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Abstract: The mosquito Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) is an 

invasive species which has colonized Southern Europe in the last two decades. As it is a 

competent vector for several arboviruses, its spread is of increasing public health  

concern, and there is a need for appropriate monitoring tools. In this paper, we have 

developed a modelling approach to predict mosquito abundance over time, and identify the 

main determinants of mosquito population dynamics. The model is temperature- and  

rainfall-driven, takes into account egg diapause during unfavourable periods, and was used 

to model the population dynamics of Ae. albopictus in the French Riviera since 2008. 
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Entomological collections of egg stage from six locations in Nice conurbation were used 

for model validation. We performed a sensitivity analysis to identify the key parameters of 

the mosquito population dynamics. Results showed that the model correctly predicted 

entomological field data (Pearson r correlation coefficient values range from 0.73 to 0.93). 

The model’s main control points were related to adult’s mortality rates, the carrying 

capacity in pupae of the environment, and the beginning of the unfavourable period.  

The proposed model can be efficiently used as a tool to predict Ae. albopictus population 

dynamics, and to assess the efficiency of different control strategies. 

Keywords: Aedes albopictus; arbovirus; population dynamics; modelling; sensitivity analysis 

 

1. Introduction 

The Asian tiger mosquito Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) is a competent 

vector for several arboviruses, such as dengue and chikungunya viruses [1]. Originally indigenous to 

South-East Asia, the species has spread during the last decades to Africa, the Middle East, Europe and 

the Americas [2]. Since 1990, the Asian tiger mosquito has rapidly colonized Southern Europe [3]. It is 

the only invasive mosquito species currently installed in continental France, present since 2004 on the 

Côte d’Azur region [4–6]. Its continuing spread is of increasing public health concern, strengthened by 

a recent chikungunya outbreak in Italy in 2007 [7], and the first occurrence of autochthonous dengue 

and chikungunya cases in southern France in 2010 [8,9].  

Due to the urgent need for intensive monitoring and risk-based surveillance of Ae. albopictus 

populations, modelling approaches have been used to map the areas of its potential distribution [10,11]. 

Moreover, mechanistic modelling approaches have been successfully used to predict the temporal 

dynamics of Ae. aegypti using either stochastic [12] or deterministic models [13], or discuss the impact 

of mosquito population dynamics on chikungunya virus transmission to the human population on  

La Réunion island, France [14,15]. Such models are useful to identify the control points of the 

population dynamics, and test some control strategies [14]. In Europe, Poletti et al. recently modelled 

the temporal dynamics of Ae. albopictus in Italy and discussed the transmission potential of 

chikungunya virus [16].  

In this paper, we present a weather-driven abundance model depicting the annual and inter-annual 

variations of Ae. albopictus populations taking into account diapause processes. We used the generic 

framework proposed recently by Cailly et al. [17] for modelling mosquito populations, and we defined 

parameters and functions to adapt this generic model to the Asian tiger mosquito. The model was used 

to simulate Ae. albopictus populations in the Côte d’Azur region, using daily rainfall and temperature 

data. Entomological collections of egg stage from different municipalities were used for model 

validation, and a sensitivity analysis was performed to identify the key parameters driving the 

mosquito population dynamics. 
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2. Material and Methods  

2.1. Study Area  

The study area includes the municipality of Nice and neighbouring municipalities from the  

French Riviera region where entomological longitudinal surveys on Ae. albopictus populations are 

performed since 2008 (Figure 1). In this region located in South Eastern France, the climate is 

typically Mediterranean, with warm, very dry summers and mild, wet winters. Total annual rainfall is 

around 750 mm, and temperatures usually vary between 0 °C in winter, and 34 °C in summer.  

Aedes albopictus populations are mainly installed in urban areas, as in Nice, a densely populated city 

with a population over 340,000 inhabitants, and in the residential areas of neighboring municipalities.  

Figure 1. Study area including the municipalities of Nice, La Gaude, Cagnes-sur-Mer, 

Villeneuve-Loubet, and Biot. Source: © IGN BD Adresse v2—EID Méditerranée, 

September 2011. 

