the genomes of L. ivanovii and all

non-pathogenic Listeria strains including L. innocua (Figure 1A),

L. seeligeri, L. welschimeri and L. grayi, suggesting that InlK could be

involved in Listeria virulence.

To assess the role of InlK in virulence, we generated an inlK-

deletion mutant (DinlK) in the strain EGD-e. The DinlK mutant

grew as rapidly as the wild-type (WT) in broth medium and

infected cells (macrophages and epithelial HeLa cells) (data not

shown). The LD50 of the DinlK mutant after intravenous (i.v.)

injection in BALB/c mice was 2.26104 CFU, compared with

1.76103 CFU for the WT strain. Inactivation of inlK resulted in

complete survival of animals infected intravenously with 104

bacteria (Figure 1B). In contrast, infection with the same number

of WT bacteria led to 100% mortality. Moreover, the number of

CFU recovered from spleens and livers of i.v. infected BALB/c

mice after 24 h, 48 h, 72 h and 96 h of infection was significantly

lower (,1 Log10) for the mutant compared to the WT (Figure 1C),

and virulence of the mutant was fully restored by complementa-

tion (Figure 1C). Together, these results establish a role for InlK in

the virulence of L. monocytogenes.

InlK is expressed in vivo
InlK is a 598 amino acid LPXTG surface protein predicted to

be anchored to the peptidoglycan by sortase A (Figure 2A). To

address whether L. monocytogenes produces InlK in vitro, we first

generated an antibody against a purified recombinant InlK

protein (Figure S1A) and used it to detect the protein at the

bacterial surface by immunofluorescence. In agreement with

previous whole genome transcriptomic results that demonstrated

a low expression level of inlK in vitro [44], bacteria grown in

brain-heart infusion (BHI) medium were not stained by the InlK

antibody (Figure 2B), suggesting that InlK protein was poorly

expressed on the surface or not produced. We then showed that

InlK was not detected in bacterial total extracts (Figure 2C), also

in agreement with previous data indicating that InlK is not

present in the cell wall proteome of L. monocytogenes EGD-e

grown in BHI medium [46]. Moreover, consistent with the fact

that the two major regulators of virulence genes, PrfA and

sigmaB, were not required for basal inlK transcription [44,47],

the InlK protein level was also not detectable when bacteria

were grown in charcoal supplemented medium or at low pH

(data not shown).

To verify that the inlK open reading frame encoded a surface

protein, inlK was expressed under the control of two constitutive

promoters active in Listeria. We used either the promoter of the

protease gene from Lactococcus lactis subsp. cremoris on the multicopy

plasmid pPRT-inlK or the promoter PHyper after integration on the

chromosome of the plasmid pADc-inlK [48,49]. InlK antibodies

efficiently labeled InlK on the surface of bacteria that constitu-

tively expressed inlK (Figure 2B) and also detected the protein in

bacterial total extracts (Figure 2C). This labeling was specific, as

the InlK antibody did not label WT or inlK mutant bacteria grown

in same conditions. Interestingly, when InlK was over-expressed

by Listeria under the control of constitutive promoters, a

polypeptide with a lower mass than expected was also detected

by Western-blot (Figure 2C) indicating that the protein may be

processed. Moreover, InlK was not detected by immunofluores-

cence at the surface of a DsrtA sortase mutant over-expressing inlK

(Figure 2B), but was then detected in the supernatant of the culture

medium (Figure 2D). Taken together these results established that,

when inlK is expressed, the protein is anchored at the bacterial

surface in a sortase A-dependent manner.

Author Summary

L. monocytogenes is a food-born pathogen responsible for
listeriosis, a severe illness with a high mortality rate, which
mainly affects immunocompromised patients and preg-
nant women. The bacterium is a facultative intracellular
pathogen able to invade, survive and multiply in large
variety of cells. Although the infectious process at the
cellular level has been extensively studied, the role of InlK,
a surface protein specific to L. monocytogenes, remains
unknown. Here we established that L. monocytogenes use
InlK to interact with a mammalian cytoplasmic protein
named Major Vault Protein (MVP). Although MVP has been
implicated in diverse cellular processes, its role remains
elusive. Here we demonstrate that, inside the cell, L.
monocytogenes is able, via InlK, to decorate its surface with
MVP to escape autophagy, an innate immune defense
system that protects the cell from invading pathogens. L.
monocytogenes uses this camouflage strategy to efficiently
survive inside cells.

L. monocytogenes Avoids Autophagy Via InlK
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Recently, a whole genome transcriptomic analysis of L.

monocytogenes during infection revealed that the gene inlK was

better expressed in vivo compared to growth in BHI [43]. We thus

investigated whether the InlK protein was indeed produced in vivo

by testing for the presence of anti-InlK antibodies. Purified InlK

was submitted to migration on polyacrylamide gel (Figure S1A)

and blotted with two different rabbit anti-Listeria sera. As shown in

Figure 2E, a rabbit anti-L. monocytogenes serum obtained after

immunization with killed bacteria was not able to detect the

purified InlK whereas the serum directed against live bacteria

detected InlK. This signal was specific to InlK as the antibodies

did not label bovine serum albumine (BSA) used at the same

concentration.

To confirm in vivo inlK expression, we constructed an expression

reporter vector in which the expression of the bioluminescent

operon luxABCDE was under the control of inlK promoter (pPL2-

PinlK-luxABCDE). This construct was integrated in the chromosome

of WT L. monocytogenes EGD-e, and the resulting strain was used to

infect cell lines or BALB/c mice [50]. As shown in Figure S1B,

inlK was neither expressed in BHI growth medium (right panel)

nor in cells infected with bacteria previously grown in BHI (left

panel). Conversely, inlK was expressed in vivo in i.v. infected mice,

24 h post-infection (Figure S1C). This signal was specific to inlK

expression as it did not superimpose on those obtained with the

control strain of L. monocytogenes that contains a bioluminescent

reporter of LLO promoter (pPL2-Phly-luxABCDE). Together, these

results confirm that InlK is expressed in vivo.

InlK interacts with the Major Vault Protein
To identify InlK interaction partners in the eukaryotic cell, we

used InlK as a bait in a large-scale yeast two-hybrid screen and

identified the Major Vault Protein (MVP) as a prey with a very

high interaction score (Table S1). To confirm this interaction we

performed a bacterial pull down assay and showed that GST-

MVP purified protein bound to InlK over-expressing bacteria, but

not to WT bacteria (Figure 3A). This interaction was specific as (i)

the WT strain (which expresses InlA, InlB and InlH) did not bind

MVP (data not shown), (ii) the overexpression of InlJ (i.e. another

internalin not expressed in BHI [49]) was not able to mediate

bacterial binding to MVP, and (iii) InlK over-expressing bacteria

were not able to bind another GST fusion protein, GST-ScarA.

