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Abstract

Genome-Wide Association Studies are powerful tools to detect genetic variants associated with diseases. Their results have,
however, been questioned, in part because of the bias induced by population stratification. This is a consequence of
systematic differences in allele frequencies due to the difference in sample ancestries that can lead to both false positive or
false negative findings. Many strategies are available to account for stratification but their performances differ, for instance
according to the type of population structure, the disease susceptibility locus minor allele frequency, the degree of
sampling imbalanced, or the sample size. We focus on the type of population structure and propose a comparison of the
most commonly used methods to deal with stratification that are the Genomic Control, Principal Component based
methods such as implemented in Eigenstrat, adjusted Regressions and Meta-Analyses strategies. Our assessment of the
methods is based on a large simulation study, involving several scenarios corresponding to many types of population
structures. We focused on both false positive rate and power to determine which methods perform the best. Our analysis
showed that if there is no population structure, none of the tests led to a bias nor decreased the power except for the Meta-
Analyses. When the population is stratified, adjusted Logistic Regressions and Eigenstrat are the best solutions to account
for stratification even though only the Logistic Regressions are able to constantly maintain correct false positive rates. This
study provides more details about these methods. Their advantages and limitations in different stratification scenarios are
highlighted in order to propose practical guidelines to account for population stratification in Genome-Wide Association
Studies.
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Introduction

Genome-wide association studies (GWAS) have become a

widely used approach for gene mapping of complex diseases.

With the development of high throughput genotyping technologies

many markers are available to conduct these studies. The most

common study design is the case-control design using unrelated

individuals. The relevance of the results of such large scale genetic

studies is however questioned. Indeed certain biases arise when

conducting a GWAS, leading to false discoveries. As a conse-

quence, only few associations are consistently and convincingly

replicated [1]. There can be many causes to such spurious findings

and non-replications [2–4]. It is broadly considered that failure to

account for the bias induced by population stratification is one of

them. This phenomenon occurs when the sampling has been made

within non genetically homogeneous populations, i.e. there are

systematic differences in allele frequencies due to ancestry and the

baseline disease risk are different between the actual subpopula-

tions. This can lead to finding spurious associations or to missing

genuine ones [5–8]. Accounting for population stratification has

nowadays become a necessary step in the conduct of a GWAS,

especially with the development of very large studies such as the

ones undertaken by international consortia. These studies indeed

gather many cohorts of cases and controls, not always matched,

with different ancestries.

The most used association test to detect an association is

Armitage’s Trend test. This test statistic follows a x2 distribution

under the null hypothesis of no association. In case of population

stratification, this distribution is inflated and the test statistic

follows a non-central x2 distribution. Several main approaches

exist to account for population stratification in GWAS: Genomic

Control [9,10], Principal Component Analysis (PCA) based

methods [11,12], Regression models [4,13], and Meta-Analyses.

Genomic Control aims at correcting the Trend test statistic

inflated null distribution by estimating an inflation factor, usually

called l, using many markers. In practice we usually consider that

a l inferior to 1.05 indicates that there is no stratification [14]. The

main assumption of this method is that the inflation factor is the

same for all markers. PCA-based methods use markers to define

continuous axes of variation, called principal components, that

reduce the data to few variables containing most of the

information about the genetic variability. These axes often relate

the spatial distribution of the ancestries of the samples. Using such

methods, Price et al. propose an association test to account for
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stratification. It is implemented in the software Eigenstrat [11]. In

practice, it is also common to use the principal components to

adjust the results of the classical association test to correct for

stratification. These models are Adjusted Logistic Regression

models and other adjustments such as on the discrete population

labels can be used. Another possible approach to deal with

population stratification is to conduct the analyses within

subpopulations considered homogeneous and to combine the

results with Meta-Analysis methods, such as Fisher’s or Stouffer’s

Z-score methods [15]. It is also possible to use Structured

Association methods to work around the stratification issues

[16,17]. These approaches aim at inferring the structure of the

population using parametric models. The software Structure

proposes this sort of approach [16]. A corresponding association

test is available in the software Strat [18] but it is not as often

utilized in practice. Note that other methods accounting for

stratification, less used in practice, can be consulted in [19–27].

The potential of each approach to correct for population

stratification depends actually on many factors such as the degree

of stratification or the degree of sampling imbalance. This

corresponds to situation where the proportions of cases and

controls are not the same within the subpopulations. Three types

of population structures can be highlighted [26]: discrete

structures, admixed populations and hierarchical structures.

Discrete structures correspond to cohorts composed of several

discrete populations (e.g. African and Caucasian cohorts).

Admixture structures pertain to cohort where the samples have

admixed ancestries (e.g. African American). Hierarchical struc-

tures combine both discrete and admixture structures. The type of

population structure is a very important parameter as it has a

variable influence on all the methods, rendering them more or less

efficient.

