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Introduction
The term cell adhesion encompasses a number of mechanisms 
that are conserved from unicellular eukaryotes to higher mam-
mals. Unicellular organisms rely on adhesion to extracellular sur-
faces for movement. Multicellular organisms use cell adhesion to 
move, communicate, differentiate, or self-assemble to form epi-
thelia and organs. Cell adhesion can dictate the fate of a given 
population of cells and is thus essential for life; it is therefore not 
surprising that it is subjected to tight regulation and that escaping 
such regulation may have extreme consequences, ranging from 
cell death to cell over-proliferation. Several types of cell adhesion 
have been characterized and can be grouped into two major 
classes: cell–matrix adhesion and cell–cell adhesion. Cell–matrix 
adhesion is mainly mediated by proteins belonging to the family 
of integrins, which are transmembrane mechanotransducers 

whose specificity for a given ligand is due to their ability to hetero
dimerize (Citi and Cordenonsi, 1998; Campbell and Humphries, 
2011). Cell–cell adhesion represents a more complex mechanism 
that can be further divided into a number of different types of 
interactions, all characterized by specific proteins serving different 
purposes (Citi and Cordenonsi, 1998; Cavallaro and Christofori, 
2004; Hartsock and Nelson, 2008). Common examples of cell–
cell interaction sites are tight junctions (TJs), which seal the space 
between neighboring cells, generating an impermeable barrier 
between the epithelium and the extracellular environment, adher-
ens junctions (AJs), which mediate cell polarization and organo-
genesis, and GAP junctions, which form channels for cell-to-cell 
dissemination of small molecules.

All types of cell adhesion are mediated by adhesins, trans-
membrane proteins with an extracellular domain involved in ligand 
recognition and interaction, and an intracellular domain that trans-
duces signals downstream for the reorganization of the cell cyto-
skeleton and other events (Figs. 1 A and 2 A). Adhesins are 
mechanotransducers and their activation triggers important actin 
rearrangements, usually mediated by the Rho and Ras families of 
small GTPases (Perez-Moreno et al., 2003). This modulation of the 
actin cytoskeleton is controlled by accessory proteins that are gen-
erally specific for a given type of adhesion. At the level of TJs, 
members of the membrane-associated guanylate kinase (MAGUK) 
proteins link transmembrane receptors with the actin cytoskeleton, 
whereas at AJs, proteins of the catenin family provide this link (Citi 
and Cordenonsi, 1998; Perez-Moreno et al., 2003). Like for other 
cell-surface receptors, adhesin inactivation occurs through internal-
ization by clathrin- and/or caveolin-mediated endocytosis, which is 
triggered by post-translational modifications of their cytoplasmic 
domains (Fujita et al., 2002; Shi and Sottile, 2008; Lobert et al., 
2010). The orchestration of adhesin activation and inactivation  
allows cells to coordinate opposite effects such as cell migration 
and the establishment of tight interactions with neighboring cells.

Cell–cell adhesion plays a fundamental role in cell polar-
ity and organogenesis. It also contributes to the formation 
and establishment of physical barriers against microbial 
infections. However, a large number of pathogens, from 
viruses to bacteria and parasites, have developed count-
less strategies to specifically target cell adhesion molecules 
in order to adhere to and invade epithelial cells, disrupt 
epithelial integrity, and access deeper tissues for dissemi-
nation. The study of all these processes has contributed to 
the characterization of molecular machineries at the junc-
tions of eukaryotic cells that have been better understood 
by using pathogens as probes.

Host–pathogen interactions
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Hepatitis C virus (HCV) initially contacts the host cells by 
interacting with the low-density lipoprotein receptors (LDL-Rs). 
The initial steps of viral internalization requires binding to occludin 
and CD81 (Ploss et al., 2009), whereas binding to the N-terminal 
extracellular loop of claudin-1 is involved in the later steps of 
internalization (Fig. 1 B; Evans et al., 2007; Yang et al., 2008). 
Claudin-6 and -9 are also exploited for internalization during  
infection, albeit with lesser efficiency (Meertens et al., 2008).

