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Abstract

Chalcidoidea (Hymenoptera) are extremely diverse with more than 23,000 species described and over 500,000 species
estimated to exist. This is the first comprehensive phylogenetic analysis of the superfamily based on a molecular analysis of
18S and 28S ribosomal gene regions for 19 families, 72 subfamilies, 343 genera and 649 species. The 56 outgroups are
comprised of Ceraphronoidea and most proctotrupomorph families, including Mymarommatidae. Data alignment and the
impact of ambiguous regions are explored using a secondary structure analysis and automated (MAFFT) alignments of the
core and pairing regions and regions of ambiguous alignment. Both likelihood and parsimony approaches are used to
analyze the data. Overall there is no impact of alignment method, and few but substantial differences between likelihood
and parsimony approaches. Monophyly of Chalcidoidea and a sister group relationship between Mymaridae and the
remaining Chalcidoidea is strongly supported in all analyses. Either Mymarommatoidea or Diaprioidea are the sister group
of Chalcidoidea depending on the analysis. Likelihood analyses place Rotoitidae as the sister group of the remaining
Chalcidoidea after Mymaridae, whereas parsimony nests them within Chalcidoidea. Some traditional family groups are
supported as monophyletic (Agaonidae, Eucharitidae, Encyrtidae, Eulophidae, Leucospidae, Mymaridae, Ormyridae,
Signiphoridae, Tanaostigmatidae and Trichogrammatidae). Several other families are paraphyletic (Perilampidae) or
polyphyletic (Aphelinidae, Chalcididae, Eupelmidae, Eurytomidae, Pteromalidae, Tetracampidae and Torymidae).
Evolutionary scenarios discussed for Chalcidoidea include the evolution of phytophagy, egg parasitism, sternorrhynchan
parasitism, hypermetamorphic development and heteronomy.
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Introduction

Chalcidoidea (Hymenoptera) are minute wasps that generally
range in size from 1-4 mm, with the smallest only 0.11 mm and
the largest up to 45 mm. With an estimated diversity of up to
500,000 morphologically distinct species and an even larger
number of cryptic species possible [1,2,3,4], this superfamily is
likely the most diverse group of insects. While several families are
phytophagous (e.g. all Agaonidae; some Eurytomidae, Eulophidae,
Pteromalidae, Tanaostigmatidae and Torymidae), most chalcid
wasps are parasitoids. They attack immature and adult stages of
virtually all insect orders, but have their greatest diversification on
the Hemiptera and Holometabola. Because the individual host is
killed as a result of parasitoid development, many chalcid species
are successfully used as biological control agents of agricultural
and ornamental pests (e.g. Aphelinidae and Encyrtidae) [3]. Both
economically and ecologically Chalcidoidea have tremendous
importance in both natural and managed ecosystems.

Despite their importance, our understanding of their taxonomy
and evolutionary relationships is clearly wanting. Partly because of
their small size, they are difficult to collect and study, and only
about 23,000 species have been described [4]. Nineteen families
are currently recognized, with their diversity spread across as
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many as 80-89 subfamilies, in many cases without consensus on
their higher-level placement.

Chalcidoidea and their proposed sister group Mymarommatoi-
dea first appear in mid Cretaceous amber deposits (Mymaridae)
[5,6,7]. Most extant lineages do not appear until the Eocene,
suggesting an extremely rapid post-Cretaceous radiation [6].
However, the presence of Eulophidae and Trichogrammatidae in
Late Cenomanian amber from Ethiopia pushes chalcidoid
diversification back to the mid Cretaceous, about 93-95 Mya [8].

Synapomorphies uniting most of the members of Chalcidoidea
include an exposed prepectus, positioning of the mesothoracic
spiracle on the lateral margin of the mesoscutum, wing venation
reduced to submarginal, marginal, stigmal, and postmarginal
veins, and the presence of multiporous plate sensilla on one or
more of the antennal flagellomeres [9,10]. Molecular evidence
places Chalcidoidea as a monophyletic group nested within a
monophyletic Proctotrupomorpha and as the sister group to either
Diaprioidea or Mymarommatoidea [11,12,13], but see Shara-
nowski et al. [14] for an alternate proposal for Ceraphronoidea as
the sister group.

Both morphological and molecular evidence place Mymaridae
as the sister group of the rest of Chalcidoidea [10,11,13]. A few
intuitive hypotheses of relationships within the superfamily have
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been proposed based on limited morphological justification
[5,15,16]. However, for relationships within Chalcidoidea, there
has not been a morphology-based cladistic analysis across more
than just a few inclusive families [9]. A few molecular analyses
have addressed relationships broadly across the superfamily, but
these have used relatively few taxa to represent such a diverse
group [17,18].

Herein we present the first comprehensive phylogenetic analysis
of relationships within the Chalcidoidea using 18S rDNA and the
28S rDNA D2-D5 expansion regions sampled across 722 taxa.
The diversity of the superfamily is addressed by the inclusion of 72
subfamilies and 343 genera. Data were aligned according to a
secondary structural model, which allows for the unambiguous
partitioning of data into conserved regions and regions of
ambiguous alignment [19,20,21]. Different optimizations of the
alignment using MAFFT [22] are analyzed to compensate for
potential alignment artifacts and increase phylogenetic resolution.
Our analysis provides a new framework for evaluating the
composition and relationships of major groups and hopefully will
lead to a better understanding of their evolution.

Materials and Methods

Taxonomic sampling and specimen vouchering

Sequences were obtained for 722 taxa, with 56 outgroups and
666 ingroups (Table S1). Chalcidoidea are represented by all 19
families, 72 subfamilies, 343 genera and 649 species. Most species
are represented by a single specimen; however, to remove any
doubt of sequencing error, additional individuals of some species
that were difficult to place within any expected grouping (e.g.,
Idioporus, Cynipencyrtus and Diplesiostigma) were sequenced. Outgroup
taxa included exemplars of Ceraphronoidea (Ceraphronidae and
Megaspilidae), Cynipoidea (Cynipidae, Figitidae, Ibaliidae and
Liopteridae), Diaprioidea (Diapriidae, Maamingidae and Mono-
machidae), Mymarommatoidea (Mymarommatidae), Platygastroi-
dea (Platygastridae) and Proctotrupoidea (Heloridae, Pelecinidae,
Proctotrupidae, Roproniidae and Vanhorniidae). In the present
manuscript we follow the family and subfamily classification of
Chalcidoidea of Noyes [4], with additional resolution from the
following: Agaonidae follows Cruaud et al. [23], Aphelinidae
follows Hayat [24], Chalcididae follows Boucek and Delvare [25]
and Narendran [26]; Cleonyminae follows Gibson [27], Euchar-
itidae follows Heraty [28], Eulophidae follows Burks et al. [29];
Pteromalidae follows Boucek [30], Delucchi [31], Graham [32]
and Hedqvist [33], Toryminae follows Grissell [34], and
Trichogrammatidae follows Owen et al. [35].

The majority of taxa were sequenced and vouchered at the
University of California Riverside (UCR). Additional sequences
were provided by co-authors (AC and JYR: Agaonidae and some
Pteromalidae; PJ: Torymidae), the HymAToL project (various
outgroup taxa), Matt Yoder (NC State University; various
outgroup taxa), and Andy Austin (University of Adelaide; various
outgroup taxa). See Table S1 for a complete listing of contributed
sequences and voucher locations. Taxa sequenced at UCR are
represented by either a primary (remains of actual specimen
sequenced) or secondary (compared specimen from same collec-
tion series) specimen voucher. UCR voucher specimens were each
assigned a unique UCRC_ENT Museum identification number
and barcode. Additional voucher information is housed in a
FileMaker Pro database at UCR developed by JM, and is available
on request. UCR vouchers were imaged using a GT-Vision
automontage system, with images deposited on MorphBank 4.0
(http://www.morphbank.net/).
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DNA Extraction, Amplification and Sequencing

Genomic DNA extraction at UCR followed a modified version
of the Chelex® protocol [36]. Primer sequences for PCR
amplification of 18S rDNA and the 285 rDNA D2, D3 and
D4+D5 expansion regions are provided in Table 1. Herein, the
amplified regions shall be referred to simply as 18Sa-c, D2, D3 and
D4+D5. In some cases, a shorter version of 18Sb was amplified
with internal primers (18Si, Table 1). Amplification and
sequencing followed established protocols at UCR [37]. UCR
sequencing was conducted at the San Diego State University
Microchemical Core Facility or the UCR Genomics Core Facility.
Protocols for the Rasplus lab sequences follow Cruaud et al. [23].
Sequence verification was conducted by comparing forward and
reverse sequences. All sequences are deposited on Genbank (Table

S1).

Secondary structure alignment

Sequences were manually aligned using secondary structure
models following Deans et al. [38] and Gillespie et al.
[20,21,39,40]. The 18Sa fragment began three bases (TAC) prior
to the core helix H9 and included the variable regions V1 and V2
and ended with helix H39’. Fragment 18Sb began four bases
(AUAA) prior to the core helix H406a (CGAUACGGGACUQ),
and included the variable regions V3, V4 (expansion region E23-1
through E23-14) and V5, and ended with core helix H960’, just
prior to V6. 18Sc began with a conserved loop (AAACCTCA),
which preceded H984 and ended with the conserved loop (TGA)
between H1506 and HI1506°, and included regions V6-V9.
Amplification of the 285 rDNA D2, D3 and D4+D5 expansion
regions began a single base (C) prior to helix H375 (GGGUUGC)
in the core region preceding D2 and terminated 2 bases following
helix H976 (UGG), subsequent to D5. The final alighment
contained 545 blocks of data, which accounted for base-pairing
helices and their prime, ambiguously-pairing regions of expansion
and contraction (REC), ambiguously-pairing regions of slipped-
strand compensation (RSC), non-pairing yet highly conserved
loops, and non-pairing and variable loop regions of ambiguous

Table 1. Primer sequences.

Primer Name Primer Sequence Reference
285 D2-3551 F 5’ - CGT GTT GCT TGA TAG TGC AGC - 3’ [17]

285 D3-4046 F 5’ - GAC CCG TCT TGA AAC ACG GA - 3’ [134]

285 D2-4057 R 5’ - TCA AGA CGG GTC CTG AAA GT - 3’ [37]

285 D3-4413 R 5’ - TCG GAA GGA ACC AGC TAC TA - 3’ [134]

285 D5-4625 R 5’ - CCC ACA GCG CCA GTT CTG CTT ACC - 3" [135]

185a-1 F 5’ - TAC CTG GTT GAT CCT GCC AGT AG -3’ [135]
185b-441 F 5'- AAA TTA CCC ACT CCC GGC A -3’ [11]
185a-591 R 5'- G AAT TAC CGC GGC TGC TGG -3’ [135]
18Si-673 F 5'- ATC GCT CGC GAT GTT TAA CT -3’ [11]
18Si-905 R 5'- AGA ACC GAG GTC CTA TTC CA -3’ [11]
185c-1204 F 5' - ATG GTT GCA AAG CTG AAAC -3’ [135]
185b-1299 R 5'- TGG TGA GGT TTC CCG TGT T - 3/ [11]
185¢-1991 R 5’ - GAT CCT TCC GCA GGT TCA CCT AC-3" [135]

28S primers are named for the relative structural position of the primer (next
expansion region in direction of primer), for 185 and 28S their complementary
5’ start position in D. melanogaster [131,132,133], and whether designated as a
forward (F) or reverse (R) primer.

doi:10.1371/journal.pone.0027023.t001
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alignment (RAA). For the purposes of this paper, we treat all three
of these regions together as RAA regions.

Comparison between secondary structure and

algorithmically generated alignments

Two important aspects of the dataset led us to compare the
results obtained with various alighment strategies. First, we are
confident of the alignment in the conserved stem-based and core
regions; however vagaries of the secondary structure model lead to
some local alignments that might not be optimal based on exact
pairing of compensatory base changes. Second, distribution and
size of RAAs are variable across Chalcidoidea. For such a large
matrix, by-eye alignment of these highly-variable ambiguous
regions from distantly related taxa is hard to justify. However,
these RAAs can be locally informative [11,29] and we prefer not
to exclude them from our analyses. To test different optimizations
of our secondary structure alignment and the impact of RAAs, we
created two submatrices: one including the conserved stem-based
and core regions and another including the regions of ambiguous
alignment.

The core secondary structure-derived (SS) submatrix was
created by manually removing regions of ambiguous alignment
(RAAs), leaving only the structurally aligned helices, core regions,
and conserved blocks. As alluded to previously, not all loops are
‘highly variable’ and conserved non-pairing regions, including
some loops found in the core, were retained in the SS submatrix.

The second submatrix (RAAs) included the regions of
ambiguous alignment sensu lato (RAAs, REC, RSCs, and unnamed
blocks). An initial 77 regions of ambiguous alighment were
identified. Where RECs and their pairing primes bounded an
RAA, the blocks were concatenated. Additionally, REC 4 H3q,
RAA 24 loop 9, REC 4” H3q’, and RAA 25 were concatenated
into a single block. Concatenation reduced the number of isolated
RAA regions from 77 to 55. Each of these regions was aligned
independently and re-included in the corresponding gene region
for each of the following datasets.

Sixteen datasets were constructed from these submatrices
(Table 2) that can be grouped into four categories: 1) SS submatrix
without RAAs; 2-7) SS combined with algorithm-aligned RAAs;
8-10) algorithm-aligned SS submatrix without RAAs; 11-13)
algorithm-aligned SS submatrix and algorithm-aligned RAAs, and
14-16) algorithm-aligned dataset in which the SS and RAA
submatrices were not treated separately, but with each of the 6
gene regions individually isolated and independently algorithm-
aligned.

Automated alignments were performed with MAFFT
[22,41,42]. Both the online server (v.6) and the downloadable
program (v.6.244b) were used to create initial alignments that
utilized the following MAFFT algorithms: E-INS-i, G-INS-i and
L-INS-i. Alignments for each partition (core region and each of
the 55 regions of ambiguous alignment taken independently) were
generated using the default settings (gap opening penalty = 1.53
and offset value = 0.00).

The RAAs were aligned both with and without a guide tree that
was generated using the SSNR (core with no RAA) dataset. Our
purpose for using a guide tree was to optimize local alignments for
ecach of the RAAs within terminal clusters of independently
recognized taxa grouped through analysis of the SSNR, thus
aligning nearest neighbors, as opposed to aligning disparate taxa
across the entire dataset without any prior grouping. Maximum
likelihood (ML) analyses of this dataset were conducted with
RAxML v.7.2.7 using a partitioned GTR+I" model [43] on the
Teragrid cluster, Abe [44] via the CIPRES portal V2.2 [45]. We
used 1000 rapid bootstrap (BS) replicates for each run, with initial
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tests using the autoMRE criterion [46] showing 350 BS to be
adequate. A GTRCAT approximation of models was used for ML
bootstrapping [47]. Ten RAxML analyses utilizing different
starting seeds were executed, followed by ML optimization to
find the best-scoring tree. The 10 resulting trees were used to
generate a strict consensus tree that was converted to a MAFFT-
readable guide tree with the script newick2maftt.rb (http://matftt.
cbrejp/alignment/software/treein.html). This guide tree was
mmplemented in the MAFFT alignments of the isolated RAAs
utilizing the E-INS-i, G-INS-i and L-INS-i algorithms (SSGE,
SSGG and SSGL, Table 2).

The secondary structure-derived matrix with MAFFT-aligned
RAA regions (SSME) is deposited on Texas A&M’s Parasitic
Hymenoptera Research Labs’ JRNA Secondary Structure and its
Phylogenetic Implications website (available through http://
hymenoptera.tamu.edu/rna/) and as Supplemental Nexus File
S1. The 15 remaining datasets, with and without RAA regions, are
available from JMH upon request.

Dataset partitioning

Sequences were partitioned into six gene regions 18Sa, 18Sb,
18Sc, D2, D3, and D4+D5, with each partition including their
respective aligned RAA regions. The 18Sa-c partitions were
defined simply as the region sequenced, inclusive of the primers
used. The 28S rDNA expansion regions are also contiguous, being
bounded on either side by core sequence, which was amplified in
the PCR reaction. The decision as to where to define the end of
D2 and start of D3 and likewise, the end of D3 and start of
D4+D5, was arbitrarily made to fall within the core regions
between the expansion regions. The helix Hla” (UUUCAGG),
was assigned to mark the end of D2; while the un-named, non-
pairing block of sequence (AC), which follows helix Hla’ and
proceeds helix H563 (CCGU) marked the start of D3. Helix H812
(CCCUCC) was assigned to mark the end of D3, while the un-
named, non-pairing block of sequence (GAAG), which follows
helix H812 and precedes helix H822 (UUUCC), marks the start of
D4+D5.

Phylogenetic analyses

Maximum Likelihood (ML) analyses and associated boot-
strapping (BS) were conducted on the 16 datasets with RAxML
v.7.2.7 using a partitioned GTR+I" model [43] on the Teragrid
cluster, Abe [44] via the CIPRES portal V2.2 [45]. A GTRCAT
approximation of models was used for ML bootstrapping [47]. To
accommodate parameter variation in separate runs [48], 10
analyses were conducted using different seed numbers and 1000
rapid bootstrap (BS) replicates, with the tree with the best known
likelihood (BKL) score chosen from among these sets. For
comparison of alignments strategies, we examined the number of
parsimony informative and uninformative sites, overall length, and
the number of step changes mapped with PAUP 4.0* [49] onto
cach tree using the SSME dataset. The SSME dataset was chosen
for the Parsimony analysis, because it provided what we
considered to be the optimal results in terms of clade retention
and used both the SS and RAA submatrices.

The parsimony analysis of the SSME dataset was conducted
with TNT v.1.1 [50,51]. Heuristic searches were performed using
a New Technology Search with default settings, except for using a
sectorial search, ratchet weighting probability of 5% with 50
iterations, tree-drifting of 50 cycles, tree-fusing of 5 rounds, and
best score hit of 10 times, followed by swapping to completion on
all trees found. Nodal supports were calculated using 1000
standard bootstrap replicates.
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To be consistent with our interpretation of bootstrap percentage
(BP), we use the following scale: a bootstrap percentage of =90%
is considered very strong, 80-89% means strong, 70-79% means
moderate, and 50-70% means low bootstrap support.