Finally, bacterial incubation with MVP-GFP transfected cells

lysates confirmed the interaction between InlK and MVP

(Figure 3B). This interaction occurred when InlK was either

expressed on a multicopy plasmid, or integrated in the

chromosome (Figure S2A).

This interaction between purified InlK and endogenous MVP

was confirmed by co-immunoprecipitation assays (Figure 3C).

Indeed, when purified InlK was incubated with HT29 cell lysate, it

interacted with endogenous MVP and the two partners co-

immunoprecipitated, as shown using an anti-MVP antibody

(Figure 3C). Similar results were obtained with stable HEK293-

HTP-InlK cells that were engineered to express InlK in their

cytosol, under the control of a tetracyclin inducible promoter

(Figure S2B).

The InlK/MVP interaction occurs in the cytosol at the
bacterial surface and does not depend on actin
polymerization

In agreement with a specific interaction between InlK and

MVP, we observed that InlK over-expressing bacteria co-localized

with MVP in MVP-GFP transfected HeLa cells whereas the inlK

mutant or wild type bacteria that do not express InlK in vitro did

not co-localize with MVP (Figure 3D). As MVP has been mainly

described as a cytoplasmic protein [51,52] and InlK is targeted

and anchored to the bacterial surface (Figure 2D), we hypothe-

sized that the InlK/MVP interaction should occur in the cytosol of

infected cells after lysis of the internalization vacuole. To test this

hypothesis, we analyzed the localization of MVP recruiting

bacteria. A differential immuno-staining protocol allowing extra-

and intracellular Listeria to be distinguished showed that MVP was

recruited to intracellular bacteria (Figure 4A). Irrespective of the

time post-infection, ,20% of InlK over-expressing bacteria were

observed to recruit MVP [24.3%63.0; 16.862.5; 18.261.6 and

18.5%64.8 (mean 6 SEM from n = 3 experiments) at 1 h, 2 h,

4 h and 8 h post-infection respectively] (Figure 4A, right panel).

To determine whether MVP was recruited to intracellular bacteria

before or after lysis of the internalization vacuole, we used a

marker of early times points after vacuole escape, YFP-CBD, a

YFP fused phage protein known to bind L. monocytogenes

peptidoglycan as soon as the vacuole membrane begins to lyse

(Figure S3A) [53]. Cells were co-transfected with MVP-Tomato

and YFP-CBD, fixed 4 h post-infection and immuno-stained for

actin. As expected, bacteria that polymerized actin were efficiently

labeled with YFP-CBD (Figure 4B, Figure S3B inset 2), confirming

that YFP-CBD efficiently labels intracytosolic Listeria. Moreover,

all MVP-positive bacteria were also labeled with YFP-CBD

(Figure 4B, Figure S3B) revealing that MVP was recruited by

intracytosolic bacteria after lysis of the internalization vacuole.

Interestingly, we did not observe the co-recruitment of MVP-

GFP and endogenous actin to intracellular bacteria (Figure 4B,

Figure S3B). Co-recruitment was also not observed in infected cells

previously co-transfected with MVP-GFP and actin-CFP (Figure

S3C). We therefore analysed the kinetics of MVP and actin

recruitment by performing live-cell imaging. Cells were co-

transfected with MVP-Tomato and actin-GFP, and infected with

InlK expressing L. monocytogenes. Strikingly, MVP was recruited

rapidly by InlK over-expressing bacteria and could then be

replaced by actin (Figure 4C and Video S1), showing that MVP

recruitment occurs before actin polymerization. We then verified

that MVP recruitment occurred independently of actin polymer-

ization using a actA mutant. Intracytosolic DactA over-expressing

InlK were efficiently labeled with MVP (Figure S3D). This MVP

recruitment was more efficient than for wild type bacteria. Indeed,

the percentage of intracytosolic DactA over-expressing InlK having

recruited MVP at 4 h post-infection was 88.3612.7% (mean 6

SEM from n = 3 experiments), compared to the 16.862.5% (mean

6 SEM from n = 3 experiments) observed when using the InlK

over-expressing strains that are able to polymerize actin via ActA.

Together, these results suggested that ActA at least partially

Figure 1. InlK is a virulence factor of L. monocytogenes. A. The inlK gene locus in L. monocytogenes compared with the same genomic region
in the related non-pathogenic species L. innocua. The stem and circle represent transcription terminators. B. Kaplan-Meier curve represents the
survival of BALB/c mice over time. Four BALB/c mice in each experimental group were infected i.v with 104 L. monocytogenes wild-type (EGD-e) or
DinlK mutant. C. The L. monocytogenes EGD-e wild-type strain (WT), the DinlK mutant (DinlK) and the complemented strain (DinlK+pPL2 inlK) 104 CFU
were inoculated i.v into BALB/c mice. Animals were euthanized 24 h, 48 h, 72 h or 96 h after infection and organs were recovered, homogenized, and
homogenates serially plated on BHI. The number of bacteria able to colonize liver (left panel) and spleen (right panel) is expressed as log10 CFU. Four
animals per bacterial strain, per time points and per experiment were used. Statistical analyses were performed on the results of 3 independent
experiments using the Student t test. P values of ,0.05 were considered statistically different and are labeled here as *.
doi:10.1371/journal.ppat.1002168.g001
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impairs MVP recruitment. As ActA protects bacteria from

autophagy [11], these data also suggested that both InlK and

ActA may protect bacteria from autophagy.

MVP recruitment protects Listeria from autophagy
To test if MVP recruitment could lead to autophagic escape, we

used two well-established markers of autophagy, p62 (SQSTM1)

and LC3 (Atg8) [54]. p62 has emerged as the prototypic adaptor

involved in directing cytoplasmic substrates towards autophagic

degradation [55]. p62 interacts with ubiquitinated subtrates via its

ubiquitin-binding domain, and links them to the autophagosomal

structural protein LC3. We infected MVP-transfected HeLa cells

with InlK over-expressing bacteria for 4 h and after fixation,

immuno-stained for endogenous p62 and actin. No co-localization

could be observed between MVP and p62 (Figure 5A, Figure S4A)

or MVP and LC3 (Figure 5B, Figure S4B). Interestingly, the vast

majority of MVP-positive bacteria were completely devoid of anti-

p62 labeling (95.162.0%; mean 6 SEM from n = 3 experiments)

but 4.962.0% (mean 6 SEM from n = 3 experiments) were

stained at one pole with MVP and at the other pole with p62.

Similar results were obtained using GFP-LC3 (Figure 5, Figure

S4B). As previously demonstrated [11], bacteria that had started to

recruit actin were not labeled by p62 (Figure 5A) or GFP-LC3

(Figure 5B). Strikingly, when the MVP-positive bacteria that

exhibited a recruitment of LC3 at one pole were examined by live-

cell-imaging (Figure 5C), the membrane elongation leading to the

autophagosome formation failed to occur (Video S2 and S3).

Together these results indicate that bacteria which either recruit

MVP or have started to polymerize actin evade autophagic

recognition.