Many reviews and comparison articles looking at approaches

to account for population stratification examined the potential of

the methods [14,28–32]. They focused on certain parameters

affecting the stratification such as the sampling imbalance, the

minor allele frequency of the disease susceptibility locus or the

sample size. Most of them did not however exhaustively

considered the different types of population structures. The study

that we propose in this paper carefully analyzes this very

parameter. We propose a comparison of the mainly used methods

by considering a large panel of stratification scenarios corre-

sponding to the different types of population structures. Our

study differ from the recent comparison proposed in [32] by the

methods considered and the type of simulations conducted. In

our study numerous stratified datasets are simulated based on real

data so that the structures of the population is well controlled and

the data are similar to the ones used in real situations. We are

interested in determining which methods tend to perform well, in

term of false positive rate and power, under various situations.

More precisely we aim at providing practical indications

regarding which method(s) should be used with a given structure

of the population as they account properly for the stratification

bias. We address these questions for unstructured populations,

admixed populations, discrete and hierarchical ones. Also, we

propose a solution for situations where the sampling design has

led to subpopulations only composed of cases or controls that

haven’t been genetically matched.

Materials and Methods

First, we present the different methods that we decided to

compare. Then we describe our process to simulate genetic data

under various stratification scenarios. We provide precisions on

the comparison strategy as well, i.e. how we estimated the

statistical indicators that are the false positive rates and powers of

the methods.

A large panel of strategies compared
We decided to compare the performances of six broadly used

strategies to account for stratification. First, we focused on the

Genomic Control (GC) [9] and on the test proposed by Price et al.

implemented in Eigenstrat (Eig) [11]. Then, we included adjusted

Logistic Regressions (Reg). A large number of types of adjustments

can be considered. We decided to focus on the mainly used in

practice: adjustment on the five first principal components

resulting from a PCA (Reg PCs), adjustment on the real

population labels when this information is precisely known (Reg

Real Pop) and adjustment on estimated population labels (Reg Est

Pop). These latter labels were estimated using the method of Lee

et al. [33]. We also studied one Meta-Analysis approach based on

Fisher’s score (Meta). Finally, we considered Armitage’s Trend

test, that does not account for stratification, as a reference to assess

the level of stratification in the data.

Several additional adaptations of the Genomic Control,

Regressions and Meta-Analysis where investigated as well. Since

their results did not turned out to be significantly different from the

original approaches, we will only consider them in the Discussion

section. The six main methods investigated and their alternatives

are detailed in Method S1, and a R script is available on demand.

Simulation model
Our simulation model follows approaches previously used

[34–36] and is based on the diplotype frequencies of real data

sets. These frequencies are used as an empirical distribution of

the range of possible diplotypes. Simulating this way leads to

genetic patterns similar to those found in real data and therefore

allows us to finely control the type of population structure. That

way, we first simulate several datasets corresponding to the

subpopulations of origin. Then we randomly mate each

subpopulations and apply a genetic model to generate diseased

and healthy samples. To simulate discrete subpopulations, the

populations of origin are independently mated and for admixed

populations we mate these populations with each other. The

final subpopulations simulated are mixed together to produce a

cohort of individuals with population structure. The type of

population structure depends on the original datasets selected

and the parameters of the model.

The genetic model is based on Wright’s model [37] applied to a

bi-allelic marker with susceptibility alleles A and a. Let p0, p1 and

p2 be the frequencies of genotypes aa, aA and AA defined by

p0 ~ p2
azFpa(1{pa)

p1 ~ 2pa(1{pa){2Fpa(1{pa),

p2 ~ (1{pa)2zFpa(1{pa)

8><
>:

where pa is the minor allele frequency of the SNP and F is the

consanguinity coefficient that we consider null hereafter so that the

Disease Susceptibility Locus (DSL) is under Hardy-Weinberg

equilibrium.

We then want to compute the genotype frequencies of the DSL

for cases and controls pDi
and pHi

, i = 0, 1 or 2, using the disease

prevalence Kp, the penetrances f0, f1 and f2 of the genotypes and

the mode of inheritance of the disease. The main modes of

inheritance can be defined by considering the relative risk

RRi~
fi

f0
, i = 1, 2 by
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Recessive RR1~1

Additive RR1~
RR2z1

2

Multiplicative RR1~
ffiffiffiffiffiffiffiffiffi
RR2

p

Dominant RR1~RR2

8>>>>><
>>>>>:

:

Using f0~Kp=(p0zRR1:p1zRR2:p2), f1~RR1:f0 and

f2~RR2:f0 and the Bayes formulas we can easily derive the

desired frequencies.

(pD0
,pD1

,pD2
) ~

f0:p0

Kp

,
f1:p1

Kp

,
f2:p2

Kp

� �
,

(pH0
,pH1

,pH2
) ~

(1{f0):p0

Kp

,
(1{f1):p1

Kp

,
(1{f2):p2

Kp

� �
:
ð1Þ

Data sources and stratification scenarios
We simulated our data according the model described in the

previous section and using the HapMap (http://hapmap.ncbi.

nlm.nih.gov/downloads/genotypes/2010-08_phaseII+III) popula-

tions. 5,500 SNPs, with minor allele frequencies higher than 5%,

were randomly chosen in equal number on each of the non sexual

chromosomes. We only considered SNPs present on an Affymetrix

GeneChip Human Mapping 500K so that these SNPs are those

commonly used in GWAS. Then, for each of our stratification

scenario, some of the HapMap populations were used to simulate

our final data with 5,500 SNPs and one DSL following an additive

model and randomly located among the available loci.