To better track relationships, each taxon includes a prefix which
is an abbreviation of it family-group (c.f. Table 3, S1), and the
suffix includes the DNA voucher code and letters correponding to
the gene regions sequenced, corresponding to the three regions of

18S (tuv), 285-D2 (x), D3 (y) and D4-5 (z).

Results

Alignment models, tree length and clade support
Summaries of the 16 datasets generated from the two
submatrices are presented in Table 2. The core region (SS) was
2996 bp in length and only slightly shorter than the MAFFT
alignment of the same data (3,024-3,025 bp), with the differences
accumulated mostly in the 28S D2 region. The application of the
guide tree to the RAAs produced the longest alignment (4,369—
4,536 bp) with the greatest impact on the length of the 285 D2 and
D3 regions. Application of the guide tree greatly increased the
number of parsimony informative sites (1,675-1,773 bp), the
number of uninformative (autapomorphic) sites (550-565 bp), and
had the greatest impact on tree length using the SSME dataset as a
metric (32,220-32,236 steps) (Table 2). The MAFFT aligned
RAAs without a guide tree were added to both the core region
(SSME, SSMG and SSML) and to the MAFFT alignment of the
core region (MEME, MGMG and MLML). Using mapped state
changes and the SSME metric, the core + no guide tree RAAs
datasets produced the shortest tree topologies (31,951-31,957
steps). Both the alignment length, and the RAxML best score
differed very little within the different MAFFT variants of each
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Table 2. Alignment strategies for use of secondary structure and MAFFT alignments of both core/stem (SS) and ambiguous (RAA)

regions.

dataset core/stem  RAA length inform. uninfo. 185a 18Sb  18sc  28S 28s 285 RAxML No. of steps
alignment  alignment D2 D3 D4-5 best score SSME data

SSNR SS no RAA 2996 853 356 500 757 633 591 333 182 -85277.62 32461

SSGE SS guide tree+E-INS-i 4369 1675 566 507 969 701 1302 519 371 -144234.60 32236

SSGL SS guide tree+L-INS-i 4369 1676 565 507 969 701 1302 519 371 -144255.37 32223

SSGG SS guide tree+G-INS-i 4536 1773 550 507 963 697 1451 531 387 -144123.77 32220

SSME SS no guide+E-INS-i 3917 1408 483 506 906 693 993 450 369 -150220.93 31951

SSML SS no guide+L-INS-i 3917 1408 487 506 906 693 993 450 369 -150223.77 31957

SSMG SS no guide+G-INS-i 3906 1433 468 506 906 694 1023 450 327 -147954.87 31951

MENR E-INS-i no RAA 3024 861 375 507 758 634 605 337 183 -85889.86 32522

MLNR L-INS-i no RAA 3024 861 374 507 758 634 605 337 183 -85852.51 32483

MGNR  G-INS-i no RAA 3025 859 380 507 758 634 606 337 183 -85953.75 32527

MEME E-INS-i no guide+E-INS-i 3944 1415 502 513 907 694 1007 453 370 -150774.64 32247

MLML L-INS-i no guide+L-INS-i 3944 1415 501 513 907 694 1007 453 370 -150775.39 32236

MGMG  G-INS-i no guide+G-INS-i 3934 1438 492 513 907 695 1038 453 328 -148553.26 32254

MESR E-INS-i (all data by partition) 4133 1536 553 506 901 693 1196 531 306 -145056.78 31983

MLSR L-INS-i (all data by partition) 4099 1507 545 506 901 693 1162 531 306 -145084.06 32187

MGSR G-INS-i (all data by partition) 4139 1519 551 506 901 694 1201 531 306 -145293.59 31997

The guide tree was generated from a RAXML analysis of the SSNR dataset (no RAA). Except for the all data alignments (no submatrix partition), each of the 55 RAA blocks

were aligned independently and reinserted into the appropriate gene partition for analysis. E-INS-i, G-INS-i and L-LINS-i are MAFFT alignment options. The RAXML best

score was obtained from 10 independent runs using CIPRES v.2.0. The number of informative and uninformative sites and parsimony steps were calculated in PAUP 4.0*

for each resulting tree using the SSME dataset.

doi:10.1371/journal.pone.0027023.t002

alignment model. The MAFFT alignment of all data without
regard to partition (MESR, MGSR and MLSR) produced an
alignment of intermediate length (4,099-4,139 bp).

Phylogenetic Analyses. A summary of supported clades
across six of the 16 analyses is presented in Tables 3 and 4, along
with a summary of the >50% majority rule consensus support
(MJR) across all 16 best known likelihood (BKL) RAxML trees.
We present the BKL tree from the SSME RAXxML result (Figs 1—
7), with the caveat that this represents only one summary of
relationships found within Chalcidoidea. The clade support tables
are a better representation of the support for traditional subfamily
and family groups (Table 3) and for some higher-level relationships
(Table 4). When present, bootstrap support on Figures 1-7
generally corresponds with support across all analyses.
Surprisingly, there was little impact of alignment strategy (SS or
MAFFT) on the results, except for a slight increase in support for
various clades at all levels with the inclusion of RAAs (core and
RAA, Tables 3, 4).

Interestingly, the automated (MAFFT) alignments of all data
were comparable in clade support to any of the divided alignment
strategies based on recognizing the core and stem data. There was
slightly better clade support using G-INS-i when applied to data
that included RAAs.

Informativeness of RAAs

Within 28S and 18S, distinct structural differences occur
between RAA regions for the outgroups, Mymaridae, and the
remaining Chalcidoidea taxa. For example, RAA(11) shows a
pattern of increase in the number of bases and an associated
decrease in degree of conservation for Chalcidoidea in comparison
to the outgroup taxa (Fig. 8). Alternatively, RAA(15) reduces to a
single nucleotide for Chalcidoidea, with the exclusion of
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Table 3. Summary of traditional clades within Chalcidoidea, diversity sampled, and support from various datasets and analyses.
core only core and RAA RAXML TNT
Code Taxonomy gen spp SSNR MENR SSGE SSME MGMG MGSR MJR* SSME
AG Agaonidae (76/757) 19 104 100 100 100 100 100 100 100 97
AGA ‘Agaoninae” 12 48 - - - - - - - -
AG4 ‘Agaonidae group 4’ 2 3 - par 70 75 86 92 75 -
AGB ‘Blastophaginae’ 3 24 - - - - - - - -
AGK Kradibiinae 2 25 - par - - - - - -
AGT Tetrapusinae 1 4 100 100 100 100 100 100 100 100
AP Aphelinidae (33/1168) 21 87 - - - - - - - -
API Aphelinidae incertae sedis 4 4 n/a n/a n/a n/a n/a n/a n/a n/a
APA Aphelininae 7 22 88P 88> 97° 96° 910 86° 100° 56°
APAY Aphytini 3 12 par par par 53 par par par +
APZ Azotinae 1 12 99 100 100 100 100 100 100 29
APC Coccophaginae 6 43 + + 81 + + + 94 -
APCP Pteroptricini 5 31 par par par par par par par -
APE Eretmocerinae 1 5 100 100 100 100 100 100 100 100
APR Euryischiinae 2 2 100 100 100 89 100 100 100 100
CAL Calesinae (1/4) 1 3 100 100 100 100 100 100 100 100
CH Chalcididae (87/1464) 20 37 - - - - - - - -
CHC Chalcidinae 8 19 - - - - - - - -
CHCB Brachymeriini 1 6 100 100 100 100 100 100 100 100
CHCC Chalcidini 2 8 100 100 100 100 100 100 100 100
CHCR Cratocentrini 3 3 - - - - - - - -
CHCP Phasgonophorini 2 2 98 100 100 100 100 99 100 100
CHD Dirhininae 1 5 100 100 100 100 100 100 100 100
CHE Epitranininae 1 3 + 90 99 95 94 98 100 56
CHH Haltichellinae 8 12 88 90 100 98 98 97 100 +
CHHA Haltichellini 5 9 + + + par - 56 + -
CHHY Hybothoracini 3 3 par par par 93 - par par par
CHS Smicromorphinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
EN Encyrtidae (460/3735) 12 14 + 50 81 72 73 78 100 +
ENE Encyrtinae 8 9 par par par + 72 + 89 +
ENT Tetracneminae 4 5 72 69 87 77 97 par 65 +
EU Eucharitidae (55/423) 22 46 100¢ 100¢ 100¢ 100¢ 100¢ 100¢ 100¢ 100¢
EUE Eucharitinae 16 27 100 100 100 100 100 100 100 96
EUG Gollumiellinae 2 3 80 93 98 76 86 99 100 par
EUO Oraseminae 4 16 par + 71 + + + 75 +
EL Eulophidae (297/4472) 27 28 89¢ 92 99¢ 98¢ 97¢ 98¢ 100¢ e
ELI Eulophidae i.s. 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
ELE Entedoninae 8 8 - + 50 + 74 59 88 +
ELN Entiinae 5 6 - - 67 par + 58 81 +
ELU Eulophinae 9 10 66 + 96 95 91 85 100 =
ELO Opheliminae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
ELT Tetrastichinae 3 3 98 98 100 100 100 100 100 99
core only core and RAA RAxML TNT
Code Taxonomy gen spp SSNR MENR SSGE SSME MGMG MGSR MJR* SSME
EP Eupelmidae (45/907) 19 25 - - - - - - - -
EPC Calosotinae 5 7 - - - - - - - -
EPE Eupelminae 12 14 + + + - + - - -
EPN Neanastatinae 2 4 = - = + - - - =
EY Eurytomidae (88/1424) 14 28 - = . . = = - -
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core only core and RAA RAxML TNT
Code Taxonomy gen spp SSNR MENR SSGE SSME MGMG MGSR MJR* SSME
EYE Eurytominae 9 14 100° 9% 100 100°¢ 100 100°¢ 100° 100
EYH Heimbrinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
EYR Rileyinae 2 7 + + 97 920 87 87 100 +
LEU Leucospidae (4/134) 2 6 98 90 100 100 98 98 100 98
My Mymaridae (103/1424) 13 15 98 95 100 29 98 97 100 61
MyI Mymaridae i.s. 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
MYA Alaptinae 3 3 - - - - - - - -
MYE Eubronchinae 1 2 99 100 98 929 100 87 100 84
MYM Mymarinae 8 9 - - - - - - - -
ORM  Ormyridae (3/125) 2 3 66 56 67 4 61 52 100 4
PE Perilampidae (15/277) 14 34 +f + - - = - = -
PEI Perilampidae i.s. 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
PEA Akapalinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
PEM Philomidinae 3 3 29 98 100 100 100 100 100 97
PEC Chrysolampinae 4 9 73 67 88 72 68 80 100 -
PEP Perilampinae 5 20 96 98 100 100 100 99 100 76
PT Pteromalidae (588/3506) m 130 - - - - - - - -
PTI Pteromalidae i.s. 2 2 n/a n/a n/a n/a n/a n/a n/a n/a
PTO1 Asaphinae 3 3 - - - - - - + -
PT02 Ceinae 1 2 93 93 100 98 98 99 100 98
PTO3 Cerocephalinae 3 3 29 99 100 100 100 100 100 100
PTO4 Chromeurytominae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
PTO5 Cleonyminae 10 10 - - - - - - - -
PTO5D Chalcedectini 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
PTO5C Cleonymini 3 3 68 56 84 54 + 52 100 +
PTO5L Lyciscini 5 5 + + 92 55 A “F 100 aF
PT050 Ooderini 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
PTO6 Coelocybinae 4 4 - - - - - - - -
PTO7 Colotrechninae 2 2 - - - - - - - -
PTO8 Cratominae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
PTO9 Diparinae 6 8 - - - - - - - -
PTO9D Diparini 4 4 - - - - - - - -
PTOSN Neapterolelapini 1 2 57 55 96 73 63 + 81 -
PT10 Epichrysomallinae 16 28 100 100 100 100 100 100 100 93
PT11 Eunotinae 7 - - - - - - - -
PT11E Eunotini 4 5 529 759 90° 86° 939 987 100° 61°
PT11M Moranilini 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
PT11T Tomocerodini 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
PT12 Eutrichosomatinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
PT13 Herbertiinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
PT14 Leptofoeninae 2 3 - - - - - - - -
PT15 Macromesinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a

core only core and RAA RAxML TNT
Code Taxonomy gen spp SSNR MENR SSGE SSME MGMG MGSR MJR* SSME
PT16 Miscogasterinae 9 10 - - - - - - - -
PT16M Miscogasterini 5 6 = = = = = = = =
PT16S Sphegigasterini 2 2 - - - - - - - -
PT16T Trigonoderini 2 2 - - - - - - - -
PT17 Ormocerinae 6 5 - - - - - - - -
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core only core and RAA RAxML TNT
Code Taxonomy gen spp SSNR MENR SSGE SSME MGMG MGSR MJR* SSME
PT17M Melanosomellini 3 3 - - par - + - - -
PT17S Systasini 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
PT18 Otitesellinae 3 4 par - - - - - - -
PT19 Panstenoninae 1 2 96 89 98 98 84 77 100 96
PT20 Pireninae 4 4 - - - - - - - -
PT21 Pteromalinae 17 18 - - - - - - - -
PT21P Pteromalini 4 4 - - - - - - par -
PT22 Spalangiinae 1 3 100 100 100 100 100 100 100 100
PT23 Sycoecinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
PT24 Sycophaginae 5 6 82 94 91 81 77 91 100 r
PT25 Sycoryctinae 2 2 - - - - - - - -
ROT  Rotoitidae (2/2) 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
Sl Signiphoridae (4/76) 8 26 81 80 95 98 97 97 100 52
SIS Signiphorinae 1 9 100 100 100 100 100 100 100 29
SIT Thysaninae 3 12 par par par par par par par par
TAN  Tanaostigmatidae (9/92) 4 5 og" 95" 99" 100" 99" 100" 100" 77"
TE Tetracampidae (15/50) 6 7 - - - - - - -
TEM Mongolocampinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
TEP Platynocheilinae 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
TET Tetracampinae 4 5 100’ 100' 100’ 100’ 100’ 100° 100' 97'
TO Torymidae (68/986) 29 41 - - - - - - - -
TOM Megastigminae 3 6 66 67 99 99 97 97 100 92
TOT Toryminae 28 37 - + 67 + + 62 86 +
TOTI Toryminae i.s. 3 4 n/a n/a n/a n/a n/a n/a n/a n/a
TOTM Microdonteromerini 6 8 - - - par par - par par
TOTN Monodontomerini 6 8 80 par 100 91 89 81 100 97
TOTP Palachiini 2 2 - - - - - - - -
TOTO Podagrionini 4 4 par 57 par 90 par 55 62 e
TOTT Torymini 3 6 75 74 66 87 68 66 100 -
TOTY Torymoidini 4 5 par - - - - - 88 -
TR Trichogrammatidae (83/839) 12 21 - + 61 65 64 + 94 +
TRO Oligositinae 9 10 98 100 97 96 95 93 100 +
TROI Oligositinae i.s. 3 4 n/a n/a n/a n/a n/a n/a n/a n/a
TROC Chaeotostrichini 2 3 99 100 100 100 100 100 100 100
TROO Oligositini 1 2 100 100 100 100 100 100 100 100
TROP Paracentrobiini 1 1 n/a n/a n/a n/a n/a n/a n/a n/a
TRT Trichogrammatinae 3 11 + par par par par par par par
TRTI Trichogrammatinae i.s. 3 5 n/a n/a n/a n/a n/a n/a n/a n/a
TRTT Trichogrammatini 2 6 100 100 100 100 100 100 100 100
Number of clades with positive support: 56 59 60 58 58 59 62 52

= without Azotinae or Eretmocerus;

= without Trisecodes;

= excluding Buresium;

= including Idioporus;

9= excluding Idioporus;

"= not including Cynipencyrtus;

i= excluding Diplesiostigma.
doi:10.1371/journal.pone.0027023.t003

a
b
c
d
e
f
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= excluding Akapalinae and Philomidinae;

Dataset abbreviations explained in Table 4. RAXML majority rule (MJR) is a consensus across all 16 submatrices. Support values are bootstrap percentages. The number
of clades with positive support is summed for all clades with either a + (presence) or numerical support; par = paraphyletic; - = not monophyletic. Estimated diversity
(genera/species) after family group names from Noyes [4]. Taxa represented by a single OTU or incertae sedis (i.s.) were considered not applicable (n/a) for clade support.
= without Agaonidae Group 4 (Wiebesia and Blastophaga R1757);
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Mymaridae. Within the same region, RAA(4) shows a slight but
more subtle increase for Chalcidoidea excluding Mymaridae.
RSC(4) and RSC(4') both show support for Chalcidoidea
excluding Mymaridae based on a respective increase to a 4 base
motif (RSC 4), and an increase to a consistent AT or GT pattern
(RSC 4'; not shown). These structural changes support both
monophyly of Chalcidoidea and a sister group relationship
between Mymaridae and the remaining Chalcidoidea. No RAA
patterns were observed that would add support for relationships in
the outgroup taxa. However within Chalcidoidea, additional
structural changes within variable regions add support to some
relationships (i.e., an increase in 18S loop(4) size in Perilampidae
and Eucharitidae; and deletion of a contiguous variable region
(RAAs 23-25) in Eulophinae + Tetrastichinae). Six variable regions
in Agaonidae demonstrate substantial growth in size, both across
and within the family, that distinguish them from all other
Chalcidoidea. The different sizes of the variable regions might be
expected to have the greatest impact on results from datasets
contrasting the inclusion or exclusion of RAAs, or the MAFFT
alignment without reference to the SS core structure; however,
overall there appeared to be no impact, with all results consistently
supporting monophyly of Chalcidoidea and a sister group
relationship between Mymaridae and the remaining Chalcidoidea.