We thus studied autophagy marker recruitment by the actA

mutant over-expressing InlK. In agreement with our previous

observations (Figure S3D), InlK over-expressing DactA bacteria

efficiently recruited MVP [88.6612.8% (mean 6 SEM from n = 3

experiments)] (Figure 5D and S4C). These MVP positive bacteria

were neither surrounded by ubiquitinated proteins nor recognized

by LC3 (Figure 5D and S4C). Furthermore, the level of LC3-II,

the active form of LC3 that correlates with active autophagy [54],

was significantly lower in cells infected with DactA+InlK as

compared with DactA (1.8260.14 fold) (Figure 5E). Together,

these results show that in the absence of ActA, Listeria is able to

evade autophagic recognition via MVP recruitment.

MVP-dependent escape from autophagy leads to
increased Listeria survival

Autophagy is recognized as a cell-autonomous innate defense

mechanism that may control growth of intracellular microbes [56].

We thus tested if MVP-mediated autophagy escape leads to

increased bacterial survival. As macrophages are among the cells

which express the highest levels of MVP [29,57,58], the

intracellular survival of WT, WT+InlK, DactA and DactA+InlK

was analysed in RAW 264.7 macrophages (Figure 6A). These four

strains (WT, WT+InlK, DactA and DactA+InlK) were first verified

to grow identically in culture medium (data not shown). As

previously described by Yoshikawa et al. [11], the intracellular

survival rate of DactA bacteria at 4 h post-infection was

significantly lower than that of WT bacteria (Figure 6B).

Strikingly, the expression of InlK by the DactA strain restored

the intracellular survival rate to the level of WT bacteria

(Figure 6B), indicating that InlK could functionally replace ActA

in its role in autophagy escape. Infection of MVP-transfected

epithelial cells with DactA and DactA+inlK led to similar results

(Figure 6C and 6D).

The intracellular survival of DactA and DactA+InlK was then

analysed in RAW 264.7 macrophages treated with control or

MVP siRNA (Figure 6E). As previously observed (Figure 6B), the

DactA+InlK strain replicated better than the DactA strain in control

cells (Figure 6E). Strikingly, in MVP-depleted cells, the Dac-

tA+InlK strain did not replicate faster than the DactA strain

(Figure 6F), confirming the role of InlK/MVP interaction in

survival rate. Taken together, these data show that the specific

recruitment of MVP to the bacterial surface via InlK leads to a

better survival of L. monocytogenes.

Discussion

L. monocytogenes has emerged as a paradigm to study host-

pathogen interactions and fundamental processes in cell biology

[5,59]. However the role of the many proteins expressed on the

bacterial surface during Listeria infection remains fragmentary

[15]. In this study we report that InlK, a L. monocytogenes surface

protein of the internalin family, plays a critical role in Listeria

virulence. We show that InlK is anchored to the listerial surface

through its LPXTG peptidoglycan anchoring signal by sortase A

and is produced during in vivo infection, whereas it cannot be

detected on bacteria grown in BHI medium [44] or within the

cytosol of tissue-cultured cells. This in vivo specific expression

profile was previously described for other virulence factors of L.

monocytogenes, e.g. the internalin InlJ, that behaves as an adhesin

[49] and recently LntA, a secreted bacterial protein involved in

chromatin remodeling and type III interferon response [60].

Furthermore, our results confirm and extend our recently

published transcriptomic analysis of L. monocytogenes [43] which

identified inlK as a gene highly activated during in vivo infection

and that may play a role in the infectious process. Together, our

results demonstrate that InlK is a so far undescribed virulence

factor of L. monocytogenes.

To enter, survive and spread from cell-to-cell, L. monocytogenes

has been shown to interact with several host partners. We revealed

here that MVP is a specific cellular interactor of InlK. The highly

conserved MVP protein constitutes more than 70% of the mass of

Figure 2. InlK is expressed in vivo. A. InlK amino acid sequence. The signal sequence is underlined and the different regions of leucine rich repeats
(LRRs) are outlined. The consensus pentapeptide LPXTG at the C-terminal end is boxed. B. Detection by immunofluorescence microscopy of InlK over-
expressing in L. monocytogenes EGD-e (WT), DinlK, WT+pADc-inlK, DinlK+pPRT-inlK and the DsrtA mutant over-expressing inlK (DsrtA+pPRT-inlK)
grown in BHI medium using the rabbit polyclonal anti-InlK antibody. InlK was detected at the surface of InlK over-expressing bacteria (WT+pADc-inlK
and DinlK+pPRT-inlK), whereas it was undetectable at the surface WT bacteria or at the surface of the DstrA mutant over-expressing inlK. C. Detection
of InlK by Western blot on total lysates of L. monocytogenes EGD-e (WT), DinlK and DinlK+pPRT-inlK grown in BHI using the rabbit polyclonal anti-InlK
antibody. Decreased concentrations of recombinant purified InlK were used as a positive control. D. Detection of secreted InlK in the supernatant of
DsrtA mutants over-expressing InlK. Western blotting was carried out on trichloroacetic acid precipitates of DsrtA and DsrtA+pPRT-inlK culture
(OD600 = 1) supernatants using the rabbit polyclonal anti-InlK antibody. E. Detection of purified recombinant InlK protein with rabbit polyclonal anti-
live Listeria antibody, rabbit polyclonal anti-killed Listeria antibody, rabbit polyclonal anti-InlK and a rabbit pre-immune serum. InlK was detected only
with the rabbit polyclonal anti-live Listeria antibody indicating that it is expressed during the in vivo infectious process. BSA was used as control
protein. Two different amounts of proteins were tested (500 ng and 200 ng) to access signal specificity.
doi:10.1371/journal.ppat.1002168.g002
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the largest cytoplasmic ribonucleoprotein (RNP) complex known,

i.e. vault particles [16,18,19]. Since its first description in 1986

[61], several putative functions have been attributed to this RNP

complex. Data that link the vault complex to various functions

have suggested roles in multidrug resistance [28,62], transport

[63], signaling [28,32–35], apoptosis resistance [33,36] or innate

immunity [30]. However, no compelling evidence for a cellular

role was reported unequivocally and MVP was mainly considered

as a scaffold protein. Nevertheless, vaults were previously found to

be implicated in g-herpesvirus (Epstein-Barr and Kaposi’s sarcoma

virus) [31,64] and Pseudomonas aeruginosa infectious processes [30].