We aimed at covering several situations as it may be harder to

account for stratification with closely related populations than with

very distant ones. Therefore, to get an exhaustive assessment of the

strategies we considered several scenarios corresponding to

different types of population structure: no structure, admixed

populations, discrete structures with populations more or less

genetically close, and a hierarchical structure. The proportions of

cases and controls simulated are different in the subpopulations so

that the design is not a simple random sampling. This and the

differences between the populations ascertain that we induced and

controlled a bias due to population stratification.

The different scenarios that we considered are described

hereafter and graphically represented in Figure 1. In addition,

Table S1 gives the simulation parameters for these scenarios.

Figure 1. Population structures of the different scenarios. Samples are represented on the first two principal components (PCs) estimated on
the genotype data.
doi:10.1371/journal.pone.0028845.g001
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Scenario 1: One homogeneous population. With only one

such population there is no stratification. The idea is to determine

if the methods accounting for stratification are reliable when there

are applied to a non-stratified population. Individuals from Han

Chinese in Beijing, China (CHB) are used to simulate these data.

Scenario 2: Admixture. We considered an admixture of two

originally close populations: Chinese in Metropolitan Denver,

Colorado (CHD) and Han Chinese in Beijing, China (CHB) are

used.

Scenario 3: Two fairly distant discrete populations. The

two relatively distant discrete populations are Utah residents with

Northern and Western European ancestry from the CEPH

collection (CEU) and Toscans in Italy (TSI).

Scenario 4: Two very distant discrete populations. The

two very distant discrete populations are Han Chinese in Beijing,

China (CHB) and Utah residents with Northern and Western

European ancestry from the CEPH collection (CEU).

Scenario 5: Hierarchical structure. The hierarchical

structure is composed of five populations: Yoruba in Ibadan,

Nigeria (YRI), Luhya in Webuye, Kenya (LWK), Han Chinese in

Beijing, China (CHB), Gujarati Indians in Houston, Texas (GIH)

and Utah residents with Northern and Western European ancestry

from the CEPH collection (CEU).

Scenario 6: Varying proportions of cases/controls. This

scenario uses the same populations as scenario 4 but with a varying

proportion of cases between the two subpopulations. The

proportion of controls is fixed and equal in the two populations

while the proportion of cases is taken with a (r, 1 - r) ratio, with r

varying. When this proportion is of 0 then all the cases are in the

CEU population that is the less affected by the disease. When it is

of 1 then all the cases are in the most affected population (CHB).

Our goal is to observe the behavior of the methods in function of

the degree of sampling imbalance and to look at whether they tend

to perform well in the extreme case where all the cases come from

only one of the populations. In this latter case, it is also of interest

to determine if the best solution to account for population

stratification is not to consider only the cohort composed of both

cases and controls by excluding the samples that are not matched.

The answer to this issue is particularly useful for large studies

where controls with different ancestries are used to match the

genotyped cases.

Comparison strategy
We used a statistical framework to analyze the potential of the

main approaches investigated that focuses on their false positive

rates, also referred to as type-I-error rates, and powers. A statistical

definition of these notions is provided in Method S2.

Note that population stratification is said to lead to spurious

associations but also to mask true associations. This second effect is

more tricky to observe but the statistical power can be useful to do

so. As it corresponds to the proportion of SNPs that have been

detected associated when they were, a loss of power between a

situation with no stratification and a situation with stratification

means that SNPs that used to be correctly detected in the first

situation are no longer in the second. This corresponds to missing

associations.

Both false positive rate and power can be expressed in function

of the test statistic. However the distribution of this statistic is not

always obvious so we prefer using the p-values instead. Thus the

false positive rate becomes PH0
(p{valueƒa) and the power

PH1
(p{valueƒa). In our simulations, each dataset is simulated

with one disease susceptibility locus, for which the degree of

association is controlled, and 5,500 additional SNPs to assess the

population structure. By placing ourselves under the null

hypothesis, of no association, then under the alternative

hypothesis, of association, we can respectively assess both false

positive rate and power of the methods. To do so, we use a Monte-

Carlo method and assess the same quantity

#(fp{valueiƒa,i~1 . . . Bg)
B

,

where # represents the cardinal function and B the number of

simulated datasets.

All the DSL simulated, whether it is under the null hypothesis or

the alternative, are differentiated. This implies that for all the

population structures, one DSL is simulated per subpopulation.

These DSL are excluded of the mating process the populations are

then submitted to to reach the disired type of structure. That way,

the properties of the DSL such as the relative risk are conserved

whatever populaltion structure is simulated.

Note that only methods with equivalent false positive rate can

be compared in term of power. This implies that a method with

high power is no better than one with low power if the first one did

not maintain a correct false positive rate.