@ PLoS ONE | www.plosone.org 8

Table 4. Higher group relationships supported across various analyses.

core only core and RAA RAxML TNT
Group Relationships SSNR MENR SSME SSGE MGSR MGMG MJR SSME
Pantolytomiya + Chalcidoidea - + - + - + 62 -
Diaprioidea (part) + Chalcidoidea = = +2 = = = 56 =
‘Diapriidae’ + Chalcidoidea + - - - - - - -
Mymarommatoidea + Chalcidoidea = = = = + = = =
(Proctotrupoidea + Diaprioidea) sister to Chalcidoidea - - - - - - - +
Chalcidoidea 99 95 100 100 98 98 100 100
remaining Chalcidoidea minus Mymaridae 91 55 97 95 55 85 94 +
remaining Chalcidoidea minus Rotoitidae and Mymaridae + + + 76 + + 94 -
Mymaridae: 4—segmented taxa 74 78 75 87 57 80 88 +
Mymaridae: 5-segmented taxa + + 76 62 83 + 88 +
Eulophidae: (Opheliminae + Perthiola) + Entiinae - - + + - - 56 +
Eucharitidae + Perilampidae = = + + + + = +
Perilampidae (with Akapalinae, Philomidinae and Idioporus)  + + par + + + - -
Jambiya + Eucharitidae = = + + + + = +
Jambiya + Perilampidae - + - - - - - -
pteromaloid complex® + + + + + — +¢
Spalangiinae + Agaonidae - - + - - - - -
Sycophaginae + Agaonidae + — - - - - - -
remaining Agaonidae minus Tetrapusinae + 55 + - - + - +
Aphelininae + Coccophaginae + = = = = = = =
Azotinae + Trichogrammatidae + + + - + + 62 -
Azotinae + Signiphoridae = = = = = = =
Agaoninae + Blastophaginae (excluding group 4) + + 65 61 + + 62 +
a= Monomachidae + Diapriidae as sister groups;
b= includes Cratominae, Miscogastrinae, Otitesellinae, Panstenoninae, Pteromalinae and Sycoryctinae;
c= without Heterandrium (Otitesellinae);
d = including Platygerrhus (Microgasterinae: Trigonoderini).
Dataset abbreviations explained in Table 4. RAXML majority rule (MJR) is a consensus across all 16 submatrices. Support values are bootstrap percentages.
Abbreviations: + refers to presence of clade but without numerical support; par = paraphyletic.
doi:10.1371/journal.pone.0027023.t004

Inclusion of the RAAs contributed to the monophyly of
Encyrtinae, Entedoninae and Entiinae (Table 3). Their inclusion
increased the BS support for a number of clades, including
Agaoninae group 4, Encyrtidae, Eulophinae, Rileyinae, Lyciscini,
Eunotini, Signiphoridae and Megastigminae (Tables 3, 4). At a
higher group level, the inclusion of the RAA regions provided a
greater amount of support for Eucharitidae + Perilampidae, and
the genus Jambiya as the sister group of Eucharitidae. In no cases
did the inclusion of RAAs result in a substantial decrease in
support for a clade.

Phylogenetic Relationships

Relationships across the 16 ML analyses overall were the same
regardless of alignment method or the inclusion or exclusion of
RAAs (Figs. 1-7, Tables 3, 4). The parsimony analysis of the
SSME dataset produced more than 10,000 most parsimonious
trees of 31,607 steps (RI=0.62); however the strict consensus was
well resolved (Supplementary Fig. S1) and in general accord with
the likelihood results.

Outgroup relationships generally favored a paraphyletic
Diaprioidea as sister group to Chalcidoidea (Fig. 1), but in a few
cases Mymarommatoidea were the proposed sister group. A core
Proctotrupomorpha clade of Proctotrupoidea sensu stricto, Dia-
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Figure 1. Phylogenetic tree from secondary structure alignment of stem data and E-INS-i alignment of RAAs (3917 aligned; SSME).
RAXML analysis with seed 38652 and 1000 rbs bootstrap replicates (support >50% above branches). Phylogram of entire tree on left colored to match
inset. Taxon names with prefix indicating classification (see Table 3) and suffix indicating DNA voucher number and gene regions included for 18Sa-c
(tuv) and D2 (x), D3 (y) and D4-5 (z). Monophyletic families indicated by gray shading; polyphyletic families other than Pteromalidae indicated

according to inset color scheme.
doi:10.1371/journal.pone.0027023.g001

prioidea, Mymarommatoidea and Chalcidoidea were supported in
all results. Both Ceraphronoidea and Platygastroidea were
distantly related in all analyses.

Chalcidoidea were always monophyletic with strong support, as
was a sister group relationship between Mymaridae and the
remaining Chalcidoidea (Table 4). Chiloe micropteron (Rotoitidae)
was consistently supported in the likelihood results as the sister
group of the remaining Chalcidoidea excluding Mymaridae (94%
MJR), but with bootstrap support only in the SSGE results (BS 76).
However, in the parsimony results Chiloe was deeply nested within
Chalcidoidea (Supplementary Fig. S1).

Relationships within Chalcidoidea were highly variable along
the backbone of the tree and should be regarded as a broad
polytomy, but with consistent and sometimes strong support for
many traditional taxon groupings at the family, subfamily, and
tribe levels (Table 3). There is sometimes a lack of support for
families that can be defined by several justifiable synapomorphies
such as Chalcididae, and there is consistent support for some other
families such as Eulophidae that are founded on what might be
considered as weak loss or reductive features [9].

Discussion

Comparison of alignment strategies

Overall, there was little impact of the application of different
MAFFT alignments to either the RAA regions, the core secondary
structure data, or to the different gene regions without reference to
secondary structure. This is optimistic for the future inclusion of
new taxa to our data set where we can avoid the labor-intensive
approach of having to align new taxa to our existing secondary
structure model. Inclusion of the RAAs contributed to monophyly
and clade support for a number of taxa, and also increased support
at higher levels. Furthermore, structural differences found in
various RAAs (Fig. 8) provide clear support for Chalcidoidea, a
sister-group relationship between Mymaridae and other Chalci-
doidea, and for some of the higher-level groups within Chalcidoi-
dea. Clearly, RAAs do provide some phylogenetic signal and their
inclusion in analyses is warranted despite some authors recom-
mending complete [52] or partial [19] deleting of these regions.

Outgroup relationships

We found either Mymarommatoidea or Diaprioidea as the
sister group of Chalcidoidea. These equivocal results were similar
to results from a recent analysis of Hymenoptera that used more
extensive molecular data from four gene regions and nearly
complete 28S and 18S data [11]. Molecular data from both studies
clearly support a monophyletic group of Diaprioidea, Mymar-
ommatoidea and Chalcidoidea within the Proctotrupomorpha.
With the inclusion of morphological data in a combined analysis,
Mymarommatoidea is the sister group of Chalcidoidea [13], as
hypothesized by Gibson [10]. Unfortunately, the biology of
Mymarommatoidea remains unknown, making it difficult to
compare with Chalcidoidea.

Phylogenetic relationships within Chalcidoidea

Chalcidoidea are well supported as monophyletic. Mymaridae
are strongly supported as monophyletic and the sister group of the
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remaining Chalcidoidea. This hypothesis was first proposed by
Gibson [10] based on morphology, and substantiated by Heraty et
al. [11] and Sharkey et al. [13]. Chiloe micropteron (Rotoitidae) was
the sister group of the remaining Chalcidoidea in all of the
likelihood results, but not using parsimony. With more extensive
gene sampling, Heraty et al. [11] recovered the same relationships
in likelihood analyses of the eye-aligned data, and with parsimony
only in the data aligned by eye. Mymaridae and Mymaromma-
tidae are both common in early to mid Cretaceous amber deposits
[5,6,8], which support their early origin and sister group
relationships. Rotoitidae is unknown in any fossil deposits, but
has a potentially archaic pattern of distribution, with genera
known only in New Zealand and southern Chile [6], suggesting a
late cretaceous origin [53].

After Rotoitidae, the relationships within Chalcidoidea become
vague. The backbone of the chalcidoid tree has little support, with
taxonomic groups shifting in different analyses from the base to
somewhere more apical in the topology. As well, there are few
consistent sister group relationships supported among the higher-
level groups. One of the few relationships that can be substantiated
based on larval morphology, Eucharitidae + Perilampidae [54],
occurs in some but not all results, and never has bootstrap support.
This is not simply an artifact of our ribosomal dataset; similar
results with poor backbone support were also found by Desjardins
et al. [18] using 4 nuclear protein coding genes and far fewer taxa.
We do recover support for many of the traditional higher-level
groups within Chalcidoidea, mostly at the subfamily and tribe
level, but also for a few diverse family groups such as Agaonidae,
Eulophidae, Eucharitidaec and Trichogrammatidac. We also
recovered consistent support for a novel pteromaloid complex
that is a mix of morphologically very distinct subfamily groups. For
some of the traditionally well-supported groups such as Chalcidi-
dae, the majority of the included taxa were monophyletic in only
one analysis. A similar rare grouping was also found for a
monophyletic Signiphoridae + Azotinae.

We found some taxa that could not be placed within any
traditional higher-level group. There were also a few singleton
taxa that defied placement, including Diplesiostigma, Cynipencyrtus
and Idioporus. Interestingly, Idioporus is also difficult to place based
on morphology, although neither Perilampidae (likelihood) or
Rotoitidae (parsimony) were ever suggested as being related based
on a morphological study by LaSalle et al. [55]. Calesinae are
currently incertae sedis within Chalcidoidea [56], and our results to
not offer any potential sister groups for this clade. Pteromalidae, as
expected, 1s polyphyletic and affects greatly the composition and
relationships of other taxa. Our results will be reevaluated in a
combined morphological analysis, which is currently underway
(Heraty et al. in prep), but it is clear that the family level
relationships of Chalcidoidea are in need of major revision.

For the discussions below, some historical information on
relationships is presented for each family group followed by the
results of the current study. A more detailed review of classification
history and biology can be found in Gibson et al. [9] and Hanson
& Gauld [57]. We try not to discuss relationships of taxa within
supported clades, but most often species within the same genera
and species groups were monophyletic, and relationships within a
clade were generally the same across different analyses (Figs 1-7).
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Figure 2. Phylogenetic tree of Chalcidoidea (continued).
doi:10.1371/journal.pone.0027023.g002
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Figure 3. Phylogenetic tree of Chalcidoidea (continued).
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Figure 4. Phylogenetic tree of Chalcidoidea (continued).
doi:10.1371/journal.pone.0027023.9004
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EUO_Timioderus_peridentatus_D0116_uxyz
EUO_Timicderus_refringens_D0185_xy
EUO_Indosema_indica_D2212_uvxyz
EUQ_Orasema_texana_D0123_wxyz
EUO_Orasema_simulatrix_D0422_vxyz
EUO_Orasema_nr_coloradensis_D0433_uvxyz
EUO_Orasema_delicatula_DO0632_vxyz
EUQ_Orasema_simplex_D2256_tuxyz
EUE_Psilocharis_afra_D0156_uxyz

100 | EUE_Psilocharis_afra_D2273_tuvxyz

100

100

Eucharitidae

a9

EUE_|

EUE_Psilocharis_theocles DO170b_uxy

EUE_Psilocharis_pacifica_D1259_uvxyz

EUE_Ancylotropus_cariniscutis_D0407_uvxyz

= EUE_Eucharissa_natalica_D0485_xy
EUE_Ancylotropus_montanus_D2747 _uxyz

aBEUEjichizaspuiieLaeﬂe‘LE‘)0655,u:ty7.

100
Eucharitinae

EUE_Saccharissa_vicina_D1592_xy
EUE_Saccharissa_alcocki_D2032_tuvxyz
EUE_Galearia_bruchi_D2522_wxyz
EUE_Kapala_floridana_D0432_uxy
EUE_Colocharis_napoana_DO0378_uxy
EUE_Obeza_sp_D2493_uvxyz
EUE_Lophyrocera_pretendens_D0634_uvxyz
100L EUE_Lophyrocera_variabilis_D2325 vxyz
EUE_Pseudochalcura_prolata_D2494_xyz
EUE_Substilbula_pallidiclava_D0965_uxyz
EUE_Eucharis_sp_D1843_uxy
EUE_Eucharis_albipennis_D0729_uvxyz
EUE_Eucharis_nr_adscendens_D0337_xy
gz~ EUE_Eucharis_adscendens_D0486_xy
EUE_Neostilbula_ranomafanae_D1448_tuxyz
EUE_Pseudometagea_montana_D0321_uvxy
100|p EUE_Pseudometagea_schwarzii_D0274b_uvxy
L EUE_Pseudometagea_bakeri_D0322_uvxyz

EPC_Licrooides_umbilicatus_D1968_uvxyz

EPC_, 1 \ D2753_xyz
EPC_Eusandalum_sp1_D1521_uxyz
EPC_Eusandalum_sp3_D2666_xyz
95 EPC_Eusandalum_sp2_D2665_xyz

_|——'I'()TV_FIalykuia_a!hihiﬂa_F‘JOﬂ24_xyz
70 TOTY_Boucekinus_tatianae_PJ0025 xyz
TOTP_Propalachia_borneana_D2472_xyz
TOTY_Pseudotorymus_sapphyrinus_PJ001_xyz
TOTY_Pseudotorymus_napi_D2477_xyz
TOTN_Zdenekius_smithi_PJ0020_xyz
TOTN_Perrisocentrus_sp_PJ0029_xyz
TOTI_Zaglyptonotus_sp_PJ0023_xyz
81 TOTN_Anneckeida_sp2_PJ0011
00— TOTN_Anneckeida_sp1_D2480_x
100 TOTN_Rhynchoticida_maal_PJ0022_xyz
&4 TOTN_Monodontomerus_sp_D1631_uxyz

Calosotinae

Toryminae

a1|| 100

Palachiini (TOTP)
Torymoidini (TOTY)
incertae sedis (TOTI)

100 TOTN_Monodontomerus_minor_D2476_xyz

Figure 5. Phylogenetic tree of Chalcidoidea (continued).

doi:10.1371/journal.pone.0027023.g005
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Phylogeny of Chalcidoidea

TOTP_Palachia_hayati_D2473_uxyz
TOTO_Podagrionella_sp_PJ0009_xyz
TOTO_Propachytomoides_sp_PJ0017_xyz
TOTO_Mantiphaga_sp_PJ0032_xyz
TOTO_Podagrion_sp_D0023_tuvxyz
TOTT_Torymus_sp_D0027_uvxyz
TOTT_Ecdamua_cadenati_D2470_uxyz
TOTT _Torymus_sp_PJ0007_tuxyz
TOTT_Torymus_bedeguaris_PJ0003_xyz
TOTT_Physothorax_sp_R1217_03_uxyz
TOTT_Physothorax_bidentulus_D2471_xy
TOTI_Glyphomerus_sp_R1339_01_uxyz
TOTI_Glyphomerus_stigma_D2647_uvxyz
TOTI_Echthrodape_sp_D0255_uxyz
TOTM_Idarnotorymus_pulcher_PJ0005_xyz
TOTM_ldamatorymus_pulcher_R1317_15_uxyz
TOTM_Pseuderimerus_luteus_D2475_xyz
TOTM_Pseuderimerus_burgeri_D1549_uxyz
TOTM_Erimerus_wickhami_D2481_xyz
TOTM_Microdontomerus_sp_PJ0O008_xyz
TOTN_Chrysochalcissa_olivacea_D2478 uxyz
TOTY_Torymoides_kiesenwetteri_PJ0006_xyz
TOTM_Eridentomerus_arrabonicus_PJ0002_xyz
TOTM_Eridontomerus_sp_R1317_21_uxyz
TOTM_Ditropinotus_sp_PJ0026 xyz

Toryminae
Microdontomerini (TOTM)
Palachiini (TOTP)
Podagrionini (TOTO)
Torymini (TOTT)
Torymoidini (TOTY)
incertae sedis (TOTI)

Torymus

96

Chrysochalcissa

APC_Coccobius_sp3_D1387_uvxy

APC_Coccobius_sp5_D2702_vxyz

APC_Coccobius_fulvus_D1900_tuvxyz

95— APC_Coccobius_sp7_D2706_vxyz “
APC_Coccobius_sp4_D1492_uvxy \ ‘

APC_Coccobius_sp6_D2703_vxyz

APC_Coccobius_sp1_D1060_xy

APC_Coccobius_sp2_D1063_uvxy

54

psmm

Coccobius

74

APCP_Pteroptrix_sp1_D2704_tuvxyz
APCP_Pteroptrix_sp2_D2750_xyz
APCP_Pteroptrix_sp3_D2819_tuvxyz
APC_Coccophagus_sp_1_D0580_uvxyz
APC_Ci . sp_2_DOS77_uvxy
APC_Ci us_scutellaris_D1601_uvxy
APG_Coccophagus_sp_3 D1036_uvxy -
APC_Coccophagus_rusti_D1056_tuvxyz

Coccophaginae :

Pteroptrix

APCP_Coccophagoides_fuscipennis_D0571_tuvxyz
APCP_Encarsia_quercicola_D0140_tvxyz
APCP_Encarsia_nr_strenua_D0974_vxyz
APCP_Dirphys_sp_D2672_xyz
APCP_Encarsia_lutea_D0235_xy
APCP_Encarsia_nr_perniciosi_D0132_xy
APCP_Encarsia_nigricephala_D0471_xy
APCP_Encarsia_perplexa_D0296_xy
APCP_Encarsia_guadeloupae_D0449_xy
APCP_Encarsia_hispida_D0153_uxy
APCP_Encarsia_haitiensis_D0450_xy o
APCP_Encarsia_meritoria_D0242_xy P
APCP_Encarsia_formosa_D0302_xy " g um
APCP_Encarsia_luteola_D0243_xy - - ,\__n
APCP_Encarsia_transvena_D0218_xy \
APCP_Encarsia_oakeyensis_D0459_xy ‘ 4 \
APCP_Encarsia_bimaculata_D0152_uxy
APCP_Encarsia_protransvena_D0136_xy
APCP_Encarsia_nr_citri_D0456_xy
—— APCP_Encarsia_noyesi_D0133_xy
APCP_Encarsia_nr_azimi_D0463_xy
APCP_Encarsia_nr_inaron_D0589_vxy
88L APCP_Encarsia_inaron_D0465_xy
APCP_Encarsia_smithi_D0299_uxy ‘ n—
APCP_Encarsia_pergandiella_b_D0221_uxy
APCP_Encarsia_pergandiella_a_D0145_xy
APCP_Encarsia_cibcensis_D0461_xy
APCP_| ia_citrina_D0272_xy