 

2.2. Entomological Data  

Mosquito sampling was performed in different locations of Nice conurbation, using ovitraps’ 

networks placed mostly in sites shaded by vegetation. The surveillance of eggs was chosen for 

detecting invasive mosquito species such as Ae. albopictus in South-eastern France. It allows targeted 

and rapid sampling efforts and an optimal cost-benefit ratio [5,18]. Ovitraps are artificial egg-laying 

containers made up with 3 L black plastic buckets (Dillewijn Zwapak
©

, Aalsmeer, The Netherlands) 

filled with 2 L of tap water and the biolarvicide Bacillus thuringiensis israelensis (Bti) to prevent the 
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production of mosquitoes in the trap [19], in which a floating polystyrene square (5  5 cm) was added 

to provide a support for oviposition. The sampling was conducted in six different locations of Nice 

conurbation, mainly in discontinuous urban fabric including individual houses with gardens: Nice  

(1: Nice downtown, 2: residential area on the outskirts of Nice), Cagnes-sur-Mer, La Gaude, Biot, and 

Villeneuve-Loubet. Networks of between 15 and 50 ovitraps were collected biweekly, and weekly in 

Cagnes-sur-Mer (Table 1). We considered the fortnightly frequency as an acceptable compromise 

between representative data (average period of time separating two generations during summer, 

considering around three days for embryogenesis, seven days of larval development and five days for 

mating, blood engorgement and oviposition) and reasonable trapping effort in the five areas [20,21]. 

Surveys were stopped at the end of each year after two consecutive negative samples. Trapping areas 

were considered free of insecticide treatments realized during the plan of anti-dissemination of 

chikungunya virus from 2008 to 2011, except three ovitraps located in Nice-1 within a distance of 200 

m from the insecticide spraying. Thus, results from these three ovitraps after the treatments were 

removed from the analysis. Hatched and unhatched eggs of Ae. albopictus were counted in laboratory 

under stereomicroscope. Eggs of Ae. (Finlaya) geniculatus, the only other mosquito species to lay eggs 

into ovitraps in south-eastern France, were morphologically discriminated from Ae. albopictus eggs 

using a stereomicroscope [22,23].  

Table 1. Entomological collections for the surveillance of Aedes albopictus, Côte d’Azur 

area, France, 2008–2011. 

Campaign Trapping season Ovitrap network Result 

Location Year Beginning End Nb traps 
Surface of the 

trapping area (ha) * 

Sampling 

frequency 

Annual max. of  

the mean number  

of collected eggs per 

ovitrap per  

capture session 

Nice 1 2008 25 Mar 8 Dec 30 328.7 biweekly 170 

Nice 1 2009 16 Apr 9 Dec 50 517.7 biweekly 233 

Nice 1 2010 15 Apr 2 Dec 50 517.7 biweekly 462 

Nice 1 2011 21 Apr 14 Dec 50 517.7 biweekly 311 

Cagnes-sur-Mer 2010 21 Jun 15 Nov 15 30.5 weekly 177 

Cagnes-sur-Mer 2011 28 Mar 28 Nov 18 41.6 weekly 169 

La Gaude 2010 16 Jul 8 Oct 22 17.9 biweekly 566 

Biot 2010 16 Jul 8 Oct 25 40.3 biweekly 830 

Villeneuve-Loubet 2011 6 May 30 Nov 15 3.8 biweekly 1,108 

Nice 2 2011 11 May 18 Nov 15 2.7 biweekly 654 

* computed as the surface of the smallest polygon including all ovitraps with a buffer distance of 50 m. 

2.3. Environmental Data  

Daily rainfall and temperature data from 2008 to 2011 recorded in Nice Airport were obtained from 

the national meteorological service “Météo France”. Indeed, we assumed that the population dynamics 

of Ae. albopictus is mainly driven by these two factors: (i) temperatures have a strong impact on  

the survival of Ae. albopictus populations, and on the development of aquatic stages [20,24,25];  

(ii) precipitations favor the availability of breeding sites, i.e., any small recipient filled with water 
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where Ae. albopictus females lay their eggs. Moreover, we considered that the egg hatching is 

triggered by rainfall events but also by human water supply (e.g., garden watering in summer) [20]. 

Indeed, larval surveys carried out since 2008 showed the importance of small and medium containers 

sampled in gardens in the productivity Ae. albopictus’ populations [26]. 

2.4. Model Description 

2.4.1. Aedes albopictus Life Cycle 

As for all mosquito species, the life cycle of Ae. albopictus includes three water-dependent stages 

(egg, larva, and pupa), and one aerial stage (adult). The lifespan in each stage depends on several 

factors, such as temperature, or water availability. After emergence and insemination, female adults 

successively: (i) seek a human host to take a blood meal; (ii) rest in a sheltered place during the few 

days needed for the eggs to mature; and (iii) search for sites to lay their eggs. The Asian tiger mosquito 

breeds in artificial containers of any type (metal, glass, stone, plastic, rubber, etc.), or in small natural 

water bodies such as tree holes or rock pools [27]. Eggs hatch after a desiccation period (few days to 

several months) when they are submerged in water by rainfall or artificial flooding. The larvae then 

mature through four stages before entering pupation. Adult mosquito emerges from the pupa at the 

surface of water. In temperate climates, Ae. albopictus survive the unfavorable period (winter) as eggs 

in dormancy (diapause) that will hatch during the next favorable season (spring). 