We simulated data for several DSL relative risks ranging from

1 (no association) to 2.5 (strong association). For each relative risk

a number of B = 2,000 datasets were simulated to get an accurate

estimation of the statistical quality indicators. We genuinely

estimated the indicators with this process as we controlled the

degree of association through the simulation model. Note that

there is an equivalence between the false positive rate and the

power when the relative risk is of 1. A level a~5% was chosen for

all the tests. Data simulations and comparison of the strategies

were performed using the software R (http://cran.r-project.org).

Results

The results of the comparison are presented in this section for

each scenario (Figures 2 to 7). Table S2 summarizes the estimations

of l for the different scenarios. These estimations were conducted

according to the methodology indicated in Method S1 by

considering the median of Armitage’s trend test statistics.

Scenario 1: One homogeneous population
In the first scenario, with an unstructured population, the

estimation of l was 1.002 confirming that there was stratification.

Figure 2-A presents the false positive rate of the methods. We

noted that all of the methods had a correct false positive rate, lying

within the 95% confidence bounds. Eigenstrat and Regressions

adjusted on principal components (Reg PCs) were however the

closest to the 5% level.

Figure 2-B provides the power curves of the different methods in

function of the increasing relative risks. Powers of all the strategies

were equivalent in this scenario except for Meta that was less

powerful. One can note that there was no difference between an

adjustment on a the real population labels and on the estimated

ones. This was due to the fact that the population was so

homogeneous that the clustering algorithm considered all samples

to be in a unique population.

When there was no stratification, all the methods performed

well and did not induce any bias. Besides, except for the Meta-

Analysis, there was no loss of power when adjusting the results for

stratification compared to the non-adjusted approach.

Scenario 2: Admixture
This scenario corresponded to an admixture of two close

populations. The estimation of l was 1.009 which meant that

Population Stratification in Genetic Studies
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according to the Genomic Control there was almost no

stratification.

However, one can observe that there was still a real bias

induced by population stratification as the Trend test had a false

positive rate significantly higher than 5% (Figure 3-A). This was

also quite logically the case of the Genomic Control as the

variance inflation factor was close to 1.

Eigenstrat and Regressions adjusted principal components (Reg

PCs) had false positive rates reaching the upper bound of the

confidence interval. Regressions adjusted on the estimated popu-

lation labels (Reg Est Pop) led to a high number of false positive

findings. This might have been due to the fact that the clustering

algorithm used was not accurate enough to determine the correct

population labels of the individuals in the case of an admixture.

The Regression adjusted on the real population labels (Reg Real

Pop) and the Meta-Analysis had a false positive rate of almost 5%.

The analysis of the power curves (Figure 3-B) showed that the

Trend test, the Genomic Control and the Regression adjusted on the

estimated population labels (Reg Est Pop) had the highest powers.

This was however due to the inflation of the false positive rate, also

affecting the power, and therefore did not mean that these methods

were more powerful. Eigenstrat and the Regression adjusted on the

principal components were equivalent and outperformed the other

methods in term of power. Regression adjusted on the real population

labels (Reg Real Pop) and Meta were the less powerful method.

In an admixture scenario, so with a very fine population

structure, only Eigenstrat, Reg (PCs) and Reg (Real pop) were

correctly correcting for stratification.

Scenario 3 and 4: Discrete structures
The third scenario corresponded to two populations closely

related but that were differentiable. The estimated l was 1.065

indicating a slight stratification according to the Genomic Control.

Again the inflation factor was under-estimated as the false positive

rate of GC was very high such as for the Trend test. All the other

methods had a correct false positive rate (Figure 4-A).

Figure 2. Scenario 1 (One homogeneous population). A - False positive rates of the methods. The plain black line represents the 5% level at
which the tests were conducted. The dashed black lines are the 95% confidence intervals for this level. B - Powers of the methods in function of the
increasing relative risk.
doi:10.1371/journal.pone.0028845.g002
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On Figure 4-B, the power of Eigenstrat and the Regression

methods were similar and higher than that of the Meta-Analysis.

In a situation where the populations were quite close it appeared

that Eigenstrat and Regression based methods were the best

solutions to account for stratification.

In scenario 4, the estimation of l was 2.711 which denoted

quite an important structure of the population. In such a

situation , the Trend test was very biased and had a highly

inflated false positive rate (Figure 5-A). On the other hand, the

Genomic Control behaved differently and became too conser-

vative. All Regression methods were equivalent and performed

as well as Eigenstrat both in term of false positive rate and

power. Again the Meta-Analysis was the less powerful strategy

(Figure 5-B).

Scenario 5: Hierarchical structure
Scenario 5 pertained to a more complex population structure.

There were five populations and a hierarchical structure leading to

an estimation of l of 9.571. It was striking how the Trend test

deviated from the 5% level by reaching almost 100% of false

positive findings under the null assumption. On the contrary, the

Genomic Control was very conservative due to the high value of l.

Eigenstrat had an inflated false positive rate and was no longer

equivalent to the adjusted Regressions. In addition, we observed

that Meta was too conservative in this scenario (Figure 6-A).

The Genomic Control was not powerful at all as it did not

detected any association. Powers of all the Logistic Regressions

were slightly smaller than that of Eigenstrat but this was due to the

difference in false positive rates (Figure 6-B).