Coccophagus /
4

osmm

Coccophagoides

LEU_Leucospis_sp1_D1268_uxyz
LEU_Leucospis_sp2_D1368_tuvxyz
8aL EU_Leucospis_sp3_D2287_xyz

89

LEU_Leucospis_affinis_a_D0001_ux
LEU_Leucospis_affinis_b_D1784_uvxyz

_Ir PT14_Doddifoenus_wallacei_D2051_uxyz
E

EPE_Xenanastatus_sp_D2074_tuvxyz E|y pe]minae (in part)
EE CHCR_Cratocentrus_pruinosus_D1776_uxy

100

sar EYR_Rileya_atopogaster D1644_wxy
EYR_Rileya_grisselli_D2027 _tuvxyz

PT22_Spalangia_erythromera_R1314_02_uxyz
ITLT_— PT22_Spalangia_nigroaenea D2346_uxyz & pa lan giinae
91

LEU_Micrapion_sp_D2278_xyz
LEU Leucospis_sp4_D2279 uvxyz

Leucospidae

Micrapion

YH_Heimbra_sp_D1440_uvxyz Heimbrinae

oHOR_ Acarthochalee marcans. 02317 waye  CDIAICIMINGE (I part)
CAL_Cales_berryi_D1428_tuvxyz

CAL_Cales_noacki_D0804_tuvxy
CAL_Cales_noacki_D1519_tuvxyz

CAL_Cales_noacki_D1290_uvxy

Calesinae

Rileya
EYR_Austrophotismus_daicles_D1633_xy
EYR_Rileya_longiterga_D1639_uxyz
EYR_Rileya_sp2 D1471_uvxyz
EYR_Rileya_sp1_D1341_uvxy

o2mm rd

Rileyinae

Spalangia
PT22_Spalangia_nr_haematobiae_D1483_uxyz

Figure 6. Phylogenetic tree of Chalcidoidea (continued).

doi:10.1371/journal.pone.0027023.g006
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Phylogeny of Chalcidoidea

Tetrapusinae et Tevapus sp 195301 uxyz
700 AGT _Tetrapus_sp_R2161_01_uxyz
83 AGT _Tetrapus_sp_R2185_01_uxyz

68! AGT Tetrapus_ecuadoranus_R2180_01_uxyz

AGB_Valisia_sp_R1991_01_uxyz Blastophaginae k
100 [ AGB_Valisia_javana_hilli_R1745_01_uxyz = p g Tetrapus male
96 AGB_ Valisia_esquirolianae R1619 01 uxyz (In part)
AGA4_Blastophaga_sp_R1757_02_uxyz

AGA4_Wigbesia_sp_R1904_01_uxyz GROUP 4

AGA4_Wiebesia_conlubernalis_R1905_01_uxz

AGK_Ceratosolen_sp1_R1328_01_uxyz

AGK_Ceratosolen_sp_R1986_01_uxyz

AGK_Ceratosolen_sp_R1683_01_uxyz

AGK_C \_nr_bianchi_D1961_uvxyz

AGK Ci _armipes_R2197_01_uxyz Loon
TL‘: AGK_Ceratosalen_sp_R2195_01_uxyz Tetrapus female
20 AGK_Ceratosolen_sp_R2196_01_uxyz

AGK_Ceratosolen_emarginatus_R1910_01_uxyz ihii =

AGK_Ceratosolen_appendiculatus_R1423 01_uxyz Kr?d ! bl inae

AGK_Ceratosolen_blommersi_R1821_01_uxyz (|n part)

AGK_Ceratosolen_stupefactus_R1816_01_uxyz

AGK_Ceratosolen_arabicus_R2191_01_uxyz

AGK_Ceratosolen_megacephalus_R1929_01_uxyz

AGK_Ceratosolen_galili_R1532_06_uxyz

AGK_Ceratosolen_flabellatus _R1940_01_uxyz

g AGK_Ceratosolen_silvestrianus_R1810_02_uxyz

l= - ——————— AGK_Kradibia_sessilis_R1263_01_uxyz

AGK_Kradibia sp_R1864_01_uxyz

AGK_Kradibia_rutherforti_R1868_01_uxyz

AGK_Kradibia_sp_R2063_01_uxz ihii

AGK_Kradibia_gestroi_afrum_R2186_01_uxyz Krad [ bl Inae

AGK_Kradibia_sp_R1247_01_uxz (in part)

100 L AGK_Kradibia_sp_R1920_01_uxyz

AGK_Kradibia_ghigii_R1420_02_uxyz

AGK_Kradibia_commuta_R2048_01_uxz

AGA_Pleistodontes_imperialis_R1396_01_uxyz

AGA_Pleistodontes_nitens_R1416_02_uxyz

G4 AGA_Pleistodontes_rigisamos_R1410_01_uxyz

AGA_Pleistodontes_xanthocephalus_1422_02_uxyz

AGA_Pleistodontes_greenwoodi R1422 01_uxyz .

* |'2— hca_Prestodontes. sp2. 02082 ryz Agaoninae

AGA_Pleistodontes_froggatti R1397 01_uxyz ( in pa rt)
AGA_Pleistodontes_nr_blandus_R1252_01_uxyz A

AGA_Pleistodontes_sp_R1372_01_uxyz Pleistodontes female §

AGA_Pleistodontes_sp_nr_blandus_R1252_02a_uxyz

97L AGA_Pleistodontes_sp_nr_blandus_R1252_02b_uxyz

a8

77

AGB_Platyscapa_sp_D1494 uvxy

85 99 L AGB_Platyscapa_sp_R1620_05_uxyz
97 AGE_Platyscapa_quadraticeps_R1752 01_uxyz
87! AGB_Platyscapa_sp_R1330_01_uxyz

AGB_Blastophaga_psenes_R1536_01_uxyz

AGB_Dolichoris_sp3_R_SU165_1275_01_uxyz
AGB_Dolichoris_sps_R_SU16_1228_01_uxyz

AGB_Dolichoris_nsp_R1276_01_uxz

AGB_Dolichoris_sp_R1238_01_uxyz

AGB_Dolichoris_sp4_R_SU71_1238_01_uxyz
AGB_Dolichoris_sp11_R_SU134_1265_01_uxyz .
AGB_Dolichoris_sp8_R_SUBS_1236_01_xyz Blastophaglnae
AGB_Dolichoris_sp_R1237_01_uxyz :
AGB_Dolichoris_sp_R1229_01_uxyz (In pa rt)
AGB_Dolichoris_sp_R1288_01_uxyz Blastophaga male
AGB _Dolichoris_sp9_R_SU80_1239_01_uxyz

AGB_Dolichoris_sp7_R_SUB7_1234_01_uxyz

AGB_Dolichoris_sp12_R_SU179_1283 01_uxyz

AGB_Dolichoris_sp10_R_SU108_1248_01_uxyz

AGB_Dolichoris_sp1_R_GW1225_1235_01_uxyz

98t AGB_Dolichoris_sp2_R_GW1226_1236_01_uxyz

95 AGB_Dolichoris_sp_R1232_01_uxz

AGB_Dolichoris_sp5_R_SUB3_uxyz

AGB_| _quadrupes_R1879_01_uxyz

E AGA_Platyscapa sp_R1586_01_uxyz S,
100 = AGA_Platyscapa_sp_R1624_01_uxyz

= AGA_Agaon_spatulatum_R1925_01_uxyz

T 100 AGA_Agaon_sp_R1938_01_uxyz
i — AGA_Courtella_hladikae_R1934_01_uxyz
AGA_Nigeriella_tusciceps_R1765_05_uxyz
AGA_Alfonsiella_pipithiensis_R2475_01_uxyz
62| 5= AGA_Alfonsiella_longiscapa R2474_01_uxyz

AGA_Alfonsiella_michaloudi_R1935_01_uxyz

57 - AGA_Alfonsiella_brongersmai_R1935 02 uxyz
— AGA_Nigeriella_excavata_R1534_01_uxyz Blastophaga famale
AGA_Allotriozoon_heterandromorphum_R2190_01_uxyz

AGA_Platyscapa_bergi_R1820_01_uxyz
AGA_Platyscapa_sp_R1629_01_uxyz

AGA_Deilagaon_¢ idis_A1372_04_uxyz Agaoninae
AGA_Elisabethiella_reflexa R1813 01 _uxyz il
AGA_Elisabethiella_glumosae_R1937_01_uxyz (|n part)

AGA_Dolichoris_beddomei_R0914_01_uxyz

AGA_Eupristina_verticillata_R1663_03_uxyz

AGA_Eupristina_altissima_R1599_01_uxyz -
AGA_Eupristina_sp_R1594_01_uxyz

e e Agaonidae
AGA_Eupristina_koninsbergeri_R1875_01_uxyz

AGA_Pegoscapus_sp_R1956_01_uxyz

AGA_Pegoscapus_tonduzi_R1530_01_uxz

AGA_Pegoscapus_bagataensis_R1682 01 _uxyz

AGA_Pegoscapus_aguilari_R1529_01_uxyz

AGA_Platyscapa_sp_R1587_01_uxyz

AGA_Waterstoniella_sp_nr_malayana_R1871_01_uxyz

AGA_Waterstoniella_sp_R2066_01_uxz

AGA_Waterstoniella_sp_nr_errata_R1860_01_uxyz

AGA_Waterstoniella_sp_R1878_01_uxyz

AGA_Waterstoniella_sp_R1876_01_uxyz

100! AGA_Waterstoniella_sp_R1855_01_uxyz

0.2 0.1
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Figure 7. Phylogenetic tree of Chalcidoidea (continued).

doi:10.1371/journal.pone.0027023.g007

Agaonidae.

secondary structure mask:

Aphanogmus_sp_D1499
Ceraphron_sp_D1495
Lagynodes_sp_HymATolL
Dendrocerus_sp_D1498
Megaspilus_fuscipennis_HymATolL
Nixonia_watshami_0SUC188493
Archaeoteleia_sp_1_M293
Aphanomerus_sp_M246
Proplatygaster_sp_HymATolL
Periclistus_sp_HymATolL
Anacharis_sp_HymATolL
Melanips_sp_HymATolL
Parnips_nigripes_HymAToL
Ibalia_sp_2_HymAToL
Paramblynotus_sp_HymAToL
Helorus_sp_HymAToL
Exallonyx_sp_D1496
Exallonyx_sp_HymATolL
Disogmus_sp_MJY123
Austroserphus_sp_HymATolL
Proctotrupes_sp_HymATolL
Pelecinus_sp_HymAToL
Vanhornia_eucnemidarum_HymATolL
Monomachus_sp_HymATolL
Maaminga_sp_HymATolL
Ismarus_sp_HymAToL
Pantolytomyia_ferruginea_HymATolL
Poecilopsilus_sp_HymAToL
Cinetus_californicus_D1951
Opazon_sp_D1953

Anommatium_sp_D1954
Aneurhynchus_sp_D1957
Coptera_sp_1_MJ]Y63
Pantolytomia_sp_MJY171
Entomacis_sp_MJY98
Mymaromella_mira_D104@
Mymaromma_ypt_D@851
Mymaromma_anomalum_D1611
Mymaromma_sp_D1595
MYA_Anagrus_epos_D2208_uvxyz
MYA_Stethynium_ophelimi_D2444 _uxyz
MYE_Eubroncus_spl_D1445_uxy
MYM_Acmopolynema_varium_D@591_uvxyz
MYM_Anaphes_victus_D2564_vxyz
MYM_Australomymar_sp_D2026_tuvxyz
MYM_Ceratanaphes_nsp_D1041_uvxyz
MYM_Erythmelus_rosascostai_D2658_xyz
MYM_Gonatocerus_ashmeadi_D16@2_tuvxyz
MYM_Gonatocerus_triguttatus_D1@54_uvxyz
MYM_Mymar_regale_D2211_tuvxyz
ROT_Chiloe_micropteron_D2025_tuvxyz
AGK_Kradibia_commuta_R2048_01_uxz
AGT_Tetrapus_ecuadoranus_R2180_01_uxyz
APC_Coccophagus_rusti_D1@56_tuvxyz
ENT_Savzdargia_sp_D2657_xyz
EPC_Eusandalum_sp2_D2665_xyz
EPC_Eusandalum_sp3_D2666_xyz
EPN_Metapelma_sp2_D2667_tvxyz
PT17M_Aditrochus_coihuensis_D2668_uvxyz
PT24_Eukobelea_sp_D2659_tuvxyz
PT24_Idarnes_sp2_D2660_vxyz
PT24_Pseudidarnes_sp_D2661_vxyz

Agaoninae and Sycophaginae (as Idarninae),
once included in Torymidae, were moved to Agaonidae by
Boucek [30]. Agaonidae sensu lato were comprised of Agaoninae,

region |

CACGCAC--—=—mmmmm e
CACGCAC-=——m e mmm e
CTCGCAC--—mmmmmmm e
GACGOAC-s2ss s sutusans
CACGCAC-————mmmmm e
CACGCAC--—=m—=mmmm e
CTCGTAC-= === e e e
CTCGCAA--——mmmmmm e e
CTCRTAC-= == e e
CTCGCAC-==mmmmmmmmmm e
CTCOCAC-==mmm e e e
CTCGCAC-=——m—mmmmmmmmme

TTCGCAC-===mmmmmmmmmmmmmm
CTCGCAC=mmmmmmm e e ———
COATCGT mmmmmemam -
CACGCAAC-=-cesocnucinnacan
CACGCAAC--=m=mmmmmmmm e
CACGCAAC-======mmmmmmmm oo
GATGACTCGAGTATACCAATC-----
AAAGACTGATTATTAT ----------
AAGACACTGTTTACAGAC-------~
GAAGACTTGATACAT ----------~
AATAAACTATTGACAT ---------~
GAAGACTGATTTTTAT-==~===-~~
AAATGACACAAAAAC--~--~-~~--~
GTCATTGATTTTAACS===sam=a=a
ATGACTTATGTATAAATTAT--~-~~
ATGACTCATGTATAAATTAT----~-~
TAAAAGACTGATGAAAAAT -—-----
TAAGCTAGCCATAGAGCAC-------
TAAGTCATGTAATTTATTGACAAT--
AAAATCATATAGACAGTTGGTAAAAT
TAGAACGATTTTTAAC----------
TTGAACGCTCTTACCAAC--------
TAGATCGCTTCAATTAC-=------~
TAGATCGCTTCAATTAC---=----~
TAGAACGCTTTGAAATCAC---~---~
TAGATCGCTATAACAC-----~--~-~
TAGATCGCTGTTAAAC--=======~
TTGATCGATGTAAAAC-=~-==-===~
TGGATCGCAATTGAAC----------

Phylogeny of Chalcidoidea

Epichrysomallinae, Otitesellinae, Sycoecinae, Sycophaginae and
Sycoryctinae [58]. Boucek noted that there were no unique
morphological characters to define Agaonidae sensu lato, yet argued

region 2
3m RAA 3n RAR 30
(15) S e - a)
CC0  wssevinm s (O (O O (T cc
GTC  AGCC------- CT-TG-GACG  C------- ACGG
CCT  AGT-------- CCACG-GACG  A------- GCGG
GTC AGTGTTCA---  CC-CG-GACG T------- ACGG
TTC AGTGTTCT---  CC-CG-AACG T------- ACGA
GTC AGTGTTCA---  CC-CG-AACG T------- ACGG
TTC  ACCGCGT----  CC-CG-GAGG T------- TCGG
ACC  ATTAGCGTA--  TC-CG-GAGG T------- GCGG
CTC GTGTTCAC---  TT-TG-GACG AT------ TCGG
CTC ATGCC------ TT-TG-GAGG  T------- GCGG
AGC AGTGTTA----  CC-CG-GATG T------- GCGG
ATC  AGTGTT----- CC-AG-GAGG T------- GCGG
ATC AGTGATA----  CC-CG-GATG T------- ACGG
ATC AGTGATA----  CC-CG-GAGG T------- GCGG
ATC AGTGATA----  CC-CG-G-AG GT------ GCGG
ATC AGTGTTA----  CC-CG-G-AG GT------ GLGG
GCC  AGTGTCA----  CC-CG-AAGG C------- GCGG
GCC  ATGTTTTTAT-  CT-CG-G-GC GATA---- CAGT
GCC AGTGTAA----  TT-CG-GTGG T------- ACGG
ATC AGTGTAA----  CT-CG-GTGC GA------ ACGG
GCC AGTGATA----  CA-CG-GAGC T------- TCGG
GCC  ATGCGATA---  (T-CG-GTGG T------- TCGG
GCC  AGTGTCC----  CA-CG-GAGG T------- TCGG
GCC  AGTGACA----  CT-CG-GAGT TAT----- ACGG
GCC  AGTGCATA---  CC-CG-G-AG CGC----- GCGG
GCC  AGTGTTAA---  CC-CG-G-AG T------- GCGG
GCG AGTGACA----  CC-CG-G-AC C------- 6CGG
GCC  AGTGACA----  CC-CG-G-AT T------- ACGG
GCC  AGTGACA----  C(C-CG-G-AG GC------ GCGG
GCC  AGTGATA----  CC-CG-G-AA T------- GCGG
GCC  AGTGAAA----  CC-CG-G-AA T------- GCGG
GCC  AGAGTTA----  CC-CG-G-AA T------- GCGG
GGC  AGTGCATA---  CC-CG-GAGE C------- 6CGG
GAC AGTGTATA---  CC-CG-GTGG C------- TCGG
GCC  AGTGATA----  CC-CG-G-AT TN------ NCGG
GCC  AGTGATA----  C(C-CG-G-AG GT------ GCGG
CGA  GTGTGT----- CC-CG-GAAC  -------- ACGG
CGC  GCGL------- AC-TG-GAAC  -------- GCGG
CGC  GCGL------- AC-TG-GAAC  -------- GCGG
CTA GCGC------- AC-TG-GAGC  -------- GCGG
GIT CAAGGAAT---  C(T-CG-G-GA T------- ACGG
GTC  TCAGT------ TC-TT-T-AT  -------- TCGG
GCT  TCGGTTATACT  CG-CG-T-TA TA------ ACGG
GIT TGA-------- GT-TC-G-GC  TT------ ACGG
GIT  ACCG------- CC-TG-G-TA C------- 6CGG
GIT  TTAG------- TT-CG-G-TA  T------- TCGG
GCT  CGGTG------ AC-AGAC-GC  -------- GCGG
GIT TC--mmmmmee GT-TT-G-GG  AT------ ACGG
ATC ATTGTTT----  CT-TG-CAAC ===----= GCGG
ATC ATTGTTT----  CT-TG-CAAC -------- GCGG
GIT CTC-mmmmmm- GT-TT-G-AA  TT------ GCGG
o CG-TC-A-GG TTAT---- ACGG
TCG  =--=mmmmm- TG-CA-A-GG  ATT----- ATGA
TCC T--mmmmmmm- CG-TT-C-AG ATA----- ACGA
GCC T---=-m-=- CG-CT-C-GG  ATTT---- ACGG
e CG-CT-C-GG  ATTT---- ACGG
GEC A-m=mmmmmnm CG-CT-C-GG  ATTT---- ACGG
GCC A--mmommoo CG-CT-C-GG  ATTT---- ACGG
L CG-CT-C-GG  ATTT---- ACGG
GTC T---mmm--eo CG-CT-C-GG  ATTT---- ACGG
I CG-CT-C-GG  ACTC----  GCGG
L CG-CT-C-GG  ATTT---- ACGG
GTC Temmmmmmmmm CG-CT-C-GG  ATCT---- ACGG

Figure 8. Examples of structural support from two sections of 285-D2 (indicated by bar) for outgroups and a sampling of
Chalcidoidea. RAA(11) shows an increase in the number of nucleotides and a decrease in the degree of conservation for
Chalcidoidea including Mymaridae (highlighted). In all Chalcidoidea excluding Mymaridae, RAA(15) undergoes a dramatic decrease to either 1
or no nucleotides and RAA(4) shows a slight increase in size. The bordering alignment around RAA(15) demonstrates compensatory changes in

helices 3m, 3n and 3o.
doi:10.1371/journal.pone.0027023.g008

@ PLoS ONE | www.plosone.org

17

November 2011 | Volume 6 | Issue 11 | e27023



against limiting the family to the pollinating group (Agaoninae)
and suggested a sister-group relationship of at least Agaoninae +
Sycophaginae. Grissell [34] suggested that Agaonidae (sensu lato)
may form a derived clade within the Torymidae. Rasplus et al.
[59] revised the Agaonidae, having determined that it was not
monophyletic, limiting the family to include only Agaoninae
(Agaonidae sensu stricto). Cruaud et al. [23] analyzed relationships
within Agaonidae s5.s. and proposed up to four subfamilies,
Tetrapusinae, Agaoninae group 4 (potential subfamily),
‘Blastophaginae’ and ‘Agaoninae’, but with the latter two groups
likely collapsing into a single subfamily Agaoninae.