Reoviruses use the viral surface protein 1 to specifically 
interact with the N-terminal domain of JAM-A and invade host 
cells (Fig. 1 B; Barton et al., 2001; Guglielmi et al., 2007). Adeno
viruses use surface fiber proteins to bind to CAR proteins, dis-
rupt CAR/CAR interactions at TJs (Kerr, 1999; Walters et al., 
2002), and gain access to basolaterally exposed integrins for 
internalization (Fig. 1 B). Similarly, coxsackievirus uses the CAR 
proteins as a coreceptor during infections (Fig. 1 B; Bergelson 
et al., 1997). These viruses initially interact with CD55 (known 
also as the decay-accelerating factor; DAF) at the surface of host 
cells, inducing its clustering (Coyne and Bergelson, 2006) and 
triggering a downstream signaling cascade that activates the 
Src kinases Abl and Fyn. In turn, Abl activates Rac, which 
mediates the rearrangements of the actin cytoskeleton and allows 
coxsackie viral particles to reposition to TJs. Here, the virus 
binds to CAR proteins to invade host cells (Fig. 1 B; Coyne and 
Bergelson, 2006).

Among bacterial pathogens, enteropathogenic Escherichia 
coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) do 
not target host adhesins for adhesion but inject the effector Tir, 
which inserts into the host cell plasma membrane adopting a hair-
pin loop conformation and serves as the exogenous receptor for the 
bacterial surface protein intimin (Knodler et al., 2001; Chen and 
Frankel, 2005; Miyake et al., 2005; Guttman and Finlay, 2009). 
The intracellular domain of Tir recruits and activates the adaptor 
protein Nck, the actin regulators N-WASP and the Arp2/3 com-
plex, and cytokeratin-18, thereby triggering the formation of actin-
based pedestals (Gruenheid et al., 2001; Campellone et al., 2004). 
Formation of the pedestals is driven by the recruitment of clathrin 
at the bacteria–host adhesion site (Veiga et al., 2007). In addition 
to Tir, EPEC and EHEC secrete other T3SS (type III secretion 
system) effectors, including EspF, EspG, and Map, which all have 
an indirect effect on TJ integrity (Fig. 1 C; Dean and Kenny, 2004; 
Viswanathan et al., 2004; Matsuzawa et al., 2005). Although not 
colocalizing directly at TJs, these three effectors are able to 
activate the membrane-associated actin-binding protein ezrin,  
dephosphorylate occludin, and activate myosin II light chain kinase  
(MLCK). Activated MLCK can in turn activate myosin II that 
might have a role in TJ destabilization by pulling on actin fila-
ments (Fig. 1 C). The precise mechanism by which these bacterial 
effectors are able to destabilize TJs remains uncharacterized but 
the related pathogen Citrobacter rodentium, used for in vivo model
ing of EPEC and EHEC infections, induces the same loss of trans
epithelial resistance in mouse tissues (Guttman et al., 2006a,b).

Helicobacter pylori uses a T4SS (type IV secretion sys-
tem) to inject effectors into host cells. One of these, CagA, has 
been ascribed several functions that result in the disruption of 
epithelial polarization and tight junctions. Once injected in host 
cells, CagA undergoes Src-mediated phosphorylation, triggering 

Despite the importance of cell–cell adhesion in providing 
an impermeable barrier to protect the organism from the extra-
cellular environment, a large number of pathogens have evolved 
to preferentially target host proteins involved in cell adhesion 
(Kerr, 1999; Sousa et al., 2005a; Hauck et al., 2006; Stewart and 
Nemerow, 2007; Guttman and Finlay, 2009). Viruses, bacteria, 
and parasites adhere to host cells to avoid shear-induced clear-
ance and most of them are subsequently internalized to find a 
suitable niche for survival and replication, away from immune 
defenses of the host. Pathogen entry mainly occurs by two strate-
gies: either through phagocytosis by specialized cells (such as 
the M cells found within the Peyer’s patches in the intestine and 
specialized in particle uptake from the lumen of the intestine 
across the epithelium; Sansonetti and Phalipon, 1999) or by the 
interaction with receptors at the surface of nonphagocytic cells 
(Pizarro-Cerdá and Cossart, 2006). Receptors involved in cell 
adhesion are often targeted by pathogens to mediate their adhe-
sion and internalization into host cells. In addition, pathogens 
use cell adhesion molecules to cross or disrupt epithelia. As such, 
cell adhesion plays a fundamental role during infection and con-
versely, the study of host–pathogen interactions has given 
unprecedented insights into the molecular components and dy-
namics of such complex cell function. This review focuses on 
the role of cell–cell interactions during infection and on the les-
sons pathogens have taught us about cell–cell adhesion.