Figure 3. Scenario 2 (Admixture). A - False positive rates of the methods. The plain black line represents the 5% level at which the tests were
conducted. The dashed black lines are the 95% confidence intervals for this level. B - Powers of the methods in function of the increasing relative
risk.
doi:10.1371/journal.pone.0028845.g003
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In such a situation, only Logistic Regressions were capable of

keeping correct false positive rates while reaching good powers.

Scenario 6: Varying proportions of cases/controls
The sixth scenario corresponded to the same population

structure as the fourth but with a varying sampling design. Figure

S1 presents the evolution of l with the proportion of cases.

We observed that the Trend test had a correct false positive rate

only when the sampling design was balanced between the two

populations otherwise it was inflated. The opposite trend was

noticeable for the Genomic Control (being quickly too conserva-

tive) and Meta. On the other hand, whatever the sampling design,

Regressions and Eigenstrat globally maintained a correct false

positive rate (Figure 7-A). When the sampling was very

imbalanced however, Eigenstrat tended to deviate from the 5%

level.

The analysis of the power (Figure 7-B) showed us that powers of

Regressions and Eigenstrat were equivalent which confirmed the

result that we previously found in scenario 4.

An interesting fact was to observe the loss of power of the Trend

test between the extreme situations. This confirmed that

population stratification can lead to missing genuine associations.

Figure 4. Scenario 3 (Two fairly distant discrete populations). A - False positive rates of the methods. The plain black line represents the 5%
level at which the tests were conducted. The dashed black lines are the 95% confidence intervals for this level. B - Powers of the methods in function
of the increasing relative risk.
doi:10.1371/journal.pone.0028845.g004
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Quite logically we also retrieved the fact that if individuals are

sampled in a very affected population then the power was more

important than in other cases.

It is quite common in GWAS to include patients having

different ancestries than the original cohort. This can be done to

get larger samples or to find controls corresponding to the typed

cases. A larger sample size implies a gain in power, however if

ancestries are different, population stratification could generate a

bias reducing the power. If one of the group of patients with a

different ancestry than the rest of the cohort is only composed of

controls (or cases), one practical question often discussed is

whether it is better to exclude this cohort of the study or to keep it

and account for stratification.

We answered this question by comparing the powers of the

methods when all the patients were kept and when only the cohort

composed of both cases and controls was kept. We focused only on

Regressions and Eigenstrat that were the methods able to correctly

correct for stratification. Whether all the cases were in the most

affected or in the less affected population, we observed that the

powers were the same whether the cohort composed of controls

only was excluded or not. The power was not more important with

more samples because of the bias due to stratification. However

Figure 5. Scenario 4 (Two very distant discrete populations). A - False positive rates of the methods. The plain black line represents the 5%
level at which the tests were conducted. The dashed black lines are the 95% confidence intervals for this level. B - Powers of the methods in function
of the increasing relative risk.
doi:10.1371/journal.pone.0028845.g005
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this bias was taken into account by the two methods so that it was

not necessary to exclude a part of the patients (Figure S2).

Computational considerations
In term of execution time, the investigated methods are

relatively equivalent. The Genomic Control is relatively fast as it

imply to test two times each SNP. Adjusted Regressions and

Eigenstrat are quite equivalent when principal components are

used to adjust the results. The necessary time to adjust on

estimated population labels depends on the algorithm used to infer

the population structure and can be quite fast or very time

consuming.

It has been pointed out that Linear Regression can be a

practical alternative to Logistic Regression as it is computationally

faster, especially when there are covariates included in the models

[38]. We analyzed this method as well in our study (data not

shown). Linear and Logistic Regression methods seemed to be

perfectly equivalent in most of the scenarios, however it appeared

that the use of a dichotomous outcome such as the disease status in

the Linear Regression is no longer a viable options in hierarchical

Figure 6. Scenario 5 (Hierarchical structure). A - False positive rates of the methods. The plain black line represents the 5% level at which the
tests were conducted. The dashed black lines are the 95% confidence intervals for this level. B - Powers of the methods in function of the increasing
relative risk.
doi:10.1371/journal.pone.0028845.g006
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populations (scenario 5). We therefore recommend to keep using

the Logistic Regression instead.

Discussion

Genome-Wide association studies are more and more used. The

problem of population stratification is however a serious

shortcoming for these studies, raising doubts about their findings.

To counteract this effect many approaches have been developed to

account for stratification but it is not always clear in which

situations they should be applied. Several articles have been

published studying the performances of the different methods

when some parameters influencing the stratification bias such as

the minor allele frequency of the susceptibility locus, the degree of

sampling imbalanced, the number of markers or the sample size

vary [14,28–32]. We have decided to focus here on a parameter

that has not been studied in depth and is yet quite important that is

the type of population structure itself. Indeed, one can wonder

whether it is a good thing to adjust for stratification when there is

no structure of the population, or whether reducing the bias is

Figure 7. Scenario 6 (Varying proportions of cases/controls). A - False positive rates of the methods. The plain black line represents the 5%
level at which the tests were conducted. The dashed black lines are the 95% confidence intervals for this level. B - Evolution of the power (with RR = 2)
of the methods in function of the proportion of cases in pop1. Note that all the Regression methods being equivalent for this scenario, we summarize
the results for these methods under the name ‘Reg’ only.
doi:10.1371/journal.pone.0028845.g007
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easier with distant or close populations. Also the relative

performances of the most commonly used approach under these

scenarios may vary differently. We compared these approaches

through simulation studies by considering several scenarios of

population structures. A particularity of our study is that to do so,

we used a robust simulation model that is based on real diplotype

data so that we simulated datasets similar to the ones used in real

situations.