2.4.2. Modelling Aedes albopictus Population Dynamics 

The generic model of mosquito population dynamics developed by Cailly et al. [17] represents all 

of the steps of the mosquito life cycle (Figure 2). It considers ten different stages: three aquatic stages 

(E, eggs; L, larvae; P, pupae), one emerging adult stage (Aem), three nulliparous stages (A1h, A1g, A1o), 

and three parous stages (A2h, A2g, A2o). In the adult stage, females only are represented. Parous females 

are females that have oviposited at least once, whereas nulliparous females have never laid eggs. 

Adults are subdivided regarding their behaviour during the gonotrophic cycle (h, host-seeking;  

g, transition from engorged to gravid; o, oviposition site seeking). Once parous, females repeat their 

gonotrophic cycle until death. The events driving the transitions between stages are: egg mortality or 

hatching, larva mortality, pupation (moult of larvae to pupae), pupa mortality, adult emergence, 

mortality, engorgement, egg maturing, and oviposition. The model takes into account density-dependent 

mortality of the larval stage [28], and pupa density-dependent success of adult emergence.  

Density-dependent mortality was assumed at the larval stage as it is has been often observed [28,29]. 

Pupa density-dependent success of adult emergence was assumed as emergence success was found 

negatively correlated to pupa density [30]. 

The model is based on a system of ordinary differential equations (ODE). For Aedes populations in 

temperate climate, the eggs stop hatching at the beginning of the unfavorable period, during which 

diapause occurs. All other stages will continue their development or transition to the next stage. Thus, 

the ODE system is: 
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(1) 

Figure 2. Model diagram of Aedes albopictus population dynamics in temperate climate. 

Aquatic stages are drawn in blue, adult females in yellow. The green compartments indicate 

the adult females which move to seek for a host or an oviposition site. Adapted from  

Cailly et al. [17]. Reprinted from Ecological Modelling, 227/24 February 2012, Cailly, P.; 

Tran, A.; Balenghien, T.; L’Ambert, G.; Toty, C.; Ezanno, P., A climate-driven abundance 

model to assess mosquito control strategies, Pages 7–17, Copyright (2012), with 

permission from Elsevier. 

 

Model parameters are in Greek letters. They are constant. For stage X, γX is the transition rate to the 

next stage, μX the mortality rate, and βX the egg laying rate. σ is the sex-ratio at the emergence. μr is an 

additional adult mortality rate related to the seeking behavior, applied only on adult stages involving 

risky movements (host or oviposition site seeking).  

Model functions are in Latin letters. They depend on parameters and weather-driven functions (i.e., 

functions of temperature, humidity or precipitation varying over time). For stage X, fX is the transition 

function to the next stage, mX the mortality function, and kX the environment’s carrying capacity which 

limits the population growth due to density-dependent processes.  
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2.4.3. Parameters and Functions of the Model 

We defined specific parameter values, forcing functions, transition functions between stages of the 

life cycle, and mortality functions to adapt the model to Ae. albopictus in the region of Nice. As our 

model neglects mosquito dispersal (arrival or departure of individuals), the dimensions of the surface 

used for simulation have to be larger than the active flight distance of mosquitoes: Ae. albopictus 

having a distance of dispersal of about 100 m [31], our model is used for simulating the mosquito 

population dynamics over a squared surface greater than 4 ha. 

Because of the large phenotypic variability of the Asian tiger mosquito [27], parameter values were 

based on expert knowledge of local Ae. albopictus population biology [25,26,32], supported and 

completed by scientific literature (Table 2). 

Table 2. Parameter values of the model of mosquito population dynamics adapted to  

Aedes albopictus in Mediterranean temperate climate. 

Parameter Definition Value Reference 

β1 Number of eggs laid by ovipositing nulliparous females (per female) 95 [25] 

β2 Number of eggs laid by ovipositing parous females (per female) 75 [25] 

κL Standard environment carrying capacity for larvae (larvae ha−1) 250,000 To our best knowledge 

κP Standard environment carrying capacity for pupae (pupae ha−1) 250,000 To our best knowledge 

σ Sex-ratio at the emergence 0.5 [24] 

μE Egg mortality rate (day−1) 0.05 (Lacour, unpublished) 

μL Minimum larva mortality rate (day−1) 0.08 (Lacour, unpublished) 

μP Minimum pupa mortality rate (day−1) 0.03 (Lacour, unpublished) 

μem Mortality rate during adult emergence (day−1) 0.1 (Lacour, unpublished) 

μA Minimum adult mortality rate (day−1) 0.02 [25] 

μr Adult mortality rate related to seeking behavior (day−1) 0.08 To our best knowledge 