During Epstein-Barr or Kaposi’s sarcoma virus infection, the

expression of vault RNAs (vRNAs) was shown to be specifically up-

regulated in human lymphocytes [31,64]. However, the function

of this overexpression was not assessed. In addition, not only

vRNA but also MVP was reported to be upregulated during viral

infection by human T-cell lymphotropic virus type I (HTLV-I)

infection [65]. In the case of bacteria, MVP was implicated in host

resistance to P. aeruginosa lung infection [30]. Indeed, a rapid

recruitment of MVP to lipid rafts was observed when human lung

epithelial cells were infected with P. aeruginosa. This recruitment

was dependent on bacterial binding to the cystic fibrosis

transmembrane conductance regulator CFTR. However, no

evidence of direct binding between MVP and bacteria was

observed. Our results provide the first report of a direct interaction

between a microbial protein and a component of the vault

particles. Indeed, we demonstrated that InlK over-expressing L.

monocytogenes were able to directly bind MVP. In agreement with

previous observations that MVP/vaults are predominantly

(.90%) localized in the cytoplasm [28,51,52], we established that

the InlK/MVP interaction occurs in the cytosol of infected cells,

after the disruption of the internalization vacuole, and indepen-

dently of actin polymerization.

As with a variety of intracellular microbes, intracytosolic L.

monocytogenes are recognized by autophagy, a cell-autonomous

effector mechanism of innate immunity that protects the cytosol

against bacterial invasion [66]. Perrin et al. first demonstrated that

cytosolic L. monocytogenes occasionally colocalized with ubiquitin in

infected cells, and this association was more frequent in case of the

DactA strain [13,14]. More recently, Yoshikawa et al. demonstrated

that the recruitment of VASP, Arp2/3 complex and actin via ActA

protect bacteria from ubiquitination and autophagic recognition

[11]. Here we reveal that L. monocytogenes has a second strategy to

escape autophagy in the absence of ActA (Figure 7). Indeed, no

significant difference could be observed between the intracellular

survival rate of WT and WT+InlK bacteria in infected RAW

267.4 macrophages (Figure 6B), suggesting that when ActA is

expressed it is sufficient for Listeria to escape from autophagy. In

contrast, in absence of ActA, InlK protects against autophagy.

Together, our results show that the bacteria are able, via InlK, to

decorate their surface with MVP in order to escape from

autophagy (Figure 7). It will be thus of the highest importance to

decipher in which cells InlK is expressed in vivo and when the

InlK/MVP interaction takes place during infection. These data

will be critical to unravel the role of InlK in the pathophysiology of

Listeria infection. It will also be of great interest to further study the

link between actin polymerization, MVP, autophagy, and

pathogen dissemination.

Materials and Methods

Bacterial strains, growth conditions and reagents
Listeria strains (Table S2) were grown in brain-heart infusion

(BHI) medium (Difco; BD) and Escherichia coli were grown in Luria-

Bertani Medium (LB) medium (Difco; BD). When required,

chloramphenicol and erythromycin were used at final concentra-

tions of 7 mg/ml and 5 mg/ml respectively for L. monocytogenes and

kanamycin, erythromycin and chloramphenicol were used at final

concentration of 50 mg/ml, 150 mg/ml and 35 mg/ml, respectively

for E. coli.

Generation of EGD-e DinlK mutant strain and inlK
over-expressing strains

Generation of DinlK mutant strain. Two ,700 pb

fragments flanking inlK gene were PCR amplified from EGD-e

chromosomal DNA. The primers used for the inlK 59 flanking

fragment were A (59-TTG GAT CCG CTG TAG ATT TCA

CAA AAG-39) and B (59-TAA CAC GCG TAA GTC ATT ATC

CTC TCC ACT C-39), and the primers used for the 39 fragment

were C (59-GAA AAC GCG TAA AAA ACT ATC CGC CCA C-

39) and D (59-TTG GTC CAT GGT TAA GCA TTG CTG

GTG-39). After restriction of the amplified 59 and 39 fragments

with BamHI and MluI, and MluI and NcoI respectively, 59 and 39

fragments were coligated in the thermosensitive plasmid pMAD

[67] digested by BamHI and NcoI, yielding the pMAD-DinlK

plasmid. The sequence was verified by sequencing. This plasmid

was electroporated into L. monocytogenes EGD-e. Independent

colonies were used for allelic exchange in L. monocytogenes wild-type

EGD-e, which was performed as previously described [49],

generating a DinlK isogenic deletion mutant (Table S2). Deletion

of the entire inlK gene was confirmed by PCR amplification and

sequencing.

Generation of InlK over-expressing strains. To express

InlK in L. monocytogenes the pPRT- and pADc- derivative plasmids

were constructed as described below. In the pPRT-inlK plasmid,

inlK was expressed under the control of the promoter region of the

protease gene from Lactococcus lactis subsp. cremoris, which is active

in Listeria [49]. This is a multicopy plasmid which expresses an

erythromycin resistance gene used for cloning selection.

The pADc-inlK plasmid generated as previously described by

Balestrino et al [48] was derived from the integrative pPL2

plasmid, which inserts in the Listeria chromosome at the tRNAArg-

attBB site, thereby avoiding the requirement for antibiotic pressure

to maintain the plasmid and preventing heterogeneity of InlK

expression due to variation in the plasmid copy number.

Figure 3. InlK interacts with the Major Vault Protein. A. Bacterial pull-down of purified GST-MVP with the L. monocytogenes strains WT+pPRT-
empty, DinlK+pPRT-empty, DinlK+pPRT-inlK and WT+pPRT-inlJ. GST-MVP bound to InlK over-expressing bacteria (DinlK+pPRT-inlK) but not to other
bacteria. GST-ScarA was used as control of the specificity of the MVP precipitation by InlK over-expressing bacteria. B. Bacterial pull-down of MVP-GFP
from transfected HeLa cell lysates with the L. monocytogenes strains WT+pPRT-empty, DinlK+pPRT-empty, DinlK+pPRT-inlK and WT+pPRT-inlJ. MVP-
GFP bound to InlK over-expressing bacteria (DinlK+pPRT-inlK) but not to other bacteria. C. Co-immunoprecipitation (Co-IP) of purified InlK (20 mg)
with endogenous MVP of HT29 cells. The right panel shows anti-MVP co-IP performed on HT29 cell lysates. The left panel shows the control anti-MVP
co-IP performed on lysis buffer. D. Detection of MVP recruitment at the surface of InlK over-expressing bacteria. HeLa cells were transfected with
MVP-GFP (green), infected with L. monocytogenes EGD-e wild-type (WT), DinlK or DinlK+pPRT-inlK for 4 h, fixed for fluorescence light microscopy, and
stained with anti-Listeria antibodies (red). Inset regions are magnified. The scale bar represents 1 mm.
doi:10.1371/journal.ppat.1002168.g003
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Figure 4. InlK/MVP interaction occurs in the cytosol, before actin polymerization. A. Detection of MVP recruitment at the surface of
intracellular InlK over-expressing bacteria. HeLa cells were transfected with MVP-GFP (red), infected with InlK expressing Listeria (DinlK+pPRT-inlK) for
4 h, fixed for fluorescence light microscopy. Intra- (only green) and extracellular (cyan = green+blue) bacteria were differentially stained with anti-
Listeria antibody (cf Material and Methods). Inset regions are magnified. Arrows indicate another intracellular bacterium which recruit MVP-GFP. The
scale bar represents 1 mm. The right panel represents the quantification of the intracellular bacteria that recruit MVP (mean%6SEM%) shown in the
left panel. Statistical analyses were performed on the results of 3 independent experiments using the Student’s t test. No significant difference was
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Cell lines and infection
HeLa cells (human epithelial cervix carcinoma; ATCC CCL2),