We first determined that if there is no structure in the

population, all of the studied methods correcting for stratification

performed well both in term of false positive rate and power

reflecting trends previously reported [21,22,32]. Given this result

and since it is quite difficult to be entirely sure that the population

is sufficiently homogeneous, we recommend to always apply a

correction for the stratification bias.

Concerning the type of population structure, our study also

pointed out the fact that as soon as there is an admixture in the

structure (scenarios 2 and 5) then it is more delicate to correct the

bias than with discrete populations.

We then highlighted methods that did not provide a good

correction for stratification. First, we showed that the Genomic

Control failed to properly account for stratification in most of the

situations. An interesting observation is that this method was not

always affected in the same manner by the stratification. For

genetically close populations the variance inflation factor l was not

a good indicator of the stratification level as it indicated almost no

structure. This means that the Genomic Control was anti-

conservative. On the other hand, with relatively distant popula-

tions, this factor was overestimated, and therefore the false positive

rate below the 5% level, rendering the Genomic Control a too

conservative method. We therefore confirm the conservativeness

of the Genomic Control reported in many situations [28,29,39].

We also studied an alternative version of the Genomic Control,

where the estimation of l was based on the mean of the test

statistics and instead of on the median. This version provided the

same results as the one we presented in this paper.

Second, in most of the scenarios we noted than the Meta-

Analysis method was less powerful than the other alternatives. If it

is however required to use a Meta-Analysis method then Fisher’s

method appeared as the best option. Indeed, we compared the

Fisher and the Z-score methods and found that Fisher’s always had

a correct false positive rate and a better power.

We therefore do not recommend the use of the Genomic

Control and Meta-Analyses methods to get a proper correction for

stratification.

Note that it was not possible in our study to include the test

implemented in the software Strat which is based on the results of

Structure as the underlying algorithms are computationally very

intensive [14,29]. This rendered difficult to compare the test to the

other methods in a robust manner. Even though it has been shown

that Strat can provide a reasonable correction for stratification

[29], its high computational cost and complexity would lead us not

to consider this test to account for stratification when conducting a

GWAS.

Our results pointed out that the test implemented in the

software Eigenstrat is a good solution to account for

stratification with admixed or discrete structure which confirms

the findings of [29,32,40]. On the other hand, with a

hierarchical structure (scenario 5), we found that Eigenstrat

had a false positive rate deviating from the 5% level which has

been reported by previous studies [26,32]. In the recent

comparison study [32], no hierarchical structure was investi-

gated however the inflated false positive rate of Eigenstrat was

reported for stratification scenarios including several popula-

tions or admixtures. Given that Regressions were able to

correct the bias in a satisfactory way in this scenario it implies

that Eigenstrat and the Logistic Regressions adjusted on the

principal components are not always equivalent. This results is

also outlined in [32].

Note that we included 5 principal components for the

regression adjustements and Eigenstrat. It is also of interest to

look at the quality of the corrections if more or less components

are considered. Additional simulations considering 1, 2, 5, 10, 20

or 50 components were conducted. They show that for a

structure relatively simple to infer (scenario 4), the number of

principal components included in the models do not have an

influence on the adjustements. Both the logistic regression and

Eigenstrat have correct false positive rates and comparable

powers (Figure S3). When the structure of the population is more

complex (scenario 5), more components are needed to keep a

reasonable false positive rate (Figure S4). The logistic regression

has an inflated false positive rate if only one component is used

and a better power if more than two components are used. It is

interesting to note that Eigenstrat has a false positive rate that is

no longer outside of the condifence interval for the 5% level when

many components are used (more than ten in our simulations).

This however goes along with a consequent loss of power. This

might be the reason why Price et al. advised a default number of

ten components when using this method [11]. Logistic regression

is therefore more stable than Eigenstrat to the number of

principal components used.

We also showed that the most efficient methods to account for

stratification make use of Logistic Regressions. In all of the

situations studied here these methods were able to maintain a

proper false positive rate and provided a good power to detect

associations.

Concerning the different types of adjustments, one has to note

that the Regressions adjusted on the real population labels may

not be applicable in every situations since an accurate information

about the sample ancestries is not always available. If the

information available is not accurate enough then estimated labels

may be more informative about the homogeneous subgroups and

should be used instead [41].