Agaonidae (sensu stricto) was monophyletic in all analyses with
likelihood BS values of 100% and parsimony support of 97%.
Tetrapusinae were recovered with 100% BS in all analyses
(Table 3), and were either sister group to the remaining
Agaoninae, as reported in [23], or nested within Agaonidae
(Table 4). Agaonidac Group 4 was monophyletic in all of the
likelihood results, but not parsimony. Kradibiinae were never
recovered as monophyletic, although both genera, Aradibia and
Ceratosolen, were each monophyletic. Agaoninae were rendered
paraphyletic in all analyses by Blastophaginae, but a monophyletic
group of Agaonidaec + Blastophaginae, excluding Agaonidae
Group 4, was recovered in most results with low support (Table 4).

None of the other subfamilies previously placed in Agaonidae
were placed near to Agaonidae, although in the SSNR dataset
(core only), Sycophaginae were placed as the sister group of
Agaonidae but without bootstrap support.

Woolley [60] suggested that monophyly of
Aphelinidae was not certain, and noted the historical tendency
to group all parasitoids of adult and nymphal Hemiptera into
Aphelinidae without an understanding of relationships. Presently,
most authors recognize that Aphelinidae may be paraphyletic if
not polyphyletic [9,17,61]. Characters uniting the Aphelinidae
may also not be apomorphic [24,62]. Based on only a few taxa,
Aphelinidae were paraphyletic in the molecular analysis of
Campbell et al. [17]. Previous authors have placed aphelinids
within various families, including Eulophidae [63,64], Encyrtidae
[65,66], Pteromalidae [62] or as a distinct family [67]. Rosen and
DeBach [68] noted that Aphelinidae share morphological affinities
with both Encyrtidae (shape of the mesopleura and structure of the
pro- and mesotibial spurs) and Eulophidae (thoracic sclerite
morphology and antennal segmentation). Gibson [69]
hypothesized an Aphelinidae + Signiphoridae relationship on the
basis of the structure of the mesotrochantinal plate and
metasternum, a relationship also proposed by Domenichini [70].
Woolley [71] found strong morphological evidence uniting
Azotinae + Signiphoridae. Compere and Annecke [67] and
Rosen and DeBach [68] considered Aphelinidae to be more
closely related to Signiphoridae and Encyrtidae. Viggiani and
Battaglia [72] proposed that Aphelinidae were morphologically
allied with Eulophidae and Trichogrammatidae. Relationships

Aphelinidae.

within  Aphelinidae are just as, if not more, complex
[24,63,73,74,75,76,77,78,79,80,81,82].  The  most  recent
treatment of Aphelinidae  [24] recognizes the following

subfamilies and tribes; Aphelininae (tribes Aphelinini, Aphytini,
Eretmocerini and Eutrichosomellini), Eriaphytinae, Azotinae,
Coccophaginae (tribes Coccophagini, Physcini and Pteroptricini),
Eriaporinae and Euryischiinae. Noyes [4] uses Eretmocerinae,
which we follow herein. Calesinae were excluded from
Aphelinidae by Hayat [24].

Our results lend support to the idea that Aphelinidae are not
monophyletic (Figs 1-6). At best, the two subfamilies Aphelininae
(excluding Eretmocerus) + Coccophaginae were monophyletic in the
SSNR  analysis. Aphelininae, Azotinae (dblerus), Eretmocerinae
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(Eretmocerus) and Euryischiinae were each recovered with very
strong BS support in all analyses (Table 3). Coccophaginae were
monophyletic in the majority (94%) of likelihood analyses, but
Coccobius was excluded from the other taxa in the parsimony results
(Table 3). In the majority of cases, the aphelinine tribes Aphelinini
(Aphelinus), Aphytini, and Eutrichosomellini (all Aphelininae) are
monophyletic, although Eutrichosomellini often renders Aphytini
paraphyletic. Within Coccophaginae, Coccophagus consistently
rendered Pteroptricini paraphyletic. Within Pteroptricini, Encarsia
1s consistently rendered paraphyletic by Dirphys.

There was no consistent or plausible sister group taxon for
Aphelininae or Coccophaginae. In the majority of analyses,
Euryischiinae is sister to Cecidellis sp. (Coelocybinae: Pteromalidae),
which can be justified morphologically (RGB). The monogeneric
Eretmocerinae is monophyletic with strong support in all results,
but has no association with other aphelinid taxa. Azotinae were
always monophyletic, with 100% bootstrap support, with former
members of Azotus rendering Ablerus paraphyletic, which is an
expected result. Azotinae were the sister group to Trichogramma-
tidae in the likelihood results, but without bootstrap support
(Table 4). Monophyly of Azotinae + Signiphoridae is supported by
several morphological synapomorphies [71], but this group was
recovered only in the parsimony results (Table 4).

Calesinae (unplaced to family)

Cales (Calesinae) were excluded from Aphelinidae and left
unplaced in Chalcidoidea by Hayat [83]. Mottern et al. [56]
recently reviewed the Calesine, and discussed its unique
morphology and potential relationships with various taxa,
including Aphelinidae, Eretmocerinae, Eulophidae, Mymaridae
and Trichogrammatidae.

Calesinae were monophyletic with 100% BS support in all
analyses (Fig. 6). Included in our analysis are two morphological
and geographically distinct species, Cales berryi from New Zealand,
and Cales noack: from South America, including Chile. This same
pattern of distribution was used as an argument for the archaic
placement of Rotoitidae. Although Cales was intermediate between
Mymaridae and other Chalcidoidea in Campbell et al. [17], it was
always well nested within Chalcidoidea in all of our results. No
consistent outgroups were identified in any of our results.

Chalcididae. Boucek and Halstead [84] noted that the
classification of Chalcididae has changed little over the years. A
sister-group relationship with Leucospidae or even the inclusion of
Leucospidae within Chalcididae was suggested by Gibson [16,85].
Monophyly of Chalcididae has not been previously doubted,
largely based on four morphological synapomorphies [86,87].
Traditional classifications have included Chalcidinae with the
tribes, Chalcidini, Cratocentrini, Phasgonophorini and sometimes
Brachymeriini, with other subfamilies including Dirhininae,
Epitraninae, Haltichellinae and Smicromorphinae [30,88]. In a
phylogenetic analysis of the family, Wijesekara [86] proposed that
Smicromorphinae  were nested within Chalcidinae, with
Chalcidinae including Smicromorphinae sister to the remaining
chalcidids, followed by a sequence of Cratocentrinae,
Brachymeriinae (Brachymeriini + Phasgonophorini), and finally
Dirhininae (Dirhinini + Epitranini) + Haltichellinae (Haltichellini
+ Hybothoracini). Noyes [4] did not recognize Brachymeriinae,
which is the convention followed herein.

Chalcididae were not monophyletic in any of our analyses. The
MENR analysis produced the closest approximation to a
monophyletic Chalcididae, with a grouping of Dirhinus (Dirhini-
nae), Epitranus (Epitraninae), Chalcidinae, Brachymeria (Brachymer-
iinae), Phasgonophorini and 7rgonura (Cratocentrini). However,
this group surprisingly also included two pteromalid subfamilies
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(Macromesinae and Leptofoeninae) and excluded Cratocentrus and
Acanthochalcis (Cratocentrini). Otherwise, the various groups were
inconsistent in their grouping in the other analyses. At the
subfamily level, Epitraninae, Dirhininae and Haltichellinae were
all monophyletic with very strong BS support (Table 3).
Smicromorphinae included only a single taxon, and was either
independent from other chalcidids or it grouped with Cratocen-
trini or Phasgonophorini, but never with Chalcidini as proposed
by Wijesekara. The subfamily Chalcidinae were never monophy-
letic, but the tribes Brachymeriini, Chalcidini and Phasgonophor-
ini all had very high BS support across all analyses (Table 3).
Interestingly, our Old World representatives of Chaleis (the type
genus of the superfamily; occurring Worldwide) render the
widespread New World genus Conura paraphyletic in all analyses.
While monophyly of Haltichellinae was supported in all analyses,
monophyly of the two tribes, Haltichellini and Hybothoracini,
varied.

Our results do not offer much resolution for the relationships
within Chalcididae, but do offer support for recognition of
Brachymeriinae, Dirhininae, Epitraninae, Chalcidinae (as Chalci-
dini), Haltichellinae and Smicromorphinae. Both Phasgonophorini
and Cratocentrini are less easily placed, and we could not recover
the monophyly of the Cratocentrini (7rigonura and Acanthochalcis +
Cratocentrus) in any of our analyses. Leucospidae never grouped
with any of the chalcidid families, which contradicts hypotheses
that they are the sister group of Chalcididae, or that they might
render Chalcididae paraphyletic.

Encyrtidae. The monophyly of Encyrtidae is not questioned
and there is strong morphological evidence to support this family
[89]. An Encyrtidae + Tanaostigmatidae sister-group relationship
has often been proposed, with this clade in turn being sister to
Eupelmidae [69,89,90,91]. Noyes et al. [89] followed the division
of Encyrtidae into the subfamilies Tetracneminae and Encyrtinae
[92,93,94] and noted that while Tetracneminae is undoubtedly

monophyletic, Encyrtinae may represent a paraphyletic
assemblage.
Encyrtidae were monophyletic across all analyses, with

moderate to very strong BS support from the likelihood analyses
with RAAs included (Table 3). Tetracneminae were monophyletic
with moderate to very strong support across most analyses, with
Encyrtinae forming either a paraphyletic or monophyletic sister
group. The extraordinary branch lengths found within Encyrtidae
(Fig. 3) occur in the results of both SS and SS + RAA analyses, and
thus are not simply the result of having several taxa with long RAA
inserts. Our results never supported a close relationship with
Cynipencyrtus, Tanaostigmatidae or any of the eupelmid subfamilies.
Several morphological features support the
monophyly of Eucharitidae [28]. Largely on the basis of the highly
sclerotized first instar larva (planidium), Heraty and Darling [54]
proposed a sister-group relationship for Eucharitidae and
Perilampidae. Based on molecular and morphological evidence,

Eucharitidae.

Gollumiellinae form the sister group of Oraseminae +
Eucharitinae  [6,37]. Akapalinae and Philomidinae were
proposed as belonging to Eucharitidae by Boucek [30].

Philomidinae share planidial larvae with Eucharitidae [95], but
immatures of Akapalinae are unknown.

Eucharitidae sensu stricto (Gollumiellinae, Oraseminae and
Eucharitinae) were monophyletic with 100% BS support across
all analyses. Akapalinae were grouped with Perilampinae in all of
the likelihood results, but as the sister group of Eucharitidae s.s. in
the parsimony analysis. Philomidinae were never grouped with
Eucharitidae.

While Eucharitinae were always very strongly supported,
Oraseminae was occasionally paraphyletic to FEucharitinae.
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Gollumiellinae was paraphyletic only in the parsimony analysis.
Monophyly of Psilocharitini (Psilocharis and Neolosbanus) is not
supported, which is similar to results from other molecular studies
[37].

A Eucharitidae + Perilampidae sister group was retrieved in
most of the likelihood analyses that included RAAs, and also in the
parsimony analysis (T'able 4); however, without bootstrap support.
Morphological support for this group rests on the presence of a
sclerotized planidial first-instar larvae [54,95], and we place some
degree of confidence in results that support their monophyly. With
the inclusion of Philomidinae in this clade, it would support a
single origin of planidia larvae within Chalcidoidea (Fig. 9).
However, parsimony results supported a monophyletic Perilampi-
dae + Eucharitidae, without Philomidinae, which was grouped
instead with some Phasgonophorini (Chalcididae) and Rileyinae
(Eurytomidae).

Eulophidae. Monophyly of Eulophidae generally has not
been challenged, although morphological support is based almost
entirely on character reduction [29]. Based largely on molecular
evidence, Elasmidae was synonymized with Eulophidae by
Gauthier et al. [96]. At a higher level, Schauff et al. [97]
suggested a grouping of FEulophidae, Elasmidae and
Trichogrammatidae, but made note that there was no strong
evidence for such a relationship. Eulophinae were suggested to be
the most basal of the four subfamilies due to their “less-specialized
features” [97]. In a combined analysis, Burks et al. [29] proposed
that Eulophinae + Tetrastichinae were the sister group of
(Opheliminae + Entiinae) + Entedoninae. The only eulophid
with three-segmented tarsi, 7Trisecodes, was removed from
Entedoninae and placed as incertae sedis within Eulophidae [29].
The whitefly parasitoid group Euderomphalini were sister group
to Entedonini in Entedoninae, which was contrary to their
placement in Entiinae by Gumovsky [98].

Eulophidae were monophyletic with strong to very strong
support in all of our analyses (Fig. 4, Table 3), but with the
exclusion of Trisecodes, which in all analyses was sister group to taxa
outside Eulophidae. Support was consistently very high for
Tetrastichinae, and increased with the inclusion of RAAs for
Entedoninae, Entiinae and Eulophinae. As proposed by Gauthier
et al. [96], Elasus (formerly Elasmidae) was always nested within
Eulophinae. As well, Tetrastichinae and Eulophinae (including
Elasmus) have a unique deletion of a contiguous variable region
(RAAs 23-25). Perthiola (Anselmellini) was always the sister group
Ophelimus with high bootstrap support. Anselmellini were placed
outside of Eulophinaec by Gauthier et al. [96]. With added
resolution from the RAAs, Perthiola + Opheliminae grouped either
with Entiinae (54% of likelihood trees and parsimony; Table 4) or
with Entedoninae. Without the RAAs, these four groups were
monophyletic but unresolved. Our results support the hypothesis
of relationships suggested by Burks et al. [29], and substantiate the
potential inclusion of Anselmellini within Opheliminae.

The exclusion of Trisecodes from Eulophidae as proposed by
Burks et al. [29] 1s justified. This genus was usually placed (81% of
likelihood analyses and parsimony), but without strong support, as
the sister group of Tetracampinae (excluding Diplesiostigma), and
was never grouped with other Eulophidae.

Importantly, there was no relationship supported for Eulophi-
dae with any of the aphelinid subfamilies, including Calesinae,
which have many similar reductive features [56]. The analyses
without RAAs (SSNR, MENR) did support a Eulophidae +
(Azotinae + Trichogrammatidae) clade, but otherwise there were
no consistent outgroups, and never any groups that have been
previously proposed in the literature.
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Figure 9. Five life history traits mapped onto SSME likelihood tree. Colored squares refer to presence of a trait in a clade, but not in

a member sampled in this study.
doi:10.1371/journal.pone.0027023.9g009

Eupelmidae. While there is strong morphological support for
the monophyly of each of the three subfamilies of Eupelmidae, it
has been proposed that the family might represent a grade rather
than a clade [9,69,99,100]. The grade was implicated to include
Encyrtidae and Tanaostigmatidae, and potentially Aphelinidae,
which all share an expanded acropleuron and other associated
features; however, there is also a possibility of closer relationships
of one or more subfamilies to Cleonyminae (Pteromalidae) [69].

Eupelmidae were never monophyletic. Also, its subfamilies
Calosotinae, Eupelminae, and Neanastatinae were almost never
monophyletic. The SSME dataset was one of the rare instances in
which Neanastatinae were monophyletic (Fig. 1), but in the same
results both Calosotinae and Eupelminae occur twice in very
different parts of the tree (Figs 3-6). Eupelminae were monophy-
letic in some analyses, including both datasets that did not include
the RAAs (Table 3). Calosotinae were never monophyletic, with
Calosota and Balcha grouping distantly from Archacopelma, Licrooides
and Eusandalum. None of the Eupelmidae ever grouped with
Tanaostigmatidae or Encyrtidae.