Targeting tight junctions
TJs are the most apically located cell–cell junctions and lie at the 
boundary between the apical and basolateral domains of epithelia 
(Fig. 1 A; Steed et al., 2010). The tight nature of these junctions 
prevents paracellular passage of fluids, electrolytes, and macro-
molecules. TJs are maintained by four main groups of transmem-
brane proteins: the occludins, the claudins, the junction adhesion 
molecules (JAMs), and the coxsackievirus and adenovirus receptor 
(CAR) proteins (Fig. 1 A; Citi and Cordenonsi, 1998). Occludins 
and claudins have four transmembrane domains and form homo
dimers via their extracellular loops. JAMs and CAR proteins 
have one transmembrane domain and extracellular IgG-like 
domains that mediate adhesion. All transmembrane components 
of TJs interact with cytoplasmic proteins that provide the link 
with the actin cytoskeleton. These proteins include zona occludens 
1, 2, and 3 (ZO-1, ZO-2, and ZO-3) and the PAR family of pro-
teins (Citi and Cordenonsi, 1998). TJs are the most apical barrier 
of the epithelium; therefore, many pathogens use them, and some-
times disrupt them, to infect a host and spread the infection.

Among viruses affecting TJs, Rotavirus uses the toxins 
NSP4 and VP4 to target and disrupt TJ integrity. These toxins 
depolarize host cells and allow the virus to gain access to baso-
laterally located integrins, which serve as the receptors for 
docking of the virus to the cell (Nava et al., 2004). When re-
leased in the host cytoplasm, NSP4 increases the intracellular 
calcium concentration, which indirectly affects the actin cyto-
skeleton of the host cell and inhibits the recruitment of ZO-1 to 
cell–cell contacts (Tafazoli et al., 2001). VP4 is cleaved to VP5 
and VP8, the latter being responsible for the delocalization of 
claudin-3, ZO-1, and occludin (Fig. 1 B; Dickman et al., 2000; 
Obert et al., 2000; Nava et al., 2004; Beau et al., 2007).
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Figure 1.  Tight junctions and infection. (A) Tight junctions (TJs) form at the border between the apical and the basolateral side of neighboring cells. Their 
main components are occludins, claudins, the JAM family of receptors and the CAR receptors. All of these receptors interact with the actin cytoskeleton 
via the members of the ZO family of proteins (ZO-1, -2, and -3). (B) The Rotavirus (RotaV) toxin NSP4 is released in the host cytoplasm where it increases 
the concentration of intracellular calcium and disrupts the actin cytoskeleton. VP4 is cleaved into VP5 and VP8, the latter interfering with the recruitment 
of ZO-1, occludin, and claudin at the plasma membrane. Upon interacting with the LDL receptor at the surface of the host cell, the hepatitis C virus (HCV) 
uses claudins as receptors for internalization. Reovirus (ReoV) uses the viral surface protein 1 to interact with the JAM-1 receptors and invade host cells.  
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Adenovirus (AV) binds the coxsackievirus and adenovirus receptor (CAR) for internalization. Coxsackievirus (CXV) interaction with CD55 at the surface of 
host cells triggers a signaling cascade that activates the Src kinases Abl and Fyn. Abl activates Rac, inducing the rearrangements of the actin cytoskeleton 
that reposition coxsackie viral particles to TJs. Here the virus binds to CAR proteins to invade host cells. (C) Enteropathogenic (shown) and enterohemorragic 
E. coli (EPEC and EHEC) first adhere to host cells by bundling-forming pili (BFP, not depicted). Then T3SS effectors are secreted, including the bacterial pro-
tein Tir, which inserts into the host cell plasma membrane and serves as the bacterial receptor. The T3SS effectors EspF, EspG, and Map are able to activate 
ezrin, dephosphorylate occludin, and activate MLCK. Activated MLCK can in turn activate myosin II that might have a role in TJs destabilization by pulling 
on actin filaments. Vibrio cholerae secretes the metalloprotease HA/P that degrades the extracellular domain of occludin, accompanied by the dissociation 
of ZO-1 from TJs due to the conformational change of the cytoplasmic domain of occludin that remains associated with the plasma membrane. Clostridium 
perfringens secretes the enterotoxin CPE that binds occludin, claudin-3, and claudin-4 and induce their degradation. Clostridium difficile secretes toxin A 
and toxin B that monoglucosylate the small GTPases Rac, Cdc42, and Rho, thereby affecting cytoskeleton dynamics. Helicobacter pylori injects the effector 
protein CagA, which is phosphorylated by Src within the host cell. This triggers the inhibition of Src activity, the dephosphorylation of cortactin, and the 
interaction of CagA with SHP-2. In addition, CagA activates the Met receptor, triggering a motile response in infected cells, and independently recruits TJ 
proteins at the bacteria/cell adhesion sites. The Salmonella SPI1 effectors SopB, SopE, SopE2, and SipA alter TJs by decreasing ZO-1 expression levels 
(crooked arrow) as well as delocalizing occludin, whereas the Salmonella Typhimurium T3SS effector AvrA stabilizes TJ. Shigella infections affect the 
expression levels of ZO-1, claudin-1, and the phosphorylation state of occludin, leading to a severe disruption of TJs. The Listeria monocytogenes virulence 
factor InlC relieves cortical actin tension at cell–cell contacts by binding the mammalian adaptor protein Tuba, preventing its interaction with N-WASP.