TE Minimal temperature needed for egg development (°C) 10.4 [24] 

TDDE Total number of degree-day necessary for egg development (°C) 110 (Lacour, unpublished) 

γAem Development rate of emerging adults (day−1) 0.4 To our best knowledge 

γAh Transition rate from host-seeking to engorged adults (day−1) 0.2 To our best knowledge 

γAo Transition rate from oviposition site-seeking to host-seeking adults (day−1) 0.2 To our best knowledge 

TAg Minimal temperature needed for egg maturation (°C) 10 [24] 

TDDAg Total number of degree-days necessary for egg maturation (°C) 77 [24] 

tstart Start of the favorable season 10 Mar [32] 

tend End of the favorable season 30 Sept [32] 

The end of the favorable period is defined as the moment when 90% of eggs laid enter into 

diapause. Diapause is genetically programmed in Ae. albopictus populations. It is induced by a short 

photoperiod [27]. In Nice area, egg diapause initiation occurs gradually during September, so diapause 

processes occur in the model from 30 September to 10 March the following year [32]. During this 

period, only eggs survive until the start of the next favorable season when they hatch if they are 

immerged in water. The standard environment carrying capacities for larvae (κL) and pupae (κP) were 

estimated as follows: the maximal larval and pupal densities observed in laboratory (10 individuals  

per cm² of water surface [33]) was multiplied by the surface of a typical Ae. albopictus breeding site 

(~50 cm²), the number of breeding sites per household (~20), and the number of households per 

hectare (~25), all of these values being estimated from field observations [26]. 
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The two forcing function variables are temperature (T) and precipitation (P), both varying over 

time. Daily mean temperature and precipitation were used. Precipitation is known to trigger egg 

hatching of Aedes species breeding in out-door oviposition sites [34]. However, in human-made 

environments artificial flooding (e.g., watering of gardens) is likely to be the main driver of  

Ae. albopictus egg hatching in summer, when rainfall events are scarce. Thus, we considered that the 

development of Ae. albopictus eggs is driven by: (i) the occurrence of rainfall events in spring; and  

(ii) temperature, using the concept of degree-day, the quantity of accumulated heat necessary for 

development from one stage to another. In spring, hatching occurs only with rainfall events:  

the transition function from egg to larva fE(t) will be null if no rainfall event occurs at time t (P(t) = 0). 

Otherwise, it is driven by temperature, using the degree-day relation, also used to express the 

development rate of engorged adults becoming gravid at time t: 

 
(2)  

Values of TX and TDDX are given in Table 2.  

The development of other aquatic stages (larvae and pupae) is positively correlated to temperature 

within an optimum range [24]. Non-linear relations were used to express the relationships between 

temperature (in °C) and development rate of larvae and pupae according to observations under 

laboratory controlled conditions [24]. These functions are given in Table 3. It should be noted that 

atmospheric temperature was used as a proxy of water temperature. This approximation is justified by 

the small size of the urban breeding sites of Ae. albopictus in Nice region. 

Table 3. Functions of the model of mosquito population dynamics adapted to  

Aedes albopictus in Mediterranean temperate climate. 

Function Definition Expression 

fE Transition function from egg to larva Equation (2) 

fL Transition function from larva to pupa fL(t) = −0.0007. T²(t) + 0.0392. T(t) − 0.3911 

fP Transition function from pupa to emerging adult fP(t) = 0.0008. T²(t) − 0.0051. T(t) + 0.0319 

fAg 
Transition function from engorged adult to  

oviposition site—seeking adult 
Equation (2) 

mL Larva mortality (day−1) mL(t) = exp(−T(t)/2) + μL 

mP Pupa mortality rate (day−1) mP(t) = exp(−T(t)/2) + μP 

mA Adult mortality rate (day−1) mA(t) = max(μA; 0.04417 + 0.00217. T(t)) 

kL Environment carrying capacity of larvae (ha−1) Equation (3) 

kP Environment carrying capacity of pupae (ha−1) Equation (3) 

Temperature also impacts the mortality rates of larvae, pupae and adults. Expressions were  

derived from Shaman et al. [35], considering one different function for each stage, and adapted to the 

observations of Ae. albopictus [24] (Table 3). 

Finally, we considered that the precipitations impact the environment’s carrying capacity (kX) of 

aquatic stages (larvae and pupae), increasing the number of breeding sites available for Ae. albopictus 

which is essentially an outdoor breeder [36–38]: 

kX (t)= X  (Pnorm(t)+1), X in {L;P}  (3)  
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Values of κX, the standard environment’s carrying capacity of aquatic stages, are given in Table 2. 

Pnorm(t) is defined as the rainfall amount summed over a two weeks period, and normalized in order to 

vary between 0 and 1. 