Jeg3 cells (human placenta choriocarcinoma, ATCC HTB-36)

and RAW 267.4 murine macrophages (ATCC TIB-71) were

grown as recommended by ATCC (Manassas, VA). Cells were

infected with exponentially growing Listeria strains such that the

multiplicity of infection was 50 bacteria per cell (MOI50) for

epithelial cell lines and MOI10 for RAW 267.4 macrophages. After

1 h of infection for epithelial cell lines and 15 min for RAW 267.4

macrophages, cells were washed and treated with 25 mg/ml of

gentamicin. Incubation times were as indicated. All experiments

were performed in serum-free medium. Then, cells were washed

three times with PBS 1X (Difco, BD) and lysed by adding 500 ml of

0.1% Triton X-100. The number of viable bacteria released from

cells was assessed by plating serial dilutions of bacteria on agar

plates.

siRNA experiments
2.56105 RAW 267.4 macrophages per well were plated in 12

wells plates and incubated at 37uC in 10% CO2. 24 h after

plating, cells were treated with 80 nM of either a pool of anti-

mouse MVP siRNA (ON-TARGETplus SMART pool L-049201-

01-005 Mouse MVP, Dharmacon) or control siRNA (ON-

TARGETplus Non-targeting siRNA:1, Dharmacon), using Lipo-

fectamine 2000 (Invitrogen) as recommended by the manufactur-

er. The following day, the medium was changed and the cells were

incubated in complete medium for another 24 hours. Infections

were performed as above-mentioned and the efficiency of siRNA

knock-down was assessed by performing Western-blot on total cell

lysates in each experiment (Figure 6E).

InlK purification
The inlK coding sequence (aa 27–568) was amplified using

primers lmo1290-Fw: 59- GAG TCG GAT CCG GTA TTT GCT

GCA GAG CAAC C-39 and lmo1290-Rev: 59- GAG TCG TCG

ACA GCC TCT TTA CTT GGT TCT G-39. The PCR product

was purified and ligated with pET28b (Novagen) plasmid after

double digestion with BamHI and SalI enzymes. The ligation

product was electroporated in E.coli XL-1 Blue and positive clones

were selected on 50 mg/ml supplemented BHI and sequenced

(BUG 2812). For purification, E.coli BL21(DE3) (Invitrogen) were

chemically transformed with the purified His6-InlK-His6 express-

ing pET28b plasmid. Bacteria were grown in 50 mg/ml supple-

mented LB until OD600 0.6 and IPTG was added at the final

concentration 1 mM for 4 additional hours. Bacteria were lysed

using a French press and the supernatant was recovered. His6-

InlK-His6 purification was performed using TALON His-Tag

Purification Resins (Clontech). Increased concentration of imid-

azole (0–200 mM) in Tris-HCl 20 mM, NaCl 0.5 M (pH = 8)

were used for purification and elution of InlK. The purified

protein was dialysed against Tris-HCl 20 mM, NaCl 0.5 M

(pH = 8) buffer and concentrated using AmiconUltra centrifugal

filter (Millipore).

Antibodies and reagents
The primary antibodies used in this study were anti-actin mouse

monoclonal (mAb) (AC-15; Sigma-Aldrich), anti-LRP mAb (MVP

was also named LRP for Lung resistance protein) (Ref:610512; BD

Biosciences), anti-p62 mAb (Ref:610832, BD Biosciences), anti-

ubiquitin mAb (FK-2, Affiniti), anti-Atg8 (LC3) rabbit polyclonal

(pAb) (Novus Biologicals, Ref:NB100-2331), anti-killed L. monocy-

togenes pAb (R11), anti-live L. monocytogenes pAb (R177). Monoclo-

nal antipeptide antibody that recognizes ActA (A16) was obtained

as previously described [68]. An anti-InlK polyclonal rabbit

antibody (R190) was generated against His6-InlK-His6 recombi-

nant protein (aa 27–568) deleted from its signal peptide and

peptidoglycan-anchoring sequence and affinity-purified on a ECH

Sepharose 4B column (GE Healthcare) coupled with 2.5 mg His6-

InlK-His6 recombinant protein expressed from pET28b-InlK

plasmid as described above. The polyclonal pre-immune serum of

R190 (pre-immune R190) was recovered from rabbits before they

were s.c injected with purified InlK. The secondary antibodies

were Alexa Fluor 488- and 546-conjugated goat anti-mouse and

anti-rabbit, respectively (Molecular Probes) and HRP-conjugated

goat anti-mouse and goat anti-rabbit (AbCys). Alexa fluor 647-

conjugated phalloidin was purchased from Molecular Probes;

DAPI from Roche Applied Sciences; and the Amersham ECL Plus

kit from Ge Healthcare.

The GST-tagged purified recombinant MVP protein was

purchased from Abnova (Ref:H00009961-P01).

Immunofluorescence microscopy
Cells were fixed in 4% paraformaldehyde (PFA) in 1X PBS for

20 minutes at room temperature. Cells were then rinsed in 1X

PBS before incubation in blocking solution (0.5% BSA, 50 mM

NH4Cl in PBS, pH 7.4) containing 0.05% saponin. Cells were

then incubated with the primary antibodies diluted in the blocking

solution for 30 min at room temperature, rinsed 5 times in 1X

PBS and further incubated for 30 minutes with the secondary

antibodies diluted in blocking solution. Where needed, fluorescent

phalloidin was added with the secondary antibodies to label actin.

Cells were then rinsed 5 times in 1X PBS and mounted on glass

coverslip using Fluoromount mounting medium (EMS, PA). The

differential immuno-staining between extra- and intracellular

Listeria was previously described [69]. Samples were analysed

either with a Zeiss Axiovert 135 epifluorescence microscope

connected to a CCD camera or with a Zeiss LSM510 confocal

microscope (Carl Zeiss, Germany). Images were acquired with a

100X oil immersion objective and images were processed using

MetaMorph (Universal Imaging Corp.).