We also investigated alternative Regression based approaches

that were not discussed in the results section but that are closely

related to the main approaches we presented. First, we

investigated another method combining the use of estimated

population labels and principal components to adjust the

association test [40]. This method was not different than using

only the principal components in our data. The rational invoked

by Li et al. to use both adjustments to respectively account for

discrete and admixed populations is however pertinent making this

method a reasonable option when the population labels can be

accurately estimated. In addition, we investigated the use of

estimated population probabilities instead of the discrete labels

which showed that both methods are equivalent.

Another important question is how the methods behave when

the sampling proportions become more imbalanced between the

subpopulations. We addressed this question in the sixth scenario

that highlighted the fact that Regressions and Eigenstrat were the

methods capable of correcting for stratification even with very

imbalanced samplings. In the extreme cases where all the cases are

from one population only, we observed that considering only the

cohort composed of both cases and controls by excluding the

cohort with controls only was as powerful as considering all the

samples. This highlights that adjusted Logistic Regressions and

Eigenstrat are performing well enough so that they can deal with

extreme sampling within subpopulations.
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New sequencing methods allow to focus on DSL with very low

minor allele frequency (ƒ10%). In order to determine the quality

of the methods to account for stratification with such DSL we

simulated additional datasets corresponding to the scenario 4 and

5 (Figure S5 and S6 respectively). It appears that the approaches

considered have the same behavior than with more important

minor allele fresuencies but they all experience a loss of power.

This loss of power is expected when testing a non-stratified

association with low minor allele frequency and our results

confirm the findings of [29] that is it still the case with

stratification.

Finally, we expect that when the number of SNPs available in a

study increases, the information about the structure of the

populations and therefore the quality of the corrections of all the

methods also increase. This is confirmed by the comparisons

conducted in [29,32] considered more than 10,000 SNPs. When a

certain amount of SNPs is reached, usually tens of thousands, the

information provided by additional SNPs becomes redundant (e.g

because of linkage disequilibrium) and the corrections are no

longer better. Also, when the amount of SNPs included is not

important enough, usually less than a couple of hundreds, the

methods are not provided with enough information to properly

account for stratification.

To conclude, we summarize the performances of the main

methods studied in this paper for all the types of population

structure Table 1. Given the results we presented, we recommend

to use, whatever the population structure, an adjusted Logistic

Regression model. The adjustment on the principal components is

the more advantageous as it always leads to a correction of the

bias. Moreover, principal component analysis can always be

applied to the genetic data without any previous knowledge on the

structure. If one has some accurate information on sample labels,

then a joint adjustment with the principal components should

provide an even better correction.
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Table 1. Summary table.

Method Type of correction No Strat Admixture Discrete Strat Hierarchical

FP Power FP Power FP Power FP Power

Trend None ++ ++ 2 . 2 . 2 .

Reg (PCs) Continuous ++ ++ + ++ ++ ++ ++ ++

Reg (Real Pop) Discrete ++ ++ ++ + ++ ++ ++ ++

Reg (Est pop) Discrete ++ ++ 2 . ++ ++ ++ ++

Eigenstrat Continuous ++ ++ + ++ ++ ++ 2 .

GC Continuous ++ ++ 2 . 2 . 2 .

Meta Discrete ++ + ++ + ++ + 2 .

This table summarizes the results of our study in terms of false positive rate and power. A ‘++’ implies a very good performance, a ‘+’ a good performance, a ‘2’ a bad
performance and a ‘.’ that it was not possible to assess a comparable power given that the false positive rate was not correct.
FP: False positive rate.
doi:10.1371/journal.pone.0028845.t001

Population Stratification in Genetic Studies

PLoS ONE | www.plosone.org 12 December 2011 | Volume 6 | Issue 12 | e28845



References

1. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG (2001)

Replication validity of genetic association studies. Nat Genet 29: 306–309.

2. Page GP, George V, Go RC, Page PZ, Allison DB (2003) ‘‘are we there yet?’’:

Deciding when one has demonstrated specific genetic causation in complex

diseases and quantitative traits. Am J Hum Genet 73: 711–719.

3. Cardon LR, Palmer LJ (2003) Population stratification and spurious allelic

association. Lancet 361: 598–604.

4. Balding DJ (2006) A tutorial on statistical methods for population association

studies. Nat Rev Genet 7: 781–791.

5. Deng HW (2001) Population admixture may appear to mask, change or reverse

genetic effects of genes underlying complex traits. Genetics 159: 1319–1323.

6. Marchini J, Cardon LR, Phillips MS, Donnelly P (2004) The effects of human

population structure on large genetic association studies. Nat Genet 36:

512–517.

7. Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault AA, et al. (2004)

Assessing the impact of population stratification on genetic association studies.

Nat Genet 36: 388–393.

8. Heiman GA, Hodge SE, Gorroochurn P, Zhang J, Greenberg DA (2004) Effect

of population stratification on case-control association studies. i. elevation in false

positive rates and comparison to confounding risk ratios (a simulation study).

Hum Hered 58: 30–39.

9. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics

55: 997–1004.

10. Reich DE, Goldstein DB (2001) Detecting association in a case-control study

while correcting for population stratification. Genet Epidemiol 20: 4–16.

11. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006)

Principal components analysis corrects for stratification in genome-wide

association studies. Nat Genet 38: 904–909.

12. Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis.

PLoS Genet 2: e190.

13. Setakis E, Stirnadel H, Balding DJ (2006) Logistic regression protects against

population structure in genetic association studies. Genome Res 16: 290–296.

14. Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to

population stratification in genome-wide association studies. Nat Rev Genet 11:

459–463.

15. Whitlock MC (2005) Combining probability from independent tests: the

weighted z-method is superior to fishers approach. J Evol Biol 18: 13681373.

16. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure

using multilocus genotype data. Genetics 155: 945–959.

17. Satten GA, Flanders WD, Yang Q (2001) Accounting for unmeasured

population substructure in case-control studies of genetic association using a

novel latent-class model. Am J Hum Genet 68: 466–477.

18. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association

mapping in structured populations. Am J Hum Genet 67: 170–181.

19. Chen HS, Zhu X, Zhao H, Zhang S (2003) Qualitative semi-parametric test for

genetic associations in case-control designs under structured populations. Ann

Hum Genet 67: 250–264.

20. Cheng KF, Lin WJ (2007) Simultaneously correcting for population stratification

and for genotyping error in case-control association studies. Am J Hum Genet

81: 726–743.

21. Epstein MP, Allen AS, Satten GA (2007) A simple and improved correction for

population stratification in case-control studies. Am J Hum Genet 80: 921–930.

22. Guan W, Liang L, Boehnke M, Abecasis GR (2009) Genotype-based matching
to correct for population stratification in large-scale case-control genetic

association studies. Genet Epidemiol 33: 508–517.
23. Hinds DA, Stokowski RP, Patil N, Konvicka K, Kershenobich D, et al. (2004)

Matching strategies for genetic association studies in structured populations.
Am J Hum Genet 74: 317–325.

24. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, et al. (2010) Variance

component model to account for sample structure in genome-wide association
studies. Nat Genet.

25. Kimmel G, Jordan MI, Halperin E, Shamir R, Karp RM (2007) A
randomization test for controlling population stratification in whole-genome

association studies. Am J Hum Genet 81: 895–905.

26. Li M, Reilly MP, Rader DJ, Wang LS (2010) Correcting population
stratification in genetic association studies using a phylogenetic approach.

Bioinformatics 26: 798–806.
27. Zhao H, Rebbeck TR, Mitra N (2009) A propensity score approach to

correction for bias due to population stratification using genetic and non-genetic

factors. Genet Epidemiol 33: 679–690.
28. Pritchard JK, Donnelly P (2001) Case-control studies of association in structured

or admixed populations. Theor Popul Biol 60: 227–237.
29. Zhang F, Wang Y, Deng HW (2008) Comparison of population-based

association study methods correcting for population stratification. PLoS One
3: e3392.

30. Tian C, Gregersen PK, Seldin MF (2008) Accounting for ancestry: population

substructure and genome-wide association studies. Hum Mol Genet 17:
R143–R150.

31. Wang D, Sun Y, Stang P, Berlin JA, Wilcox MA, et al. (2009) Comparison of
methods for correcting population stratification in a genome-wide association

study of rheumatoid arthritis: principal-component analysis versus multidimen-

sional scaling. BMC Proc 3 Suppl 7: S109.
32. Wu C, DeWan A, Hoh J, Wang Z (2011) A comparison of association methods

correcting for population stratification in case-control studies. Ann Hum Genet
75: 418–427.

33. Lee C, Abdool A, Huang CH (2009) Pca-based population structure inference
with generic clustering algorithms. BMC Bioinformatics 10 Suppl 1: S73.

34. Chadeau-Hyam M, Hoggart CJ, O’Reilly PF, Whittaker JC, Iorio MD, et al.

(2008) Fregene: simulation of realistic sequence-level data in populations and
ascertained samples. BMC Bioinformatics 9: 364.

35. Peng B, Amos CI (2010) Forward-time simulation of realistic samples for
genome-wide association studies. BMC Bioinformatics 11: 442.

36. Li C, Li M (2008) Gwasimulator: a rapid whole-genome simulation program.

Bioinformatics 24: 140–142.
37. Wright S (1921) Systems of mating. Genetics 6: 111–178.

38. Wu J, Devlin B, Ringquist S, Trucco M, Roeder K (2010) Screen and clean: a
tool for identifying interactions in genome-wide association studies. Genet

Epidemiol 34: 275–285.
39. Dadd T, Weale ME, Lewis CM (2009) A critical evaluation of genomic control

methods for genetic association studies. Genet Epidemiol 33: 290–298.

40. Li Q, Yu K (2008) Improved correction for population stratification in genome-
wide association studies by identifying hidden population structures. Genet

Epidemiol 32: 215–226.
41. Barnholtz-Sloan JS, McEvoy B, Shriver MD, Rebbeck TR (2008) Ancestry

estimation and correction for population stratification in molecular epidemio-

logic association studies. Cancer Epidemiol Biomarkers Prev 17: 471–477.

Population Stratification in Genetic Studies

PLoS ONE | www.plosone.org 13 December 2011 | Volume 6 | Issue 12 | e28845