2.4.4. Model Outputs 

The model predicts the abundance of mosquitoes per stage (E, L, P, Aem, A1h, A1g, A1o, A2h, A2g, A2o) 

over time. In addition, the dynamic information computed by the model was aggregated using average 

output values following Cailly et al. [17]: the adult peak (maximum number of adults observed in a 

year), the attack rate (average of the daily number of host-seeking adults (Ah = A1h + A2h) during the  

21 days around the peak dates), and the parity rate (ratio of the total number of parous females to the 

total number of females). These aggregated outputs were chosen because of their epidemiological 

importance. They will be used to perform the sensitivity analysis of the model (Section 2.6). Finally,  

to allow the comparison between the entomological collections from the ovitraps (as described in 

Section 2.2) and the predictions of the model, the abundance of eggs laid at time t by Ae. albopictus 

females, El(t), was computed as: 

 (4)  

2.4.5. Initial Conditions and Simulations  

The differential equations were discretized using the explicit Euler method that we implemented in 

Scilab 5.1 [39]. Simulations were run over five years (2008–2011, and one first year with average 

values of precipitation and temperature, not retained for output computation). Initially, the population 

consisted of 10
6
 eggs (stage E), t0 corresponding to 1 January. 

2.5. Validation 

Because the collected eggs in ovitraps are removed after sampling, we compared the observed 

average number of eggs per trap (relative to the maximum value of the observed average number of 

eggs per trap) in each site (Nice-1 and -2, Cagnes-sur-Mer, La Gaude, Biot, and Villeneuve-Loubet) 

with the simulated abundances of eggs newly laid (El) (relative to the maximum value of simulated 

eggs abundance over the 2008–2011 period). The degree of association between observed and simulated 

number of eggs at the time of ovitrap collection was assessed for each collection site by calculating the 

Bravais–Pearson correlation coefficient. 

2.6. Sensitivity Analysis 

We carried out a global sensitivity analysis, varying simultaneously all of the model’s parameters 

described in Table 2 (20 parameters) using a fractional factorial design [40]. Such a design enabled us 

to estimate the sensitivity indices for the principal effects and the first-order interactions between 

parameters (3 levels per factor: the nominal value ±10%, generating 2,186 scenarios). Based on the 

model realizations implemented in this design, the contributions of the variation factors to the output 

variability were evaluated using a linear regression approach [40]. For each aggregated output  

(as described in Section 2.4.4), a linear regression model was fitted with all the principal effects of the 

 )()()( 2211 tAtAtE ooAol  
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factors and their first-order interactions. A minimum variance criterion was defined: factors or 

interactions accounting for more than 1% of the output variance were retained in the model.  

The contribution of factor or interaction i to the variation in output y was the ratio of the sum of 

squares related to i on the total sum of squares of the model for output y. The sum of the contributions 

for output y equaled the coefficient of determination of the regression model r². 

3. Results and Discussion 

3.1. Aedes albopictus Population Dynamics in Urban Areas of South Eastern France 

The dynamics of Ae. albopictus populations in the Côte d’Azur area present a strong seasonal 

variability with a 6-month period of adult activity and a 6-month period of egg diapause. The first eggs 

of the year are laid at the beginning of May. Mosquito density is maximal early July, late August and 

early September, depending on years and cities. Oviposition activity decreases between mid-September 

and mid-October, with a residual egg laying activity remaining until November or December. 

Sampling results did not show evidence of continuous oviposition activity during winter, unlike the 

situation reported in Rome, Italy [41]. 

Based on observed temperatures and precipitations from 2008 to 2011, the model showed  

Ae. albopictus adult mosquitoes to be present in Nice from May to November with a maximum 

population in late August–early September (Figure 3). The number of eggs reaches a maximum at the 

beginning of the unfavorable period, when eggs stop hatching while adult females continue oviposition 

activity. The egg reserve decreases during winter time, allowing the survival of the population. 

Differences between years were due to differences in weather variables, the model being  

otherwise deterministic. 

Figure 3. Aedes albopictus population dynamics simulated over four years according to 

temperatures and rainfall, Nice region, 2008–2011. (a) Daily mean temperature (red) and 

rainfall (blue). (b) Simulated number of individuals in the aquatic stages (eggs, larvae and 

pupae). (c) Simulated number of individuals in the aerial stages (A1h: nulliparous host-seeking; 

A1g: nulliparous engorged; A1o: nulliparous seeking oviposition site; A2h: parous  

host-seeking; A2g: parous engorged; A2o: parous seeking oviposition site). The alternation 

of favorable and unfavorable periods is represented in white and grey, respectively. 
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Figure 3. Cont. 

