Reciprocal Repression between Sox3 and Snail Transcription Factors Defines Embryonic Territories at Gastrulation - INRAE - Institut national de recherche pour l’agriculture, l’alimentation et l’environnement Accéder directement au contenu
Article Dans Une Revue Developmental Cell Année : 2011

Reciprocal Repression between Sox3 and Snail Transcription Factors Defines Embryonic Territories at Gastrulation

Résumé

In developing amniote embryos, the first epithelial-to-mesenchymal transition (EMT) occurs at gastrulation, when a subset of epiblast cells moves to the primitive streak and undergoes EMT to internalize and generate the mesoderm and the endoderm. We show that in the chick embryo this decision to internalize is mediated by reciprocal transcriptional repression of Snail2 and Sox3 factors. We also show that the relationship between Sox3 and Snail is conserved in the mouse embryo and in human cancer cells. In the embryo, Snail-expressing cells ingress at the primitive streak, whereas Sox3-positive cells, which are unable to ingress, ensure the formation of ectodermal derivatives. Thus, the subdivision of the early embryo into the two main territories, ectodermal and mesendodermal, is regulated by changes in cell behavior mediated by the antagonistic relationship between Sox3 and Snail transcription factors.

Dates et versions

hal-02650200 , version 1 (29-05-2020)

Identifiants

Citer

Hervé Acloque, Oscar H. Ocana, Ander Matheu, Karine Rizzoti, Clare Wise, et al.. Reciprocal Repression between Sox3 and Snail Transcription Factors Defines Embryonic Territories at Gastrulation. Developmental Cell, 2011, 21 (3), pp.546-558. ⟨10.1016/j.devcel.2011.07.005⟩. ⟨hal-02650200⟩
5 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More