Plasmids
The MVP-GFP plasmid that encodes EGFP fused to MVP C-

terminus has been previously described [70]. To construct MVP-

CFP (BUG 2908) and MVP-Tomato (BUG 2909), the MVP

coding sequence was isolated from the MVP-GFP (BUG 2907)

plasmid by double enzyme digestion (HindIII and BamHI) and

found between the 4 time points. B. Detection of MVP recruitment at the surface of intracytosolic InlK over-expressing bacteria. HeLa cells were
transfected with MVP-tomato (red) and YFP-CBD (green), infected with InlK over-expressing Listeria (DinlK+pPRT-inlK) for 4 h, fixed for fluorescence light
microscopy and stained with phalloidin (blue). MVP positive bacteria were also labeled with YFP-CBD revealing that MVP was recruited by intracytosolic
bacteria after the lysis of the internalization vacuole. Inset regions are magnified. The scale bar represents 1 mm. C. Kinetics of MVP and actin recruitment
at the surface of InlK over-expressing bacteria. HeLa cells were transfected with MVP-tomato (red) and actin-GFP (green), infected with InlK over-
expressing Listeria (DinlK+pPRT-inlK) for 4 h, and prepared for real-time video microscopy. Image series were collected every 15 min for 2 h. The left part
shows an MVP positive bacterium that never recruits actin. The right part shows MVP replacement by actin around the bacterium. No colocalization of
MVP-Tomato and actin-GFP was detected. Time is indicated along the Y axis. The entire image sequence can be viewed as Video S1.
doi:10.1371/journal.ppat.1002168.g004
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ligated in pECFP-N1 and ptdTomato-N1. Briefly, ptdTomato-N1

was constructed by replacing EGFP, from pEGFP-N1 vector

(Invitrogen), by tdTomato, from ptdTomato-LCa vector (BUG

2420) [69]. Plasmid encoding CBD-YFP (BUG 2305) [53], actin-

GFP (BUG 2421), actin-CFP (BUG 2155) and GFP-LC3 (BUG

3046) [71] were described elsewhere. Cells transfections were

performed with FuGENE HD (Roche) as recommended by the

manufacturer.

Bacterial pull down assay
To test the binding of bacteria to GST-MVP, L. monocytogenes

strains were grown in BHI to an OD600 of 1.0, and 1 ml of each

culture was taken for each reaction. Bacterial cells were washed

twice in buffer with 20 mM HEPES pH 7.5, 150 mM NaCl,

resuspended in 1 ml of binding buffer (20 mM HEPES pH 7.5,

150 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, and 0.2% BSA),

and incubated at room temperature on a rotating wheel for

30 min. GST-MVP recombinant protein was added to a final

concentration of 1 mg/ml and samples were incubated with

rotation for an additional hour. Samples were centrifuged and

pellets were washed three times in 20 mM HEPES pH 7.5,

300 mM NaCl, 0.05% Tween 20 and three times in buffer lacking

Tween 20. The final bacterial pellets were resuspended in 20

microliters of 2X sample buffer, boiled for 10 min, and stored at

220uC before migration on 8% SDS/PAGE gels and Western

blotting.

To analyse the binding of bacteria to transfected MVP-GFP

HeLa cell lysates, HeLa cells were grown on 75 cm2 flask, then

transfected with MVP-GFP plasmid 24 h prior to the experiment.

Cells were lysed at 4uC for 10 min in a 1 ml of lysis buffer (Tris-

HCl 50 mM, pH 7.5, NaCl 150 mM, EDTA 2 mM, NP40 1%,

AEBSF 1 mM, Na3VO4 3 mM). Cells were scraped and the

lysates were incubated with rotation for additional 15 min.

Lysates were cleared by 15 min centrifugation at 13 000 g at

4uC. L. monocytogenes strains were grown in BHI to an OD600 of

1.0, and 1 ml of each culture was taken for each reaction.

Bacterial cells were washed twice in lysis buffer and were

resuspended in cell lysate supernatants, mainly corresponding to

cytoplasmic fraction, and incubated at room temperature on a

rotating wheel for 1 hour. Samples were centrifuged to pellet

bacteria, and washed five times in washing buffer (Tris-HCl

50 mM, pH 7.5, NaCl 150 mM, EDTA 2 mM, NP40 0.2%,

AEBSF 1 mM, Na3VO4 3 mM). The final bacterial pellets were

treated as described above.

In each experiments bacterial inoculi were counted to ensure

that an equal number of bacteria were used for pull-down assay.

Co-immunoprecipitation
HT29 (colon epithelial cells, ATCC HTB-38) cells were

cultured to confluence in 75 cm3 flask. Cells were lysed for

10 min at 4uC in 1 ml of lysis buffer (Tris-HCl 50 mM, pH 7.5,

NaCl 150 mM, EDTA 2 mM, NP40 1%, AEBSF 1 mM,

Na3VO4 3 mM). Cells were scraped and the lysates were

incubated with rotation for additional 15 min. Lysates were

cleared by 15 min centrifugation at 13 000 g at 4uC and were

incubated overnight at 4uC with 20 mg of purified InlK. Then, co-

immunoprecipitation was performed using 1 mg of anti-MVP

antibody. After five washes in lysis buffer, samples were

resuspended in 20 microliters of 2X sample buffer, boiled for

10 min, and stored at 220uC before migration on 8% SDS/

PAGE gels and Western blotting.

Stable HEK293-HTP Blue and HEK293-HTP InlK were

constructed as previously described [60]. When necessary cells

were treated with doxycyclin 24 h prior the assay. Co-immuno-

precipitations were performed using anti-MVP antibody as

described above.

Yeast two-hybrid screening
The InlK encoding sequence (aa 27–568) was amplified by

PCR from EGD-e and cloned into pB29 (N-bait-LexA-C fusion)

plasmid. Randomly primed cDNA from human placenta poly(A)

were constructed into a prey plasmid derived from pBTM116.

The two-hybrid screen was performed by Hybrigenics (www.

hybrigenics.com). The DNA inserts of the positive clones were

sequenced to identify the corresponding gene in GenBank

database using a fully automated procedure. Results of the yeast

two-hybrid screening are recapitulated in Table S1.

Immunoblotting
Cells were seeded into 6 well plates and incubated 24 h before

infection. Infections were done as described above. At the

indicated times cells were lysed and lysates were analysed by

Western blot. The immunoblots shown are representative of three

independent experiments. Analysis of immunoblots was performed

using G:Box Gel documentation system (Syngene).