 

3.2. Model Validation 

Simulated mosquito abundances were highly consistent with field data collected in Nice-1,  

2008–2011 (Figure 4(a)), with a cross-correlation value r = 0.79. For the four years under 

consideration the model reproduces well the abundance peak of catches occurring in late August. 

When considering 2010 and 2011, for both years the model simulates well the population growth in 

May and its decline in autumn. Yet, the model overestimates the abundances of eggs at the start of the 

favorable period (April–July) in 2008 and 2009, and all over the year in 2008. In 2010 and 2011,  

egg abundances were also slightly overestimated in April and May. The model also correctly simulated 

the abundance of Ae. albopictus in the five other sites (Figure 4(b)), with correlation coefficients of  

0.73 for Biot (2010), 0.77 for Cagnes-sur-Mer (2010–2011), 0.87 for La Gaude (2010), 0.92 for Nice-2 

(2011), and 0.93 for Villeneuve-Loubet (2011). Altogether, these results demonstrate that our model 

nicely predicts the dynamics of Ae. albopictus in various environments of the urban areas of Nice area 

and for different years. 
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Figure 4. Model validation. (a) The simulated dynamics of eggs laid at time t El(t)  

(black line) based on observed temperatures and precipitations from 2008 to 2011 was 

compared to the mean number of eggs collected per ovitrap in Nice-city area (red dots) 

using relative abundances. The alternation of favorable and unfavorable periods is represented 

in white and grey, respectively. (b) Simulated and observed eggs abundances, Nice area, 

2010–2011. Symbols represent the observed mosquito abundance data in the different sites, 

and the black line is the simulated mosquito abundance. 

 

3.3. Key Model Parameters 

The variations in the peak in adult abundance, in the attack rate and in the parity rate were mainly 

explained by six of the 20 parameters: the mortality rate at emergence (μem), the carrying capacity in 

pupae of the environment (κP), the end of the favourable period (tend), the sex-ratio (σ), the transition 

rate from host-seeking to engorged adults (γAh), and to a much lesser extent the transition rate from 

oviposition site-seeking to host-seeking adults (γAo) (Figure 5).  
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Figure 5. Contribution of model parameters to model output variance. Only parameters 

contributing to more than 1% of output variance were retained here. No interaction  

was retained. 

 

Therefore, the better these parameters are known, the more precise the model will be in predicting 

these outputs. Further knowledge thus is needed concerning especially the mortality rate at emergence 

and the carrying capacity in pupae, which are quite uncertain parameters. A lower mortality at 

emergence, a higher carrying capacity in pupae, a longer favorable period, and a higher sex-ratio 

increased the peak abundance in adults and the attack rate (Figure 6). A shorter development of  

host-seeking adults decreased the attack rate. As expected, a longer favorable period also favored a 

higher parity rate. 

Figure 6. Variations of model outputs (in lines) with parameters contributing to more than 

10% of their variance (in columns): 3 levels were tested per factor (nominal value ±10%). 

For each considered parameter and model output, a box-and-whisker diagram graphically 

depicts the maximum, minimum, median, lower and upper quartiles values of the model 

output obtained from the simulations with three different levels of the parameter tested. 
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3.4. Discussion 

As far as we know, our model is the first mechanistic model of the dynamics of populations of  

Ae. albopictus in a temperate climate country taking into account diapause processes. Driven by  

two weather variables—temperature and rainfall—it describes the whole mosquito life cycle and takes 

into account egg diapause. Altogether, the simulations of the model were highly consistent with the 

number of eggs collected in ovitraps from six different sites of the Nice area over the 2008–2011 

period. The model probably overestimates the populations of Ae. albopictus in 2008 and 2009 because 

at that time this invasive species was not yet fully established in Nice area [4]. 

These results clearly show that the underlying assumptions on the main drivers of Asian tiger 

mosquito dynamics in this region (i.e., the impacts of temperature, rainfall, and artificial flooding) are 

correct, and that the model could be used to predict the dynamics of Ae. albopictus populations of 

following years. Yet, additional entomological data on adult populations and data originating from 

different cities of Southern France where the Asian tiger mosquito is now installed would strengthen 

confidence in the model predictions. The model could be applied on other Mediterranean areas  

where the Asian tiger mosquito is already installed and surveyed, such as Rome [42], Athens [43], 

Barcelona [44], and Tirana [45]. Moreover, it would be instructive to test the model in other temperate 

climates (United States of America or Japan) where European invasive populations of Ae. albopictus 

come from [46]. 