SopB, SopE, SopE2, and SipA have been implicated in TJ al-
terations that include a decrease in ZO-1 expression levels as 
well as delocalization of occludin (Fig. 1 C; Boyle et al., 2006). 
The Salmonella typhimurium T3SS effector AvrA has been 
characterized as a TJ stabilizer, as cells infected with an avrA 
mutant exhibit a reduced expression of ZO-1, claudin-1, and 
occludins (Fig. 1 C; Liao et al., 2008). Similarly, Shigella infec-
tions affect the expression levels of ZO-1, claudin-1, and the 
phosphorylation state of occludin, leading to a severe disruption 
of TJs. However, the virulence factors involved in such process 
remain unidentified (Fig. 1 C; Sakaguchi et al., 2002).

Finally, it is interesting to note that the TJ protein ZO-1 
has also been observed in association of the distal portion of  
actin filaments forming Shigella and Listeria comet tails as well 
as EPEC-induced actin pedestals (Hanajima-Ozawa et al., 2007). 
The function of this association is presently unknown.

Targeting adherens junctions
AJs mediate cell–cell adhesion and are localized at the baso
lateral surfaces of polarized epithelia (Fig. 2 A). The main compo-
nents of AJs are cadherins, transmembrane proteins that form 
Ca2+ intercellular interactions. The cadherins family includes 
type I, type II, desmosomal, and truncated cadherins. The most 
extensively studied cadherins belong to type I, or classical cad-
herins, and include E-cadherin, which is expressed by epithelial 
cells, N-cadherin, first described in neuronal cells, and P-cadherin, 
which is expressed in the placenta (Jamora and Fuchs, 2002;  
Patel et al., 2003; Niessen, 2007). The extracellular domain of 
type I cadherins consists of five 110–amino acid immunoglobulin-
like extracellular domains (EC1 to EC5) involved in E-cadherin–
E-cadherin interactions and a short intracellular domain that 
interacts with members of the catenin family to bridge the inter-
actions with the underlying actin cytoskeleton. -Catenin di-
rectly binds E-cadherin and in turn recruits the actin-interacting 
protein -catenin (Kobielak and Fuchs, 2004). During the for-
mation of cell–cell contacts, different cadherins dictate the spec-
ificity of such interactions. Nectins are also transmembrane 
proteins that take part in AJs (Takai and Nakanishi, 2003; Niessen, 
2007). Similarly to cadherins, they initiate Ca2+-dependent inter-
actions, their extracellular domain is composed of three immuno
globulin domains involved in nectin–nectin interactions, and the 
intracellular domain binds the scaffold protein afadin. In the case 
of AJs, pathogens directly or indirectly target cadherins to adhere 