Eurytomidae. The monophyly of Eurytomidae was recently
questioned as no synapomorphies defining the family are known
[101]. Indeed, the molecular analyses of Campbell et al. [17] and
Chen et al. [102] and the morphological analyses of Lotfalizadeh et
al. [103] failed to recover a monophyletic Eurytomidae. Stage &
Snelling [104] recognized Heimbrinae, Rileyinae and Eurytominae,
with the latter including the previously recognized Buresiinae. Chen
et al. [102] proposed elevating Rileyinae to family status, while
Lotfalizadeh et al. [103] found Rileyinae to consist of two clades of
unrelated taxa (Rileya and Macrorileya + Buresium). Both molecular
and morphological investigations found Eurytoma to be polyphyletic
[102,103].

Eurytomidae was never recovered as monophyletic in any of
our analyses. However, Eurytominae (excluding Buresium) were
monophyletic in all of our analyses with very high support
(Table 3). Rileya (Rileyinae) were monophyletic in all analyses, but
with very high support only in the likelihood analyses when RAAs
were included. Both Hembra (Heimbrinae) and Buresium (Eur-
ytominae) never grouped with the other eurytomid genera. No
logical outgroups were identified.

Leucospidae. Leucospidae are generally recognized as a
monophyletic group of four genera closely related to Chalcididae
[86,105]. However, characters proposed to support the
monophyly of this combined lineage are all problematic and
potentially convergent [9,86].

Leucospidae were monophyletic and had greater than 90%
support across all analyses. Our one species of Micrapion (South
Africa) consistently rendered Leucospis (worldwide representation)
paraphyletic. No close association with Chalcididae was found.

Mymaridae. Although there was some carly doubt about the
monophyly of Mymaridae [106], the family has been well
substantiated based on morphology and molecular evidence
[17,107,108]. Huber [108] noted that the higher classification of
Mymaridae is unstable, and as per the advice of Huber and
Triapitsyn (personal communication) Mymaridae subfamilies have
been abandoned and genera grouped according to their number of
tarsal segments. Gibson [10] was the first to propose morphological
evidence that Mymaridae might be the sister group of the remaining
Chalcidoidea, but without firm resolution.

Mymaridae were found to be monophyletic in all analyses with
very strong support (Fig. 1, Table 3). The 4-segmented tarsi group,
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represented by the genera Borneomymar, Gonatocerus, Litus and
Ooctonus, were consistently monophyletic across all analyses with
moderate to strong support (Table 4). The remaining genera,
Acmopolynema, Anagrus, Anaphes, Australomymar, Ceratanaphes, Erythme-
lus, Eubroncus, Mymar and Stethynium, formed the 5-segmented tarsi
group. This group is supported in most analyses (88% of likelihood
analyses), with moderate to strong BS support only when RAAs
were included. There was no support for Mymarinae or Alaptinae.
Eubronchinae were monophyletic, but these were represented by
only a single genus. Mymaridae were strongly supported as the
sister group of the remaining Chalcidoidea in all analyses.

Ormyridae. Hanson [109,110] noted that the status and
relationships of Ormyridae are uncertain. Members of the family
have been included as a subfamily in Pteromalidae [111],
Torymidae [112], or as their own family [30].

The two genera, Ormyrus and Ormyrulus, were monophyletic in
all of our analyses but with low to very strong BS support (Fig. 3).
In 56% of the likelihood analyses, all based on use of the core SS
alignment and with or without RAAs, supported a sister-group
relationship with Moranila (Pteromalidae: Eunotinae: Moranilini),
but otherwise there were no consistent outgroup associations, and
never any close association with either of the torymid subfamilies.

Perilampidae. The limits of Perilampidae are not clear, with
variable inclusion of the subfamilies Chrysolampinae, Philomidinae
and Perilampinae, and treatment of each or all groups as a separate
family or subfamily of Pteromalidae [9,100,113]. Akapala (Akapalinae)
were initially placed in Perilampidae, but later transferred to
Eucharitidae [30]. More recently, Fambya was described and
included within Perilampidae, but an association with either
Chrysolampinae or Perilampinae could not be made [114]. Jambiya
has an enlarged ovipositor, which is also a feature of basal lineages of
Eucharitidae, and a relationship with that family cannot be rejected.
A proposed relationship between Perilampidae, Philomidinae and
Eucharitidae is based on presence of a planidial larva [54,95].

In likelihood results, Perilampidae sensu stricto (Chrysolampinae
+ Perilampinae) was never recovered. With RAAs excluded, a
monophyletic ‘Perilampidae’ was recovered with low support that
included Chrysolampinae (67-73% BS), Perilampinae (96-98%
BS), Akapalinae, Philomidinae and Jambiya. This group also
included the pteromalid genus Idioporus (Pteromalidae: Eunotinae:
Eunotini). In these analyses, Eucharitidaec and Perilampidae were
not monophyletic. With the inclusion of RAAs, the results are
more variable, but often recover Perilampidae and Eucharitidae as
monophyletic, Fambiya as sister group to Eucharitidae, but again
with Philomidinae, Akapalinae and Idioporus nested within a
paraphyletic or monophyletic Perilampidae, but still with
Chrysolampinae and Perilampinae each monophyletic (Fig. 5). A
monophyletic Perilampidae s.s. (Chrysolampinae + Perilampinae)
was recovered only in the parsimony analysis. These results also
supported Jambiya as the sister group of Akapalinae + Euchar-
itidae. Philomidinae were distantly placed with Phasgonophorini
(Chalcididae) and Rileyinae (Eurytomidae). Thus, while Euchar-
itidae s.5. is well supported, there is conflicting support for the
definition of Perilampidae and a definitive association with
Eucharitidae.

Pteromalidae. Pteromalidae are essentially a dumping-
ground for presumably monophyletic groups that cannot be
assigned to established families and which lack family status in
their own right [9]. Herein, we recognize the 30 subfamilies of
Noyes [4], as well as the three non-pollinator fig-wasp associated
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subfamilies assigned to Pteromalidae (Otitesellinae, Sycoecinae and
Sycoryctinae) or placed as wcertae sedis (Epichrysomallinae and
Sycophaginae) by Rasplus et al. [59]. Historically, many pteromalid
subfamilies were elevated to family status, only to once again resume
subfamily status within Pteromalidae [9]. There has been no
comprehensive morphological analysis of the family. Molecular
analyses have supported the concept of a polyphyletic assemblage,
but even the most comprehensive studies have sampled relatively
few taxa across the spectrum of the family [17,18]. We were able to
sample 25 of these 36 subfamilies, and where possible sample more
extensively within groups (Table 3). We limit our discussion below to
significant groupings or results. Notably, many of the taxa are
‘almost’ monophyletic, often with the exclusion of one or more taxa,
and many of these cases will need to be evaluated elsewhere.
Pteromalidae were expected to be polyphyletic [9,15], and were
never retrieved as monophyletic. Several subfamilies were
monophyletic and very strongly supported across all analyses
including Ceinae (Spalangiopelta), Cerocephalinae, Epichrysomalli-
nae, Panstenoninae (Panstenon), Pteromalinae, Spalangiinae (Spa-
langia) and Sycophaginae. In no case did support increase with the
addition of RAAs. Of interest is the a novel grouping of the
pteromalid subfamilies Cratominae (Cratomus), Miscogastrinae
(except Nodisoplata), Otitesellinae, Panstenoninae, Pteromalinae,
Sycoecinae (Diaziella) and Sycoryctinae. This grouping occurs in
all analyses, including parsimony, but without bootstrap support.
A clade of Miscogastrinac and Pteromalinae was strongly
supported by Desjardins et al. [18], but none of these other
subfamilies were included as part of that study. This ‘pteromalid
complex’ is peculiar for its small amount of molecular divergence
and high degree of morphological complexity, especially for the
non-pollinating fig wasps Otitesellinae and Sycoryctinae. The low
divergence and stability across various analyses suggest that the
subfamilies in this group might eventually be synonymized under
Pteromalinae. The taxononic placement of Nodisoplata, which was
placed outside of this complex, needs to be reconsidered. The two
other two fig-wasp associated subfamilies, Epichrysomallinae and
Sycophaginae, were monophyletic but not associated with any
consistent outgroup taxon. In one analysis without RAAs (SSNR),
Sycophaginae were the sister group of Agaonidae, but without BS
support. This result was proposed by Copland and King [115].
Coelocybinae, Ormocerinae, Pireninae and Pteromalinae were
never monophyletic. Cleonyminae were polyphyletic. In all
analyses, Cleonymini and Lyciscini were each monophyletic with
low support in all analyses, with Lyciscini gaining increased
support from the inclusion of RAAs. Chalcedectini (Chalcedectus)
had variable relationships, but never with other Cleonyminae.
Ooderini (Oodera) had sister-group relationships that varied from
Leucospidae to Encyrtidae, and on two occasions, Lyciscini.
Cratominae (Cratomus) had variable relationships throughout the
analyses, but often occurred in the pteromalid complex as
suggested by its morphology. Diparinae were never monophyletic,
as also found by Desjardins et al. [18]. Eunotinae were never
retrieved as monophyletic, and the tribes Moranilini and
Tomocerodini, each represented by a single taxon, were
inconsistently allied with other families. Eunotini were monophy-
letic and strongly supported in all of the analyses. Surprisingly,
Leptofoeninae, which have strong morphological support, were
never monophyletic. Ormocerinae were never monophyletic.
Sycoryctinae and Otitesellinae were consistently polyphyletic
which is a result supported by morphology [59]. Within
Otitesellinae, the two Grasseiana species form a monophyletic
group, while Heterandrium sp. and Otitesella sp. were inconsistently
allied with other taxa. Panstenoninaec were nested within
Pteromalinae. Pireninae and Pteromalinae were never monophy-
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letic. Spalangiinae were always monophyletic, but were never
recovered with a consistent sister group.

For Pteromalidae, our results are similar to those of Desjardins
et al. [18] based on an analysis of four protein coding genes. The
family is polyphyletic with respect to most Chalcidoidea and few of
the higher-level assemblages can be consistently grouped with
other pteromalid or chalcidoid groups.

Rotoitidae. In their description of the family, Boucek and
Noyes [116] noted that Rotoitidac may be the sister group of
Tetracampidae and Eulophidae. Other potential associations have
included Eulophidae, Mpymaridae, Trichogrammatidae and
Tetracampidae [15,16]. Based on an analysis of both
distribution and ovipositor morphology, Gibson & Huber [117]
concluded that Rotoitidae might be the second most ancestral
lineage of Chalcidoidea after Mymaridae, but noted that features
of the antenna and mesosoma conflict with this conclusion.

Rotoitidae were represented by one species, Chiloe micropteron. In
all but one of the likelihood analyses, it was basal and sister to the
remaining Chalcidoidea after Mymaridae, with BS support for a
monophyletic Chalcidoidea after Rotoitidae only in the SSGE
results. The alternate likelihood result placed it as the sister group
of Mymaridae, thus still basal within the superfamily. Parsimony
results have Chiloe nested within Chalcidoidea as the sister group of
Idioporus (Eunotinae: Eunotini) in a clade with Systolomorpha
(Pteromalidae: Ormocerinae: Melanosomellini) and Trichogram-
matidae. No morphological features would support this alternative
hypothesis.

Signiphoridae. There is little doubt over the monophyly of
Signiphoridae; however, Thysaninae may be paraphyletic with
respect to Signiphorinae [71,118]. Gibson [69] suggested a
relationship  between Signiphoridae and Aphelinidae, or
members within  Aphelinidae. Woolley [71] proposed a
Signiphoridae + Azotinae sister group based on an unsegmented
antennal club, presence of an epiproct [70] posterior to the
syntergum in all female Azotinae and Signiphoridae, and
apodemes projecting forward from the anterolateral angles of
sterna 3 to 6 of the metasoma of females. Pedata and Viggiani
[119] alluded to an azotine + signiphorid relationship with the
discovery of tubercles above the spiracles of third instar Ablerus
perspeciosus and Signiphora flavella larvae.

Signiphoridae and Signiphorinae (Signiphora) both monophyletic
with very strong support across all analyses (T'able 3). Thysaninae
were paraphyletic in all of our results. The placement of Clytina
was puzzling, with C. giraudi rendering Chartocerus paraphyletic in
all analyses, while Clhytina sp. D1023 was consistently the sister
group of Thysanus.

Signiphoridae were not placed with Azotinae, or any logical
outgroup, in any of the likelihood analyses. In these analyses,
Azotinae was consistently the sister group of Trichogrammatidae.
However, in the parsimony analysis, Azotinae and Signiphoridae
were monophyletic and did not group with Trichogrammatidae.

Tanaostigmatidae. Tanaostigmatidae sensu LaSalle [90] is a
distinct monophyletic group. LaSalle and Noyes [91] transferred
Cynipencyrtus from Encyrtidae to Tanaostigmatidae, yet noted that
this genus was morphologically and biologically distinct from other
members of the family. It has been argued that Gynipencyrtus could
be sister to Encyrtidae, sister to Tanaostigmatidae + Encyrtidae, or
sister to Tanaostigmatidae alone [9,69,99]. There is strong
morphological support for monophyly of the Tanaostigmatidae
+ Encyrtidae clade, but weaker support for the inclusion of
Eupelmidae within this group [9].

Tanaostigmatidae sensu stricto (without Gynipencyrtus) was always
monophyletic with strong support. Gynipencyrtus was variously allied
with other taxa throughout the different analyses, and tanaos-
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tigmatids were never the sister group of Encyrtidae. This disparate
grouping may be an artifact of the larger analysis, as we have been
able to recover Tanaostigmatidae + (Cynipencyrtus + Encyrtidae) in
a study with a smaller and more selective sampling of taxa
(Mottern & Heraty, unpublished).

Tetracampidae probably represents a
polyphyletic assemblage with three extant subfamilies [120].
There is considerable argumentation for placement of the
different subfamilies as Aphelinidae, Eulophidae or Pteromalidae
[9,30,55].

Tetracampidae were never monophyletic in our analyses.
Excluding Diplesiostigma, Tetracampinae were monophyletic and
very strongly supported. Diplesiostigma varied in placement in every
analysis, but never occurred with other Tetracampidae. The two
representatives of Mongolocampinae and Platynocheilinae were
clustered in a monophyletic group in all analyses with very high
support, and most likelihood results grouped them with Eunotini
(Pteromalidae: Eunotinae; excluding Idiporus), however with low
support.

Torymidae. Placement of Torymidae is uncertain, and it was
proposed that the family arose from within the pteromalid lineage
[121]. Historically, Torymidae have included Agaoninae and
Sycophaginae ( = Idarninae), which were removed by Boucek [30].
Torymidae were revised by Grissell [34] and include only two
subfamilies, the largely phytophagous Megastigminae and the
mostly parasitic Toryminae, with the latter divided into seven
tribes that encompassed the previously recognized Erimerinae,
Monodontomerinae and Thaumatotoryminae and several taxa as
incertae sedis. Campbell et al. [17] failed to find a monophyletic
group, despite what they and Gibson et al. [9] noted to be strong
morphological support for the family.

Torymidae were never monophyletic, but Megastigminae and
Toryminae were each monophyletic with very strong support
(Table 3). Support for tribes within Toryminae was variable.
Torymini were monophyletic with low to very strong support in all
analyses except parsimony, and Podagrionini were either mono-
phyletic mostly with low support (62% of likelihood analyses) or
paraphyletic. Monodontomerini were monophyletic with strong
bootstrap support in all analyses, but with the inclusion of the
unplaced Zaglyptonotus and exclusion of Chrysochalcissa which
clusters deep within Microdontomerini. FEchthrodape (Toryminae
wncertae sedis) was previously placed in Eucharitidae and Perilampi-
dae and then Torymidae by Grissell [34]. This genus was
recovered as the sister group of Microdontomerini. The unplaced
Glyphomerus exemplars remained unplaced within Toryminae with
no particular association with other tribes. The two representatives
of Palachiini grouped either with Torymoidini or Podagrionini,
but never together. None of the groups seemed to be impacted by
the inclusion or exclusion or RAAs. No logical sister groups were
identified for either subfamily.

Trichogrammatidae. Trichogrammatidae are well defined
and according to Boucek and Noyes [116], are possibly the only
monothetic family of Chalcidoidea. Owen et al. [35] assessed
higher-level groups and generic relationships based on molecular
and morphological evidence and recognized a paraphyletic
Trichogrammatinae and monophyletic Oligositinae. Of the
groups sampled herein, Ceratogramma (Trichogrammatinae;
unplaced to tribe) were recognized as the sister group of the
remaining Trichogrammatidae.

Trichogrammatidae were monophyletic in nearly all of our
analyses (94% of the MJR consensus trees), but with low BS
support in likelihood analyses only after the inclusion of RAAs.
Ceratogramma was sister to the remaining Trichogrammatidae in all
results, except for one analysis when it was excluded from the

Tetracampidae.
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family (Table 3, SSNR). Our internal relationships mirror those of
Owen et al. [35]. Trichogrammatidae were sister to Azotinae in all
but the parsimony analysis, which placed them as a sister group of
Idioporus, Rotoita and Systolomorpha.

Conclusions

Is the diverse and unsupported backbone of Chalcidoidea the
product of a rapid radiation event [48,122]? Mymaridae first
appear in the early to mid Cretaceous [6]. Based on what appear
to be valid fossils of Eulophidae and Trichogrammatidae, there are
records of higher-level chalcidoids in only one mid-Cretaceous
deposit [8], with records of the same age other than Mymaridae
more questionable [6]. The diversification of chalcidoid families
does not appear until the Eocene, with modern genera common in
Oligocene and Miocene amber deposits [6]. Chalcidoids are
mostly parasitoids, and their host groups in the Hemiptera and
Holometabola were all undergoing an explosive radiation during
the same period at the end of the Cretaceous [123], and a similar
tracking of host diversification is not unexpected.

Using an array of nuclear protein coding genes but with fewer
taxa, Desjardins et al. [18] found similar results that showed a
weak backbone of relationships across their chalcidoid groups
sampled. Given a scenario of explosive radiation of Chalcidoidea
during a relatively short time period, it may be difficult to resolve
higher group relationships with confidence [122]. However, the
trees that we have recovered can help to evaluate some scenarios
within a context of which groups are consistently supported and
their relationships on the various tree topologies. These molecular
results provide a unique perspective for examining relationships
and hypotheses of chalcidoid evolution, especially in a group
prone to morphological convergence.