It should be noted that our model was easily adapted from a generic, mechanistic climate-driven 

model of mosquito populations developed by Cailly et al. [17]. Our results confirm the ability of 

Cailly’s model—applied on Anopheles species in [17]—to predict the dynamics of different species of 

mosquito populations, in different geographical areas and over several years. This model could be 

efficient and useful if used on other exotic mosquito invasive species established in European temperate 

areas: the Asian bush mosquito Ae. (Finlaya) japonicus (present since 2007 in northern Switzerland, 

2008 in southern Germany and 2002 in Belgium), Ae. (Finlaya) koreicus (identified in 2008 in 

Belgium and 2011 in Italy), the yellow fever mosquito Ae. (Stegomyia) aegypti (established in 

Georgia, Abkhazia and Russia), and to a lesser extent Ae. (Ochlerotatus) atropalpus [3]. Indeed,  

these species have a similar biology with the Asian tiger mosquito: generally introduced by used tire 

trade, they breed in artificial containers and survive to cold winter temperature; they are human-biters 

in urban environments, increasing sanitary risk in regard as their proven or potential vector status [6]. 

Using a mechanistic approach, we can study the impact of temperatures and rainfall on the 

dynamics of Ae. albopictus, and our results are consistent with effects demonstrated in correlation 

studies [20]. Temperature is recognized to have a stronger influence on Ae. albopictus abundance than 

precipitation [47], and it is also the main driver of our model. Indeed, most of the mortality and 

transition rates are temperature-dependent functions. Temperature drives the mortality and transition 

rates functions in two different ways: higher temperatures favour higher transition rates between stages, 

although mortality rates decrease with temperature. Yet, according to our simulations in the Nice area,  

the impact of temperatures is rather favourable to Ae. albopictus populations: the peak of abundance occurs 

with the highest temperatures observed in summer (Figure 3). 

On the other hand, previous observational studies stress the lack of clear relationship between 

precipitations and Ae. albopictus abundances, these studies showing either a positive effect of  
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rainfall [38], a negative effect [20] or no effect at all [42]. Because Ae. albopictus females breed 

mainly in small artificial containers, Roiz et al. [20] suggest that the seasonal pattern of Ae. albopictus 

population dynamics might be more influenced by variations in human water supply than changes in 

precipitations. In this study, we followed this assumption to define egg hatching. In our model, this 

function is driven by rainfall in spring, and temperature-driven later on (Equation (2)), assuming that 

regular artificial flooding events trigger the egg hatching during the dry months of summer time.  

Our results stress the relevance and importance of this assumption in the urban environment of the 

Nice region. Indeed, simulations with an egg hatching function driven by rainfall the whole year 

(hatching occurring only with rainfall events) show that Ae. albopictus populations would be quasi 

absent during the summer months of dry years such as 2009, and that low rainfalls may lead to an 

extinction of the Ae. albopictus population (Figure 7).  

Figure 7. Aedes albopictus adult population dynamics with an egg hatching function 

driven either by rainfall or artificial flooding. Simulations were computed for different 

thresholds applied to daily rainfall for triggering egg hatching (P > 0 mm, P > 2 mm, and  

P > 4 mm). 

 

The sensitivity analysis identified six key parameters for the population dynamics model of  

Ae. albopictus. An improved knowledge of those parameters through laboratory or field studies will 

increase the precision of the model predictions. The sex-ratio of Ae. albopictus populations has been 

well studied [24]. The mortality rate at emergence measured in the field will have to be compared with 

laboratory data. The transition rates could be better estimated from laboratory studies under controlled 

temperature conditions.  

The sensitivity analysis demonstrates the importance for an invasive mosquito population in a 

temperate climate of the duration of the favorable period. To survive mosquito phenology must be 
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adapted to their local environment, including a timely, appropriate initiation of the diapause process. 

Aedes albopictus diapause is a crucial adaptation, strengthening the survival capacity of the eggs  

to winter [48]. The diapause process is induced by a critical day length which is species- and  

location-dependent. This photoperiodism response is the main factor of adaptation of species to 

seasonal change. As compared to other studies on life history traits evolution in other animal species, 

the evolution in photoperiodism by Ae. albopictus is the fastest recorded [49]. Field studies on  

Ae. albopictus populations in Southern France showed that eggs enter diapause progressively between 

late August and mid-October [32]. The importance of the end of the favorable period, as emphasized 

by our results, suggests that the model could be modified to take into account this gradual entry in 

dormancy of Ae. albopictus populations. In the same way, the progressive hatching of diapausing eggs 

in spring [50] could be modeled. Furthermore, a different egg survival rate during both the favorable 

and unfavorable periods could be integrated in the model, to better simulate the incidences of diapause 

and weather harshness. Indeed, the modeled winter’s egg survivorship is lower than estimations in 

semi-controlled field studies [51,52].  