the interaction of CagA with the phosphatase oncoprotein  
SHP-2 and the dephosphorylation of cortactin (Fig. 1 C; Higashi 
et al., 2002; Selbach et al., 2002, 2003). These two events seem 
to be unrelated and cortactin dephosphorylation is the result of 
a feedback loop inhibition of Src by phosphorylated CagA 
(Selbach et al., 2003). In addition, CagA intracellularly acti-
vates the hepatocyte growth factor receptor Met (Fig. 1 C), 
which causes the infected cells to internalize E-cadherin, become 
motile, and assume a typical elongated morphology resulting in 
the disruption of the epithelial barrier (Churin et al., 2003). 
CagA also interacts with ZO-1 and JAM1, sequestering these 
proteins away from cell–cell contacts to form ectopic TJs at the 
bacteria–host interaction sites (Fig. 1 C; Amieva et al., 2003). 
Of note, it has been reported that the interaction of CagA with 
PAR1, a regulator of cell polarity, facilitates both SHP-2 inter-
actions with CagA and the mislocalization of TJ proteins from 
cell–cell contacts (Saadat et al., 2007). At present it is unclear 
how these epithelial alterations may favor the infection.

Vibrio cholerae secretes a metalloprotease, called the 
hemagglutinin/protease (HA/P), which degrades the extracellu-
lar domain of occludin (Fig. 1 C; Wu et al., 2000). This process 
is also accompanied by the dissociation of ZO-1 from TJs due to 
the conformational change of the cytoplasmic domain of occludin 
that remains associated with the plasma membrane. Clostridium 
perfringens and Clostridium difficile also indirectly disrupt 
TJs via the secretion of bacterial toxins. C. perfringens secretes 
the enterotoxin CPE that binds occludin (Singh et al., 2000) and 
claudin-3 and -4, inducing their degradation (Fig. 1 C; Sonoda 
et al., 1999). C. difficile secretes toxin A and toxin B that mono-
glucosylate the small GTPases Rac, Cdc42, and Rho, thereby 
affecting cytoskeleton dynamics (Fig. 1 C; Nusrat et al., 2001; 
Voth and Ballard, 2005). In addition, these toxins are able to disso-
ciate ZO-1, ZO-2, and occludin from TJs (Nusrat et al., 2001).