Figure 5. MVP impairs the recruitment of autophagy markers. A. Impaired recruitment of p62 to MVP positive Listeria. HeLa cells were
transfected with MVP-GFP (green), infected with InlK over-expressing Listeria (DinlK+pPRT-inlK) for 4 h, fixed for fluorescence light microscopy, and
stained with phalloidin (blue) and anti-p62 antibody (red). Inset regions are magnified. Arrows indicate independent bacteria The scale bar represents
1 mm. The vast majority of MVP-positive bacteria were completely devoid of anti-p62 labeling (95.162.0%; mean 6 SEM from n = 3 experiments) but
4.962.0% (mean 6 SEM from n = 3 experiments) were stained at one pole with MVP and at the other pole with p62. B. Impaired recruitment of GFP-
LC3 on MVP positive Listeria. HeLa cells were transfected with MVP-tomato (red) and GFP-LC3 (green), infected with InlK over-expressing Listeria
(DinlK+pPRT-inlK) for 4 h, fixed for fluorescence light microscopy, and stained with phalloidin (blue). Inset regions are magnified. The scale bar
represents 1 mm. MVP and/or actin positive bacteria were never recognized by GFP-LC3. Arrows point to bacteria at different steps of the infection
process: 1) InlK over-expressing bacterium is totally covered by MVP; 2) bacterium is partially labeled with MVP (at the poles) and actin (at the center);
3) bacterium is completely covered by actin; 4) bacterium is enclosed in an GFP-LC3 positive autophagosome. C. Kinetics of autophagy escape for
MVP positive Listeria. Jeg3 cells were transfected with MVP-tomato (red) and GFP-LC3 (green), infected with InlK over-expressing Listeria (DinlK+pPRT-
inlK) for 4 h, and prepared for real-time video microscopy. Image series were collected every 5 min for 2 h. Time is indicated along the Y axis. The left
panel shows that the GFP-LC3 membranous aggregate detaches from the MVP positive Listeria. The entire image sequence can be viewed as Video
S2. The right panel shows that the GFP-LC3 membranous aggregate on MVP positive bacteria does not lead to an autophagosome formation,
whereas those bacteria efficiently divided. The entire image sequence can be viewed as Video S3. D. Impaired recruitment of GFP-LC3 and ubiquitin
to MVP positive DactA Listeria. HeLa cells were transfected with MVP-tomato (red) and GFP-LC3 (green), infected with InlK over-expressing DactA
(DactA+pADc-inlK) for 4 h, fixed for fluorescence light microscopy, and stained with anti-ubiquitin antibody (blue) and DAPI (white). Inset regions are
magnified. The scale bar represents 1 mm. E. LC3 levels in infected RAW 267.4 macrophages. Left panel: RAW 267.4 macrophages were infected with L.
monocytogenes EGD (WT), DactA or DactA+InlK for 6 h. Cell total lysates were immunobloted for LC3 and actin. Western blot is representative from 3
independent experiments. Right panel: Quantification of the relative LC3-II level (mean 6 SEM) shown in the left panel. Statistical analyses were
performed on the results of 3 independent experiments using the Student’s t test. P values of ,0.05 were considered statistically different.
doi:10.1371/journal.ppat.1002168.g005
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Murine infection experiments
All experiments were performed according to Institut Pasteur

guidelines for laboratory animal husbandry. For determination of

LD50, groups of 8-week-old BALB/c female mice (Charles River

Laboratory) were injected i.v with increasing concentrations of L.

monocytogenes WT strain or DinlK mutant. LD50 were determined

by the probit method at 10 days after inoculation.

Bacterial growth in mice was determined by injecting 6- to 8-

week-old female BALB/c mice intravenously with a sublethal

bacterial inoculum, 104 CFU. After 24, 48 72 and 96 h of

infection, liver and spleen were dissected in sterile conditions and

the numbers of CFU were determined by plating serial dilutions of

organ (liver and spleen) homogenates on BHI agar medium.

Ethics statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and local animal

welfare bodies, and all animal work was approved by the Institut

Figure 6. MVP-dependent escape from autophagy leads to increased Listeria survival. A. InlK and ActA expression in Listeria strains used
for survival assays. Total lysates of L. monocytogenes EGD-(pADc-GFP), EGD-(pADc-inlK), DactA-(pADc-GFP) and DactA-(pADc-inlK) grown in BHI were
immunoblotted using anti-ActA and anti-InlK antibodies. B. Intracellular survival of EGD-(pADc-GFP), EGD-(pADc-inlK), DactA-(pADc-GFP) and DactA-
(pADc-inlK) in RAW 267.4 macrophages. Statistical analyses were performed on the results of 3 independent experiments using the Student t test. P
values of ,0.05 were considered statistically different and are labeled here as *. C. Intracellular survival of DactA-(pADc-GFP) and DactA-(pADc-inlK) in
MVP-GFP transfected Jeg3 cells. Statistical analyses were performed on the results of 3 independent experiments using the Student’s t test. P values
of ,0.05 were considered statistically different and are labeled here as *. D. Intracellular survival of DactA-(pADc-GFP) and DactA-(pADc-inlK) in MVP-
GFP transfected HeLa cells. Statistical analyses were performed on the results of 3 independent experiments using the Student’s t test. P values of
,0.05 were considered statistically different and are labeled here as *. E. MVP levels in RAW 267.4 macrophages treated with MVP-siRNA. Western
blot is representative from 3 independent experiments. F. Intracellular survival of DactA-(pADc-GFP) and DactA-(pADc-inlK) in MVP knock-down RAW
267.4 macrophages. Statistical analyses were performed on the results of 3 independent experiments using the Student t test. P values of ,0.05 were
considered statistically different and are labeled here as *.
doi:10.1371/journal.ppat.1002168.g006

Figure 7. Model for escape of autophagic recognition for L. monocytogenes expressing InlK. During intracellular growth, cytoplasmic
bacteria are able to escape from autophagy process using two independent virulence factors, ActA and InlK. On the one hand, the recruitment of
VASP, Arp2/3 complex and actin via ActA masks the bacteria from ubiquitination and autophagic recognition. On the other hand, MVP recruitment
via InlK is also able to protect bacteria from ubiquitination and autophagic recognition. In that way, depending on ActA and InlK expression, four
possibilities could be distinguished: (1) When neither ActA nor InlK are expressed, the bacterial ubiquitination is followed by p62 and LC3
recruitment, leading to autophagosome formation around the bacterium. (2) When ActA is expressed (e.g. wild-type bacterium (WT) grown in BHI
before cell infection) it is sufficient for Listeria to escape from autophagy. (3) In contrast, in the absence of ActA, InlK efficiently protects bacterium
against autophagy recognition via MVP recruitment. (4) Finally, when ActA and InlK are co-expressed by the bacterium, InlK rapidly recruits MVP at
the surface of the bacterium. Then, in some instance, ActA replaces InlK leading to a switch of the bacteria disguised from MVP to actin. The model is
partially based on the results of Yoshikawa et al [11].
doi:10.1371/journal.ppat.1002168.g007
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Pasteur animal experimentation committee which comply with

European regulations (directive 2010/63/EU of the European

parliament and of the council of 22 September 2010 on the

protection of animals used for scientific purposes).

Supporting Information

Figure S1 In vitro, in cellulo and in vivo expression of
inlK. A. Coomassie staining of purified InlK recombinant protein

and bovine serum albumine (BSA). B. In cellulo and in vitro

expression of inlK revealed by bioluminescence. Left panel: RAW

267.4 macrophages and HeLa epithelial cells were infected for 4 h

with wild-type L. monocytogenes EGD-e that contain a biolumines-

cent reporter of either inlK promoter [EGD-e-(pPL2-PinlK-

luxABCDE)] or hly promoter [EGD-e-(pPL2-PinlK-luxABCDE)], and

submitted to photon detection with IVIS 100 (Xenogen/Caliper)

system. Right panel: EGD-e-(pPL2-PinlK-luxABCDE) and EGD-e-

(pPL2-PinlK-luxABCDE) were grown in BHI to OD600 1.0 and

submitted to photon detection with IVIS 100 (Xenogen/Caliper)

system. C. In vivo expression of inlK revealed by bioluminescence.