What is the ancestral mode of host association for Chalcidoidea?
Boucek [124] proposed Cleonyminae or some other wood-beetle
parasitoids as having the most ancestral forms, but hypothesized
that phytophagy could be plesiomorphic for the superfamily. This
latter assumption was based on his observation that phytophagous
species tend to be primitive within their respective groups. The
placement of Chalcidoidea as sister group to either Diaprioidea or
Proctotrupoidea sensu stricto and the basal sister group placement of
Mymaridae argue against Boucek’s hypothesis of a phytophagous
ancestor. As well, the phytophagous groups are scattered across
the tree and almost never basal within a particular lineage, as in
with gall-forming Opheliminae derived from within Eulophidae,
or seed-feeding Megastigminae, which are distantly placed from
their proposed sister group, the Toryminae (Fig. 9).

Noyes [15] argued for a monophyletic Mymaridae + (Rotoitidae
+ Tetracampidae) as the sister group of the remaining Chalcidoi-
dea. Our results somewhat support his hypothesis, placing
Mymaridae and Rotoitidae at the base of the chalcidoid tree
(Fig. 1), but with a different phylogenetic ordering, and with
Tetracampidae both polyphyletic and placed more distally on the
various topologies. Morphological evidence supports a sister group
relationship between Mymaridae and the remaining Chalcidoidea
[10,16,61]. Our results and more comprehensive analyses of
Hymenoptera [11,13] strongly support this hypothesis. Likelihood
results place Rotoitidae as the sister group of the remaining
Chalcidoidea after Mymaridae.

Mymaridae are virtually all egg parasitoids, primarily of
Auchenorrhyncha, Heteroptera and Coleoptera [125]. The only
known exception is for two species of Stethynium attacking larvae of
Ophelimus (Eulophidae) [126]. We included S. ophelimi in our
analysis, and its derived placement within the family suggests a
secondary derivation of larval parasitism (I'ig. 1). Egg parasitism is
likely the ancestral trait for Mymaridae. Within the remaining
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Chalcidoidea, egg parasitism occurs in all Trichogrammatidae and
a few other scattered taxa (Fig. 9). None of our results placed these
chalcidoid egg parasitoids close to the root of Chalcidoidea. Is it
possible for egg parasitism to be ancestral for the superfamily?
Mymarommatoidea may be egg parasitoids of Psocoptera [127].
The small body size of Rotoitidae suggests that they also might be
egg parasitoids, but there is not even a suspected host for this
group [9]. Diaprioidea are primarily larval parasitoids of fly larvae
or pupae with a few taxa hyperparasitic on Dryinidae or
Formicidae [128]; none are egg parasitoids. Even if Mymarom-
matoidea are resolved as the sister group of Chalcidoidea (only in
some of our results), the biology of these and Rotoitidae will need
to be resolved before we can confidently consider egg parasitism as
a basal trait for the superfamily.

Associated with an extreme diversity of host use, larval
morphology is extremely diverse in Chalcidoidea [129]. Two
types of hypermetamorphic development occur in Hymenoptera
[130]. Type II involves deposition away from the host of a
sclerotized planidiform first-instar larva that transforms in later
instars to a typical weakly sclerotized sac-like hymenopteriform
larva. Within Hymenoptera, this occurs only in one genus of
Ichneumonidae (Euceros) and in Perilampidae (including Philomi-
dinae) and Eucharitidae [95]. Although not recovered across all
analyses, our results offer support for the single development of this
trait within Chalcidoidea (Fig. 9).

Another important trait is the use of sessile Sternorrhyncha as
hosts within Chalcidoidea, which ultimately leads to their
importance in biological control programs. Mapping sternor-
rhynchan parasitism, either as primary parasitoids or hyperpar-
asitoids, onto our current ‘best’ hypothesis shows a general
scattering of host use that suggests multiple independent host shifts
to this group. Probably most significant is the lack of grouping in
any of our analyses of Encyrtidae and the aphelinid subfamilies
Aphelininae, Azotinae, Coccophaginae, Eretmocerinae and Eur-
yischiinae, which have in the past been treated as a single family
[66]. Our results suggest that any traits associated with successful
host use of Sternorrhyncha are independent events, and especially
within Aphelinidae, should not be considered as phylogenetically
linked. This is also important when we consider the single origin of
heteronomy, or alternate host use by different sexes, which occurs
only in the monophyletic Coccophaginae (Fig. 9).

Our results present the most comprehensive phylogenetic
analysis of relationships Chalcidoidea based only on molecular

References

1. Heraty JM, Gates ME (2003) Biodiversity of Chalcidoidea of the El Edén
Ecological Reserve, Mexico. In: Gémez-Pompa A, Allen MF, Fedick SL,
Jiménez-Osornio [, eds. Proceedings of the 21st Symposium in Plant Biology,
“Lowland Maya Area: Three Millenia at the Human-Wildland Interface. New
York: Haworth Press. pp 277-292.

2. Noyes JS (2000) Encyrtidae of Costa Rica (Hymenoptera: Chalcidoidea), 1.
The subfamily Tetracneminae, parasitoids of mealybugs (Homoptera: Pseudo-
coccidae). Memoirs of the American Entomological Institute 62: 1-355.

3. Heraty JM (2009) Parasitoid Biodiversity and Insect Pest Management. In:
Foottit B, Adler P, eds. Insect Biodiversity: Science and Society. Hague,
Netherlands: Springer-Verlag Press. pp 445-462.

4. Noyes JS (2011) Universal Chalcidoidea Database website. Available: www.

nhm.ac.uk/entomology/chalcidoids/index.html. Accessed 2011 Sep 30.
. Yoshimoto CM (1975) Cretaceous chalcidoid fossils from Canadian amber.
Canadian Entomologist 107: 499-529.

6. Heraty JM, Darling DC (2009) Fossil Eucharitidae and Perilampidae
(Hymenoptera: Chalcidoidea) from Baltic Amber. Zootaxa 2306: 1-16.

7. Poinar Jr. G, Huber JT (2011) A new genus of fossil Mymaridae (Hymenoptera)
from Cretaceous amber and key to Cretaceous mymarid genera. Zookeys 130:
461-472.

8. Schmidt AR, Perrichot V, Svojtka M, Anderson KB, Belete KH, et al. (2010)
Cretaceous African life captured in amber. Proceedings of the National
Academy of Sciences of the United States of America 107: 7329-7334.

o

@ PLoS ONE | www.plosone.org

24

Phylogeny of Chalcidoidea

data.. While not robust across the backbone of relationships within
Chalcidoidea, they offer some firm insights into the origin and
evolution of this important and highly diverse group of insects.
Monophyly of many of the traditional groups is supported, and the
secondary structure alignment and data set will be useful for future
studies. Many changes in the higher classification of taxa within
Chalcidoidea are suggested by these results. However, we reserve
any judgment on these changes until our combined morphological
and molecular analyses are complete.

Supporting Information

Figure S1 Parsimony analysis of SSME dataset using TNT
(31,607 steps; ri. 0.62, strict consensus of >10,000 trees).
Bootstrap values plotted to nodes with values greater than 95%
represented by dot.

(PDF)
Table S1 Specimens sequenced and deposition information for
specimen data and genebank accession numbers.

(XLS)

Nexus File S1 Chalcidoidea SSME dataset.
(NEX)

Acknowledgments

We thank Andrew Carmichael, Jan Kostecki, Andrew Ernst, Elizabeth
Murray and Albert Owen for sequencing taxa. Help with imaging
specimens was provided by Lisa Gonzalez, Jessica Ortiz, Christine
Martinez, Maria Saleh, and Jasmine Soto. Sequence data for outgroups
were provided by Andy Austin, Matt Buffington and Matt Yoder.
Specimens were obtained from various sources, but in particular we would
like to thank Chris Burwell, Terry Erwin, Lisa Foerster, Michael Gates,
Gary Gibson, Tony van Harten, Yoshimitsu Higashiura, John Huber,
Jung-Wook Kim, John LaSalle, Robert Luck, Lubomir Masner, John
Pinto, Alain Roques, Mike Sharkey, Richard Stouthamer, Serguei
Triapitsyn, Doug Yanega and Bob Zuparko. Help with identifications
was provided by Chris Darling, Gérard Delvare, Gary Gibson, Michael
Gates, John Huber and John Pinto.

Author Contributions

Conceived and designed the experiments: JMH JBM. Performed the
experiments: JMH JBM RAB DH JM AC J-YR PJ. Analyzed the data:
JMH JBM. Wrote the paper: JMH JBM. Designed voucher database: JM.

9. Gibson GAP, Heraty JM, Woolley JB (1999) Phylogenetics and classification of
Chalcidoidea and Mymarommatoidea a review of current concepts
(Hymenoptera: Apocrita). Zoologica Scripta 28: 87-124.

. Gibson GAP (1986) Evidence for monophyly and relationships of Chalcidoi-
dea, Mymaridae and Mymarommatidae (Hymenoptera: Terebrantes). Cana-
dian Entomologist 118: 205-240.

. Heraty JM, Ronquist F, Carpenter JC, Hawks D, Schulmeister S, et al. (2011)
Hymenopteran relationships: structure of a megaradiation. Molecular Phylo-
genetics and Evolution 60: 73-88.

. Castro LR, Dowton M (2006) Molecular analyses of Apocrita (Insecta:
Hymenoptera) suggest that the Chalcidoidea are sister to the diaprioid
complex. Invertebrate Systematics 20: 603-614.

. Sharkey M, Carpenter JC, Vilhelmsen L, Heraty J, Dowling A, et al. (2011)
Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics 27:
1-33.

. Sharanowski BJ, Robbertse B, Walker J, Voss SR, Yoder R, et al. (2010)
Expressed sequence tags reveal Proctotrupomorpha (minus Chalcidoidea) as
sister to Aculeata (Hymenoptera: Insecta). Molecular Phylogenetics and
Evolution 57: 101-112.

15. Noyes JS (1990) A word on chalcidoid classification. Chalcid Forum 13: 6-7.

16. Gibson GAP (1990) A word on chalcidoid classification. Chalcid Forum 13: 7-9.

. Campbell B, Heraty JM, Rasplus J-Y, Chan K, Steffen-Campbell J, et al.
(2000) Molecular systematics of the Chalcidoidea using 28S-D2 rDNA. In:

November 2011 | Volume 6 | Issue 11 | e27023



20.

21.

22.

23.

24.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

39.

40.

41.

42.

43.

Austin AD, Dowton M, eds. The Hymenoptera: Evolution, Biodiversity and
Biological Control. Melbourne: CSIRO publishing. pp 57-71.

. Desjardins C, Regier JC, Mitter C (2007) Phylogeny of pteromalid parasitic

wasps (Hymenoptera: Pteromalidae): Initial evidence from four protein-coding
nuclear genes. Molecular Phylogenetics and Evolution 45: 454-469.

. Letsch HO, Kjer KM (2011) Potential pitfalls of modelling ribosomal RNA

data in phylogenetic tree reconstruction: Evidence from case studies in the
Metazoa. BMC Evolutionary Biology 11: 146.

Gillespie JJ, Munro JB, Heraty JM, Yoder MJ, Owen AK, et al. (2005) A
secondary structural model of the 285 rRNA expansion segments D2 and D3
for chalcidoid wasps (Hymenoptera: Chalcidoidea). Molecular Biology and
Evolution 22: 1593-1608.

Gillespie JJ, Johnson JS, Cannone JJ, Eickbush TH, Gutell RR (2006)
Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (125
and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure,
organization, and retrotransposable elements. Insect Molecular Biology 15:
657-686.

Katoh MY, Kuma K, Toh H, Miyata T (2005) MAFFT version 5:
improvement in accuracy of multiple sequence alignment. Nucleic Acids
Research 33: 511-518.

Cruaud A, Jabbour-Zahab R, Genson G, Cruaud C, Couloux A, et al. (2010)
Laying the foundations for a new classification of Agaonidae (Hymenoptera:
Chalcidoidea), a multilocus phylogenetic approach. Cladistics 26: 359-387.
Hayat M (1998) Aphelinidae of India (Hymenoptera: Chalcidoidea): A
taxonomic revision. Memoirs on Entomology, International 13: 1-416.

. Boucek Z, Delvare G (1992) On the New World Chalcididae. Memoirs of the

American Entomological Institute 53: 1-466.

Narendran TC (1989) Oriental Chalcididae (Hymenoptera: Chalcididae).
Kerala, India: University of Calicut. 441 p.

Gibson GAP (2003) Phylogenetics and classification of Cleonyminae (Hyme-
noptera: Chalcidoidea: Pteromalidae). Memoirs on Entomology, International
16: 1-339.

Heraty JM (2002) A revision of the genera of Eucharitidae (Hymenoptera:
Chalcidoidea) of the World. Memoirs of the American Entomological Institute
68: 1-359.

Burks RA, Heraty JM, Gebiola M, Hansson C (2011) Combined molecular and
morphological phylogeny of Eulophidae (Hymenoptera: Chalcidoidea), with
focus on the subfamily Entedoninae. Cladistics 27: 1-25.

Boucek Z (1988) Australasian Chalcidoidea (Hymenoptera). A Biosystematic
Revision of Genera of Fourteen Familieswith a Reclassification of Species: CAB
International.

Delucchi V' (1962) Résultats scientifiques des missions zoologiques de
I'LR.S.A.C. en Afrique orientale (P. Basilewsky et N. Leleup, 1957), 81.
Hymenoptera Chalcidoidea. Annales du Musée Royal de 'Afrique Centrale
(Série in 8°) Sciences Zoologique 110: 363-392.

Graham MVRAV (1969) The Pteromalidae of north-western Europe
(Hymenoptera: Chalcidoidea). Bulletin of the British Museum (Natural History)
(Entomology) Supplement 16: 1-908.

Hedqvist KJ (1971) Notes on Netomocera Bouc. with description of new species
(Hym., Chalcidoidea, Pteromalidae). Entomologisk Tidskrift 92: 237-241.
Grissell EE (1995) Toryminae (Hymenoptera: Chalcidoidea: Torymidae): A
redefinition, generic classification and annotated world catalogue of species.
Memoirs on Entomology, International 2: 1-474.

Owen A, George J, Pinto J, Heraty J (2007) A molecular phylogeny of the
Trichogrammatidae (Hymenoptera: Chalcidoidea), with an evaluation of the
utility of their male genitalia for higher level classification. Systematic
Entomology 32: 227-251.

Walsh PS, Metzger DA, Higuchi R (1991) Chelex® 100 as a medium for simple
extraction of DNA for PCR-based typing from forensic material. Biotechni-
ques 10: 506-513.

Heraty JM, Hawks D, Kostecki JS, Carmichael AE (2004) Phylogeny and
behaviour of the Gollumicllinae, a new subfamily of the ant-parasitic
Eucharitidae (Hymenoptera: Chalcidoidea). Systematic Entomology 29:
544-559.

. Deans AR, Gillespie JJ, Yoder MJ (2006) An evaluation of ensign wasp

classification (Hymenoptera: Evaniidae) based on molecular data and insights
from ribosomal RNA secondary structure. Systematic Entomology 31:
517-528.

Gillespie JJ, McKenna CH, Yoder M], Gutell RR, Johnson JS, et al. (2005)
Assessing the odd secondary structural properties of nuclear small subunit
ribosomal RNA sequences (18S) of the twisted-wing parasites (Insecta:
Strepsiptera). Insect Molecular Biology 14: 625-643.

Gillespie JJ, Yoder MJ, Wharton RA (2005) Predicted secondary structure for
28S and 18S rRNA from Ichneumonoidea (Insecta: Hymenoptera: Apocrita):
impact on sequence alignment and phylogeny estimation. Journal of Molecular
Evolution 61: 114-137.

Katoh MY, Misawa K, Kuma K, Miyata T (2002) MAFFT" a novel method for
rapid multiple sequence alignment based on fast Fourier transform. Nucleic
Acids Research 30: 3059-3066.

Katoh MY, Toh H (2008) Recent developments in the MAFFT multiple
sequence alignment program. Briefings in Bioinformatics 9: 286-298.
Stamatakis A, Hoover P, Rougemount J (2008) A rapid bootstrap algorithm for
the RAXML web servers. Systematic Biology 57: 758-771.

@ PLoS ONE | www.plosone.org

25

44,

45.

46.

47.

48.

49.
50.

51.

52.

53.

54.

56.

57.

58.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

71.

72.

Phylogeny of Chalcidoidea

Pfeiffer W, Stamatakis A (2010) Hybrid MPI/Pthreads parallelization of the
RAxML phylogenetics code. Ninth IEEE International Workshop on High
Performance Computational Biology (HICOMB 2010) Atlanta, April 19, 2010.
Miller M, Holder MT, CVos R, Midford P, Liebowitz T, et al. (2010) The
CIPRES Portals. CIPRES. pp 2009-08-04.

Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A
(2010) How many bootstrap replicates are necessary? . Journal of Computa-
tional Biology 17: 337-354.

Stamatakis A. Phylogenetic models of rate heterogeneity: a high performance
computing perspective. 2006; Rhodes, Greece).

Regier JC, Zwick A, Cummings MP, Kawahara AY, Cho S, et al. (2009)
Toward reconstructing the evolution of advanced moths and butterflies
(Lepidoptera: Ditrysia): an initial molecular study. BMC: Evolutionary Biology
9: 280[221 pp.].

Swofford DL (2002) PAUP*. Version 4.0 610. Sunderland, Mass: Sinauer.
Goloboff PA, Farris JS, Nixon KC (2003) T.N.T.: Tree analysis using New
Technology. Kebenhaven Universitets Zoologische Museum website. Avail-
able: http://www.zmuc.dk/public/phylogeny/tnt/. Accessed 2011 Oct 10.
Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for
phylogenetic analysis. Cladistics 24: 774-786.

Swofford DL, Olsen GJ (1990) Phylogenetic Reconstruction. In: Hillis DM,
Moritz C, eds. Molecular Systematics. SunderlandMassachusetts: Sinauer
Associates. 588 p.