Salmonella and Shigella species invade nonphagocytic 
host cells by injecting T3SS effectors that trigger host membrane 
ruffling and engulf bacterial particles (Cossart and Sansonetti, 
2004; Pizarro-Cerdá and Cossart, 2006). The prerequisite for 
T3SS effector injection requires contact with the host cell sur-
face; the details of such initial interaction remain elusive, but it 
involves integrins (Watarai et al., 1996) and lipid rafts (Lafont 
et al., 2002). Nevertheless, both Salmonella and Shigella are 
known to perturb TJ integrity during infection. Although the 
molecular details are not known, the Salmonella SPI1 effectors 
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Figure 2.  Adherens junctions, gap junctions, and infection. (A) Adherens junctions (AJs) and gap junctions (GJs) form at the lower region of cell–cell contacts. 
The main components of AJs are the members of the cadherin family and nectins. Both interact with the actin cytoskeleton by means of catenins ( and )  
and afadin, accessory proteins of cadherins and nectins, respectively. Gap junctions are established upon interactions of connexin-based pores at the 
membrane of neighboring cells. (B) Herpes simplex virus (HSV) uses the glycoprotein D (gD) to interact with nectins during infection. Listeria monocytogenes 
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adheres to host cells by means of the surface protein InlA that interacts with E-cadherin and triggers the recruitment of - and -catenin, myosin VIIa, vezatin,  
and ARHGAP10 at bacterial entry sites. E-cadherin clustering activates Src that is upstream of E-cadherin ubiquitination mediated by the ubiquitin ligase 
Hakai. This triggers the recruitment of clathrin at the bacterial entry site required to recruit actin by means of Hip1R and bring about bacterial internaliza-
tion by recruiting myosin VI. Bacteroides fragilis produces the toxin fragilysin, which cleaves the extracellular domain of E-cadherin disrupting adherens 
junctions and affecting TJ integrity. Candida albicans interacts with N-cadherin on endothelial cells and E-cadherin on oral epithelial cells by means  
of the surface invasins Als1 and Als3. Candida hyphae internalization requires the rearrangements of the actin cytoskeleton and induces the recruitment 
of clathrin, dynamin (Dyn), and cortactin (Cort) at the internalization site. (C) Shigella cell-to-cell spread is facilitated by the bacterial-mediated opening of 
connexin 26 hemichannels that allows the diffusion of calcium from infected to noninfected neighboring cells and the release of ATP in the medium. The 
Shigella effectors OspG and OspF attenuate IL-8 production in infected cells; however, the opening of Gap junctions favors the cell-to-cell diffusion of the 
bacterial peptidoglycan (LPS) that would then activate IL-8 production in bystander, noninfected cells. Listeria monocytogenes infections induce the synthesis 
of reactive oxygen intermediates (ROI) that spread to neighboring, noninfected cells by a GJ-independent mechanism and induce the activation of the MAP 
kinase Erk. This in turn regulates the synthesis of the proinflammatory chemokine Cxcl-2.

cells along intestinal villi present accessible E-cadherin that is tar-
geted by Listeria to invade epithelial cells and transcytose across 
the intestinal barrier (Nikitas et al., 2011). Listeria also perturbs 
actin dynamics at cell–cell junctions by means of the virulence 
factor InlC, which is secreted in the cell cytoplasm upon bacterial 
escape from the endocytic vacuole. InlC plays a dual role: it damp-
ens the innate immune response by binding IKKa, which has con-
sequences on the phosphorylation and degradation of IkB (Gouin 
et al., 2010), and it relieves cortical actin tension at cell–cell con-
tacts by binding the mammalian adaptor protein Tuba, thereby 
preventing its interaction with N-WASP (Fig. 1 C; Rajabian et al., 
2009; Romero and Tran Van Nhieu, 2009). This latter effect would 
facilitate the typical cell-to-cell spread of Listeria infection.

Bacteroides fragilis is a member of the commensal intes-
tinal microflora that becomes pathogenic when it overgrows 
other bacterial species. Strains of this bacterium associated with 
diarrheal disease (enterotoxigenic B. fragilis) produce the toxin 
fragilysin, a zinc-dependent metalloprotease that specifically 
cleaves the extracellular domain of E-cadherin, thereby disrupting 
adherens junctions and affecting TJ integrity (Fig. 2 B; Wu et al., 
1998). In addition, fragilysin also has an effect on -catenin 
nuclear signaling (Wu et al., 2003).

The fungal pathogen Candida albicans expresses two in-
vasins, Als1 and Als3, which interact with N-cadherin on endo-
thelial cells and E-cadherin on oral epithelial cells (Fig. 2 B; 
Phan et al., 2007). Both proteins are able to induce hyphae  
internalization, although Als1 seems to be less efficient. Of note, 
similarly to Listeria internalization, Candida hyphae internal-
ization requires the rearrangements of the actin cytoskeleton 
and induces the recruitment of clathrin, dynamin, and cortactin 
at sites of hyphae interaction with the host cell (Fig. 2 B; Moreno-
Ruiz et al., 2009). In the case of Candida infection, though, a 
role of the clathrin machinery in actin recruitment at sites of 
hyphae internalization remains to be demonstrated.

Tunneling nanotubes
A particular type of cell–cell interaction with an emerging role 
in infection is that mediated by tunneling nanotubes. These are 
transient, long, cytoskeleton-rich projections that extend from 
one cell to another and support the intercellular transport of 
membranes, and even organelles, over relatively long distances 
(Rustom et al., 2004; Gerdes et al., 2007). The formation of 
these structures has been observed in vitro between several cell 
types, including macrophages and immune cells. A study on the 
morphology and function of tunneling nanotubes has identified 
the presence of thin and thick nanotubes, the former being  

to host cells, promote internalization, or disrupt the integrity of 
epithelia to access deeper tissues.