The environment’s carrying capacity in larvae and pupae could be better estimated from field 

studies. These values depend on the number of available breeding sites in the field and on larval and 

pupal densities, which can reach up to 10 individuals per cm² in laboratory [33]. Ae. albopictus 

immature stages are mainly found in anthropogenic breeding sites, however there is an extreme spatial 

heterogeneity of breeding sites composition and abundance in the field. Field studies measuring 

different entomological indices (House, Breteau and Container indices [53,54]) suggest that the most 

suitable environment for the development of Ae. albopictus is a dense residential area combining 

individual houses and shaded gardens [55]. Therefore, information on the relationship between the 

type of urban land cover (residential areas with gardens, high density development areas, etc.) and the 

number of available breeding sites, complete with field measures of larva and pupa abundances, would 

help adapt the model according to land cover, with environment carrying capacities varying in time 

(with the rainfall) and in space. This would allow the development of a space-time population model, 

taking into account urban environment heterogeneity.  

The model’s parameters identified as the most influential could be the potential control points of the 

biological system. Hence, vector-control strategies achieving the modification of these parameters can 

be expected to influence notably the biting rate and therefore the associated risk of pathogen 

transmission to humans and animals.  

Chemical or biological treatments of larval instars, as well as the physical destruction of breeding 

containers will increase the mortality rate at emergence and decrease the environment’s carrying 

capacity in pupae. Obviously, adult mosquito control treatments will increase the mortality rate of 

adults. The use of repellents may raise the length of the host-seeking phase and, consequently,  

the related lethality. 

Modifying the end date of the favorable period of activity for mosquito is a priori inconceivable. 

However, it is possible to mislead photosensitive stages by using night-interrupted light, thus avoiding 

diapause initiation and artificially decreasing winter survival of the populations. Previous experiments 

on mosquitoes and other insects like butterflies brought to light the photoinhibition of diapause as a 

way of control [56,57], but data on the efficiency and the applicability of such a method in a context of 

urban vector control is lacking. 
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To the best of our knowledge, there is no method to change the sex-ratio at the emergence. Yet,  

the impact of sterile insect technique (SIT), consisting in releasing sterile males which will compete 

with wild males for mating with females, could be modeled as a first approximation by diminishing the  

sex-ratio at the emergence. Indeed, females which have mated with a sterile male will have no 

offspring, and could be removed from the modeled adult population. 

The primary application of our model is its use to elaborate and test effective control strategies 

against the Asian tiger mosquito. Indeed, there is currently no clearly-defined and efficient vector 

control strategy. All existing tools present problems for routine large scale applications [6]. Breeding 

sites can be physically removed to prevent the proliferation of Ae. albopictus populations. Yet, to be 

efficient such actions require repeated interventions and thus (i) the involvement of an important part 

of the vector control agencies’ workforce and (ii) a strong mobilisation of the population through an 

appropriate communication plan. SIT remains very expensive and better adapted to isolated areas like 

islands. The use of chemicals (i) has adverse effects on the environment and health and (ii) can led to 

the development of resistance in mosquito populations [58,59]. In this context, only an integrated 

management combining these methods can carry out to an efficient and durable vector control  

strategy [21]. However, parameters of these optimal strategies (time of application, duration, number 

and frequency of the treatments, etc.) are complex to determine. Thus, modeling approaches can be 

helpful to test and compare mosquito population reduction methods, before long and expensive 

operational field trials. These studies should address the compared efficiency of control tools 

according to different conditions of use. Special attention should be paid to the optimal time of 

application: indeed, if insecticides treatments are usually started and repeated during the second 

semester of the year, when mosquito abundance is high in the field [21], modeling studies suggest that 

applying treatments earlier—in spring—may be more efficient [17]. Modeling approaches should also 

address other conditions of use such as the number of traps, treatments frequencies, the minimal 

percentage of the targeted mosquito population affected by the treatment, or the level of maintenance 

of community implication required to reduce mosquito population.  

Another perspective of the use of our model concerns the assimilation of the predicted abundance of 

host-seeking mosquitoes into a predictive model of host-vector contacts taking into account the human 

population density and exposure [60]. Such an approach will provide maps of the entomological risk 

induced by Ae. albopictus, taking into account the seasonal variations of host and vector distributions. 

The Ae. albopictus dynamics model could also be linked to an epidemiological model of transmission, 

such as compartmental models [14,61] or agent-based models [62], to study in more details the 

possible spread of dengue or chikungunya viruses.  

4. Conclusions  

The population dynamics of Ae. albopictus in a temperate climate environment have been modelled 

for the first time, using a mechanistic approach. The model, driven by temperature and rainfall, 

correctly predicted entomological field data of egg stage over a four year period. It can be used 

efficiently as a tool to predict Ae. albopictus population dynamics, and to assess the efficiency of 

different control strategies. 
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