McLoughlin S (2001) The breakup history of Gondwana and its impact on pre-
Cenozoic floristic provincialism. Australian Journal of Botany 49: 271-300.
Heraty JM, Darling DC (1984) Comparative morphology of the planidial
larvae of Eucharitidae and Perilampidae (Hymenoptera: Chalcidoidea).
Systematic Entomology 9: 309-328.

. LaSalle ], Polaszek A, Noyes ]S, Zolnerowich G (1997) A new whitefly

parasitoid (Hymenoptera: Pteromalidae: Eunotinae), with comments on its
placement, and implications for classification of Chalcidoidea with partcular
reference to the Eriaporinac (Hymenoptera: Aphelinidae). Systematic Ento-
mology 22: 131-150.

Mottern JL, Heraty JM, Hartop E (2011) Cales (Hymenoptera: Chalcidoidea):
morphology of an enigmatic taxon with a review of species. Systematic
Entomology 36: 267-284.

Hanson P, Gauld ID (1995) The Hymenoptera of Costa Rica. Oxford Oxford
University Press.

Bouc¢ek Z (1997) Chapter 4. Agaonidae. In: Gibson GAP, Huber JT,
Woolley JB, eds. Annotated keys to the genera of Nearctic Chalcidoidea
(Hymenoptera). Ottawa: National Research Council of Canada Research
Press. 794 p.

. Rasplus J-Y, Kerdelhué C, Clainche II, Mondor G (1998) Molecular phylogeny

of fig wasps. Agaonidae are not monophyletic. Comptes Rendus de I’Academie
des Sciences, Paris (III) (Sciences de la Vie) 321: 517-527.

Woolley JB (1997) Chapter 5. Aphelinidae. In: Gibson GAP, Huber JT,
Woolley JB, eds. Annotated keys to the genera of Nearctic Chalcidoidea
(Hymenoptera). Ottawa: National Research Council of Canada Research
Press. 794 p.

Heraty JM, Woolley JB, Darling DC (1997) Phylogenetic implications of the
mesofurca in Chalcidoidea (Hymenoptera), with an emphasis on Aphelinidae.
Systematic Entomology 22: 45-65.

Hayat M (1985) The genera of Aphelinidac (Hymenoptera) of the world.
Systematic Entomology 8: 63-102.

Ashmead WH (1904) Classification of the chalcid flies, or the superfamily
Chalcidoidea, with descriptions of new species in the Carnegic Museum,
collected in South America by Herbert H. Smith. Memoirs of the Carnegie
Museum 1: 225-551.

Muesebeck CFW, Krombein KV, Townes HK, eds (1951) Hymenoptera of
America north of Mexico: Synoptic catalog. Agriculture Monograph 2.
Washington, D.C: United States Government Printing Office. 1420 p.
Girault AA (1915) Australian Hymenoptera Chalcidoidea — IV. Memoirs of the
Queensland Museum 4: 1-184.

Gordh G (1979) Encyrtidae. Catalog of Hymenoptera in America North of
Mexico. Washington, DC: Smithsonian Press. 1198 p.

Compere H, Annecke DP (1961) Descriptions of parasitic Hymenoptera and
comments (Hymenopt.: Aphelinidae, Encyrtidae, Eulophidae). Journal of the
Entomological Society of Southern Africa 24: 17-71.

Rosen D, DeBach P (1990) Ectoparasites. In: Rosen D, ed. Armored scale
insects: Their biology, natural enemies, and control. AmsterdamNew York:
Elsevior. 688 p.

Gibson GAP (1989) Phylogeny and classification of Eupelmidae, with a revision
of the world genera of Calosotinac and Metapelmatinae (Hymenoptera:
Chalcidoidea). Memoirs of the Entomological Society of Canada 149: 1-121.

. Domenichini G (1954) Sulla morfologia e posizione sistematica dei Thysanidae (=

Signiphoridae) (Hym. Chalcidoidea). Bolletino di Zoologia Agraria e Bachicoltura
20: 95-110.

Woolley JB (1988) Phylogeny and classification of the Signiphoridae
(Hymenoptera: Chalcidoidea). Systematic Entomology 13: 465-501.

Viggiani G, Bataglia D (1984) Male genitalia in the Aphelinidae (Hym.
Chalcidoidea). Bolletino del Laboratorio de Entomologia Agraria ‘Filippo
Silvestri’ di Portici 41: 149-172.

. Yasnosh VA (1976) Classification of the parasitic Hymenoptera of the family

Aphelinidae (Chalcidoidea). Entomological Review 55: 114-120.

November 2011 | Volume 6 | Issue 11 | e27023



74.

78.

79.

80.

81.

82.

83.

84.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

Khan MY, Shafee SA (1980) Historical Review and classification of the family
Aphelinidae (Hymenoptera: Chalcidoidea). Science and Environment (Aligarh)
2: 59-65.

. Erdos J (1964) Hymenoptera II, Chalcidoidea III. Fauna Hungariae 73: 1-372.
. DeSantis L (1946) Taxonomia de la familia Aphelinidaec (Hymenoptera,

Chalcidoidea). Revista del Museo de la Plata (Nueve Serie) 5: 1-21.

. Ferriere C (1965) Hymenoptera Aphelinidac de I'Europe et du Bassin

Méditerranéen. Paris: Masson. 206 p.

Ghesquiere J (1955) Contribution a I'étude du genre Eriaporus Waterston et
genres affins (Hym. Chalcidoidea Aphelinidae). Memoirs of the Royal
Entomological Society of Belgium 27: 217-238.

Hayat M (1985) Family Aphelinidae. In Chalcidoidea (Insecta: Hymenoptera)
of India and the adjacent countries. Part I. Reviews of families and keys to
families and genera. Pages 226-232Oriental Insects Subba Rao BR, Hayat M,
eds 19: 163-310.

Mercet RG (1929) Notas sobre afelinidos (Hym. Chalc.) 2a nota. EOS 5:
111-117.

Nikol’skaya MN, Yasnosh VA (1966) Aphelinids of the european part of the
USSR and the Caucasas (Hemenoptera: Aphelinidae). Opredeliteli po Faune
SSSR 91: 1-296.

Shafee SA, Khan MY (1978) Subfamilies and tribes of the family Aphelinidae
(Hymenoptera: Chalcidoidea). Journal of Zoological Research, Aligarh 2:
42-45.

Hayat M (1994) Notes on some genera of the Aphelinidae (Hymenoptera:
Chalcidoidea), with comments on the classification of the family. Oriental
Insects 28: 81-96.

Boucek Z, Halstead JA (1997) Chapter 6. Chalcididae. In: Gibson GAP,
Huber JT, Woolley JB, eds. Annotated keys to the genera of Nearctic
Chalcidoidea (Hymenoptera). Ottawa: National Research Council of Canada
Research Press. 794 p.

. Gibson GAP (1993) Leucospidae. In: Goulet H, Huber JT, eds. Hymenoptera

of the World: An identification guide to families. Ottawa: Agriculture Canada
Research Branch Publication 1894/E. 668 p.

Wijesekara GAW (1997) Phylogeny of Chalcididae (Insecta: Hymenoptera) and
its congruence with contemporary hierarchical classification. Contributions of
the American Entomological Institute 29: 1-61.

Gibson GAP (1999) Sister-group relationships of the Platygastroidea and
Chalcidoidea (Hymenoptera) — an alternative hypothesis to Rasnitsyn (1988).
Zoologica Scripta 28: 125-138.

Delvare G (1992) A reclassification of the Chalcidini with a check list of the
New World species. In: Delvare G, Boucek Z, eds. On the New World
Chalcididae (Hymenoptera): Memoirs of the American Entomological
Institute. pp 119-459.

Noyes JS (1997) Chapter 5. Encyrtidac. In: Gibson GAP, Huber JT,
Woolley JB, eds. Annotated keys to the genera of Nearctic Chalcidoidea
(Hymenoptera). Ottawa: National Research Council of Canada Research
Press. 794 p.

LaSalle J (1987) A revision of the New World Tanaostigmatidae (Hymenop-
tera: Chalcidoidea). Contributions to the American Entomological Institute 23:
1-181.

LaSalle J, Noyes JS (1985) New family placement for the genus Cynipencyrtus
(Hymenoptera: Chalcidoidea: Tanaostigmatidae). Journal of the New York
Entomological Society 93: 1261-1264.

Triapitzin VA (1973) The classification of the family Encyrtidae (Hymenoptera,
Chalcidoidea). Part 1. Survey of the systems of classification. The subfamily
Tetracneminae Howard, 1892. Entomological Review 57: 118-125.
Triapitzin VA (1973) The classification of the family Encyrtidae (Hymenoptera,
Chalcidoidea). Part 1. Survey of the systems of classification. The subfamily
Encyrtinae Walker, 1837. Entomological Review 57: 287-295.

Triapitzin VA (1989) Parasitic Hymenoptera of the fam. Encyrtidae of
Palaearctics. Opredeliteli po Faune SSSR 158: 1-489.

Darling DC (1992) The life history and larval morphology of Aperilampus
(Hymenoptera: Chalcidoidea: Phoilomidinae), with a discussion of the
phylogenetic affinities of the Philominiidae. Systematic Entomology 17:
331-339.

Gauthier N, LaSalle J, Quicke DLJ, Godfray HC (2000) Phylogeny of
Eulophidae (Hymenoptera: Chalcidoidea), with a reclassification of Eulophidae
and the recognition that Elasmidae are derived eulophids. Systematic
Entomology 25: 521-539.

Schauff ME, LaSalle J, Coote L (1997) Chapter 10. Eulophidae. In:
Gibson GAP, Huber JT, Woolley JB, eds. Annotated keys to the genera of
Nearctic Chalcidoidea (Hymenoptera). Ottawa: National Research Council of
Canada Research Press. 794 p.

Gumovsky AV (2002) Monophyly and preliminary phylogeny of Entedoninae
(Hymenoptera, Chalcidoidea, Eulophidae): 28S D2 rDNA considerations and
morphological support. In: Melika G, Thuroczy C, eds. Parasitic Wasps:
Evolution, Systematics, Biodiversity and Biological Control. Budapest,
Hungary: Agroinfrom.

Gibson GAP (2008) Description of Leptoomus janzeni, n. gen. and n. sp.
(Hymenoptera: Chalcidoidea) from Baltic amber, and discussion of its
relationships and classification relative to Eupelmidae, Tanaostigmatidae and
Encyrtidae. Zootaxa 1730: 1-26.

Gibson GAP (1993) Superfamilies Mymarommatoidea and Chalcidoidea. In:
Goulet H, Huber JT, eds. Hymenoptera of the World: An identification guide

@ PLoS ONE | www.plosone.org

26

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

Phylogeny of Chalcidoidea

to families. Ottawa: Agriculture Canada Research Branch Publication 1894/E.
668 p.

Gates ME (2008) Species revision and generic systematics of world Rileyinae
(Hymenoptera: Eurytomidae). University of California Publications in
Entomology 127: 1-332.

Chen Y, Xiao H, Fu J, Huang D-W (2004) A molecular phylogeny of
eurytomid wasps inferred from DNA sequence data of 28S, 18S, 16S, and COIL
genes. Molecular Phylogenetics and Evolution 31: 300-307.

Lotfalizadeh H, Delvare G, Rasplus J-Y (2007) Phylogenetic analysis of
Eurytominae (Chalcidoidea : Eurytomidae) based on morphological characters.
Zoological journal of the Linnean society 151: 441-510.

Stage GI, Snelling RR (1986) The subfamilies of Eurytomidae and systematics
of the subfamily Heimbrinae (Hymenoptera: Chalcidoidea). Contributions in
Science 375: 1-17.

Boucek Z (1974) A revision of the Leucospidae (Hymenoptera: Chalcidoidea).
Bulletin of the British Museum (Natural History) (Entomology) Supplement 23:
1-241.

Annecke DP, Doutt RL (1961) The genera of Mymaridae (Hymenoptera:
Chalcidoidea). Republic of South Africa, Department of Agriculture Technical
Services, Entomology Memoirs 5: 1-71.

Schauff ME (1984) The Holarctic genera of Mymaridae (Hymenoptera:
Chalcidoidea). Memoirs of the Entomological Society of Washington 12: 1-67.
Huber JT (1997) Chapter 14. Mymaridae. In: Gibson GAP, Huber JT,
Woolley JB, eds. Annotated keys to the genera of Nearctic Chalcidoidea
(Hymenoptera). Ottawa: National Research Council of Canada Research
Press. 794 p.

Hanson P (1992) The Nearctic species of Ormyrus Westwood (Hymenoptera:
Chalcidoidea: Ormyridae). Journal of Natural History 26: 1333-1365.
Hanson P (1997) Chapter 15. Ormyridae. In: Gibson GAP, Huber JT,
Woolley JB, eds. Annotated keys to the genera of Nearctic Chalcidoidea
(Hymenoptera). Ottawa: National Research Council of Canada Research
Press. 794 p.

Burks BD (1979) Ormyridae. Catalog of Hymenoptera in America North of
Mexico. WashingtonDC: Smithsonian Press. pp 1198.

Boucek Z, Watsham A, Wiebes JT (1981) The fig wasp fauna of the receptacles
of Ficus thonnongii (Hymenoptera Chalcidoidea). Tijdschrift voor Entomologie
124: 149-233.

Darling DC (1997) Chapter 16. Perilampidae. In: Gibson GAP, Huber JT,
Woolley JB, eds. Annotated keys to the genera of Nearctic Chalcidoidea
(Hymenoptera). Ottawa: National Research Council of Canada Research
Press. pp 794.

Heraty JM, Darling DC (2007) A new genus and species of Perilampidae
(Hymenoptera: Chalcidoidea) with uncertain placement in the family. Journal
of the Entomological Society of Ontario 138: 33-47.

Copland MJW, King PE (1973) The structure of the female reproductive
system in the Agaonidae (Chacidoidea, Hymenoptera). Journal of Entomology
(A) 48: 25-35.

Boucek Z, Noyes JS (1987) Rotoitidae, a curious new family of Chalcidoidea
(Hymenoptera) from New Zealand. Systematic Entomology 12: 407-412.
Gibson GAP, Huber JT (2000) Review of the family Rotoitidae (Hymenoptera:
Chalcidoidea), with description of a new genus and species from Chile. Journal
of Natural History 34: 2293-2314.

Woolley JB (1997) Chapter 18. Signiphoridae. In: Gibson GAP, Huber JT,
Woolley JB, eds. Annotated keys to the genera of Nearctic Chalcidoidea
(Hymenoptera). Ottawa: National Research Council of Canada Research
Press. 794 p.

Pedata PA, Viggiani G (1991) Preliminary morpho-biological observations on
Azotus perspeciosus (Girault) (Hymenoptera: Aphelinidae), hyperparasitoid of
Pseudaulacaspis pentagona (Targioni Tozzetti) (Homoptera: Diaspididae). Redia
74: 343-350.

Gumovsky AV, Perkovsky EE (2005) Taxonomic notes on Tetracampidae
(Hymenoptera: Chalcidoidea) with description of a new fossil species of
Dipricocampe from Rovno amber. Entomological Problems 35: 123-130.
Grissell EE (1997) Chapter 21. Torymidae. In: Gibson GAP, Huber JT,
Woolley JB, eds. Annotated keys to the genera of Nearctic Chalcidoidea
(Hymenoptera). Ottawa: National Research Council of Canada Research
Press. 794 p.

Banks JC, Whitfield JB (2006) Dissecting the ancient rapid radiation of
microgastrine wasp genera using additional nuclear genes. Molecular
Phylogenetics and Evolution 41: 690-703.

Grimaldi DA, Engel MS (2005) Evolution of the Insects. New York: Cambridge
University Press. 755 p.

Boucek Z (1988) An overview of the higher classification of the Chalcidoidea
(Parasitic Hymenoptera). In: Gupta VK, ed. Advances in Parasitic Hymenop-
tera Research. Leiden, The Netherlands: E. J. Brill. pp 11-23.

Huber JT (1986) Systematics, biology, and hosts of the Mymaridae and
Mymarommatidae (Insecta: Hymenoptera). Entomography 4: 185-243.
Huber JT, Mendel Z, Protasov A, LaSalle J (2006) Two new Australian species
of Stethynium (Hymenoptera: Mymaridae), larval parasitoids of Ophelimus maskelli
(Ashmead) (Hymenoptera: Eulophidae) on FEucalyptus. Journal of Natural
History 40: 1909-1921.

Huber JT, Gibson GAP, Bauer LS, Liu HP, Gates M (2008) The genus
Mymaromella (Hymenoptera: Mymarommatidae) in North America, with a key
to described extant species. Journal of Hymenoptera Research 17: 175-194.

November 2011 | Volume 6 | Issue 11 | e27023



128.

129.

130.

132.

Masner L (1995) The proctotrupoid families. In: Hanson P, Gauld ID, eds.
Oxford Oxford University Press pp. pp 209-246.

Parker HL (1924) Recherches sur les formes postembryonaires de chalcidiens.
Annales de la Société Entomologique de France 93: 1-210.

Pinto J (2003) Hypermetamorphosis. In: Resh V, Cardé R, eds. Encylopedia of
Insects. New York: Academic Press. pp 546-549.

. Linares AR, Hancock JM, Dover GA (1991) Secondary structure constraints on

the evolution of Drosophila 28S ribosomal RNA expansion segments. Journal of
Molecular Biology 219: 381-390.

Hancock JM, Tautz D, Dover GA (1988) Evolution of the secondary structures
and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster.
Molecular Biology and Evolution 5: 393-414.

@ PLoS ONE | www.plosone.org

27

133.

134.

135.

Phylogeny of Chalcidoidea

Tautz D, Hancock JM, Webb DA, Tautz C, Dover GA (1988) Complete
sequences of the ribosomal-RNA genes of Drosophila melanogaster. Molecular
Biology and Evolution 5: 366-376.

Nunn GB, Theisen F, Christensen B, Arctander P (1996) Simplicity-correlated
size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the
crustacean order Isopoda. Journal of Molecular Evolution 42: 211-223.
Schulmeister S (2003) Simultaneous analysis of basal Hymenoptera (Insecta):
introducing robust-choice sensitivity analysis. Biological Journal of the Linnean
Society 79: 245-275.

November 2011 | Volume 6 | Issue 11 | e27023