Left panel: Five BALB/c mice were i.v. infected with either EGD-

e-(pPL2-PinlK-luxABCDE) or EGD-e-(pPL2-PinlK-luxABCDE). Each 24 h

mice were anesthetized and submitted to photon detection with

IVIS 100 (Xenogen/Caliper) system. Right panel:Quantification

of the CFU number recovered from livers and spleens of infected

mice, 72 h post infection. NS = No significant difference.

(TIF)

Figure S2 InlK interacts with MVP. A. Bacterial pull-down

of MVP-GFP from transfected HeLa cell lysates with the L.

monocytogenes strains EGD DactA-(pADc-GFP), EGD DactA-(pADc-

inlK) and EGD-e DinlK-(pPRT-inlK). MVP-GFP bound to InlK

over-expressing bacteria but not to other bacteria. B. Co-

immunoprecipitation of InlK and endogenous MVP in stable

HEK293 cells. Control HEK293 (HEK293-HTP-Blue) and InlK

expressing HEK293 (HEK293-HTP-InlK) were treated by

doxycycline to induce InlK expression 24 h prior of co-

immunoprecipitation with anti-MVP antibody.

(TIF)

Figure S3 InlK/MVP interaction occurs in the cytosol,
independently of actin polymerization. A. Scheme of

CBD-YFP recruiting bacteria during L. monocytogenes intracellular

cell cycle. The image is based on Henry et al results [44]. B.

Detection of MVP recruitment at the surface of InlK over-

expressing bacteria that do no recruit actin. HeLa cells were

transfected with MVP-GFP (green) and actin-CFP (yellow),

infected with InlK over-expressing Listeria (DinlK+pPRT inlK)

for 4 h, fixed for fluorescence light microscopy, and stained with

anti-InlK (blue) and anti-ActA (red) antibodies. MVP-GFP and

actin-CFP and their respective bacterial interactors, InlK and

ActA, are never co-recruited Inset regions are magnified. Inset

region 1 represents an MVP-GFP positive bacterium which is

also labeled for InlK but not for actin-CFP and ActA.

Opposingly, the inset 2 represents a bacterium that recuits

actin-CFP which is also labeled for ActA, but not for MVP-GFP

and InlK. The scale bar represents 1 mm. C. Detection of MVP

recruitment at the surface of intracytosolic InlK over-expressing

bacteria. HeLa cells were transfected with MVP-CFP (red) and

YFP-CBD (green), infected with InlK over-expressing Listeria

(DinlK+pPRT inlK) for 4 h, fixed for fluorescence light microscopy

and stained with phalloidin (blue). MVP positive bacteria were

also labeled with YFP-CBD revealing that MVP was recruited by

intracytosolic bacteria after the lysis of the internalization

vacuole. Inset regions are magnified. The scale bar represents

1 mm. D. Detection of MVP recuitment at the surface of

intracytosolic DactA and InlK over-expressing DactA Listeria. HeLa

cells were co-transfected with MVP-tomato (red) and CBD-YFP

(green), infected with DactA or DactA-(pADc-inlK) for 4 h, and

fixed for fluorescence light microscopy. Inset regions are

magnified. The scale bar represents 1 mm. The percentage of

intracytosolic DactA over-expressing InlK having recruited MVP

at 4 h post-infection was 88.3612.7% versus no recuitment for

DactA.

(TIF)

Figure S4 MVP and autophagy markers do not co-
localize. A. Impaired recruitment of p62 to MVP positive Listeria.

HeLa cells were transfected with MVP-GFP (green), infected with

InlK over-expressing Listeria (DinlK+pPRT inlK) (left panel) or

DinlK Listeria (right panel) for 4 h, fixed for fluorescence light

microscopy, and stained with phalloidin (blue) and anti-p62

antibody (red). Inset regions are magnified. Arrows indicate

independent bacteria The scale bar represents 1 mm. The vast

majority of MVP-positive bacteria were completely devoid of anti-

p62 labeling (95.162.0%; mean 6 SEM from n = 3 experiments)

but 4.962.0% (mean 6 SEM from n = 3 experiments) were

stained at one pole with MVP and at the other pole with p62. B.

Polar recruitment of GFP-LC3 to MVP positive Listeria. HeLa cells

were transfected with MVP-tomato (red) and GFP-LC3 (green),

infected with InlK over-expressing Listeria (DinlK+pPRT inlK) for

4 h, fixed for fluorescence light microscopy. Four different bacteria

are shown. The scale bar represents 1 mm. C. Quantification of

MVP and LC3 recruitment at the surface of DactA overexpressing

InlK (mean%6SEM%). Quantifications correspond to the data

represented in Figure 5D. The percentages MVP+/LC3+
bacteria, MVP+/LC3-, MVP-/LC3+ and MVP-/LC3- were

88.6612.8%, 0.060.0%, 8.269.3% and 3.163.5% respectively.

Statistical analyses were performed on the results of 3 independent

experiments using the Student’s t test.

(TIF)

Table S1 L. monocytogenes strains used in this study.

(DOC)

Table S2 Results of the yeast two-hybrid screening. The

L. monocytogenes wild-type [72] and the DactA [73] were previously

published.

(DOC)

Video S1 Kinetics of MVP and actin recruitment at the
surface of InlK over-expressing bacteria. HeLa cells were

transfected with MVP-tomato (red) and actin-GFP (green),

infected with InlK over-expressing Listeria (DinlK+pPRT-inlK) for

4 h, and prepared for real-time video microscopy. Image series

were collected every 15 min for 2 h.

(AVI)

Video S2 Kinetics of autophagy escape for MVP positive
Listeria. Jeg3 cells were transfected with MVP-tomato (red) and

GFP-LC3 (green), infected with InlK over-expressing Listeria

(DinlK+pPRT-inlK) for 4 h, and prepared for real-time video

microscopy. Image series were collected every 5 min for 2 h. The

video shows that the GFP-LC3 membranous aggregate detaches

from the MVP positive Listeria.

(AVI)

Video S3 Kinetics of autophagy escape for MVP positive
Listeria. Jeg3 cells were transfected with MVP-tomato (red) and

GFP-LC3 (green), infected with InlK over-expressing Listeria

(DinlK+pPRT-inlK) for 4 h, and prepared for real-time video

microscopy. Image series were collected every 5 min for 2 h. The
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video shows that the GFP-LC3 membranous aggregate on MVP

positive bacteria does not lead to an autophagosome formation,

whereas those bacteria efficiently divided.

(AVI)
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