Herpes simplex virus (HSV) invades cells by fusion with 
the plasma membrane of the host. Four glycoproteins (D, B, H, 
and L) are essential for this process. Glycoprotein D interacts 
with nectin-1, triggering a conformational change that is essen-
tial for membrane fusion (Fig. 2 B; Connolly et al., 2005).

Listeria monocytogenes is a facultative intracellular patho-
gen with the capacity of invading nonphagocytic cells and cross-
ing multiple barriers of the host. Listeria adheres to host cells by 
means of the surface protein InlA that interacts with E-cadherin 
and triggers the same signaling cascade induced by homotypic  
E-cadherin interactions, including the recruitment of - and 
-catenin, myosin VIIa, and the AJ-associated protein vezatin  
at bacterial entry sites (Fig. 2 B; Bonazzi et al., 2009). InlA–
E-cadherin interaction is characterized by a remarkable species 
specificity; a single amino acid in position 16 of the first EC repeat 
of E-cadherin is responsible for ligand-receptor specificity, totally 
abrogating infection in those species where a proline residue at 
this position is replaced by a glutamic acid (Lecuit et al., 1999). 
During InlA-mediated Listeria infections, E-cadherin clustering 
activates the protein kinase Src (Sousa et al., 2007; Bonazzi et al., 
2008), which is upstream of post-translational modifications on  
E-cadherin that result in the recruitment of clathrin at the bacterial 
entry site (Fig. 2 B; Veiga et al., 2007; Bonazzi et al., 2008). Clath-
rin assembly at the bacterial entry site is required to recruit actin by 
means of the actin-interacting protein Hip1R and triggers bacterial 
internalization by recruiting the nonconventional motor protein 
myosin VI (Fig. 2 B; unpublished data). Of note, a second bacterial 
surface protein, InlB, is a ligand for the host receptor Met. Differ-
ently from InlA, InlB is loosely attached to the bacterial cell wall 
and as such it does not mediate bacterial adhesion. However, InlB 
binding to Met induces a potent downstream signaling that also re-
sults in the activation of the PI3 kinase and actin remodeling and 
plasma membrane ruffling (Hamon et al., 2006; Pizarro-Cerdá and 
Cossart, 2006). Interestingly, in in vivo infections InlB activity is 
not involved in the crossing of the intestinal barrier, but is essential 
to cross the placental barrier where possibly it exerts its function 
in potentiating the InlA-mediated downstream signaling (Lecuit  
et al., 2001, 2004; Disson et al., 2008). In tissues, E-cadherin distri-
bution is localized below TJs and different possibilities have been 
proposed to understand how Listeria gains access to luminally ac-
cessible E-cadherin. In the intestine, apoptotic cells extrude from 
the tip of the intestinal villi, exposing E-cadherin at the surface of 
neighboring cells. Indeed, these sites seem to represent infection 
foci (Pentecost et al., 2010). In addition, as shown recently, goblet 
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cascade that leads to the production of interleukine-8 (IL-8).  
The Shigella effectors OspG (Kim et al., 2005) and OspF  
(Arbibe et al., 2007) attenuate IL-8 production by preventing 
IB degradation and blocking the activation of NF-B– 
responsive genes, respectively, in infected cells (Fig. 2 C). Yet, 
Shigella infections are accompanied by abundant IL-8 secretion. 
It has been proposed that gap junctions could favor the cell- 
to-cell diffusion of the bacterial peptidoglycan that would then ac-
tivate IL-8 production in bystander, noninfected cells, where the 
absence of bacterial effectors would allow a stronger immune re-
sponse (Fig. 2 C; Kasper et al., 2010). Of note, the same study 
provides evidence for similar bystander IL-8 activation also dur-
ing L. monocytogenes and Salmonella typhimurium infections 
(Kasper et al., 2010). In another report, propagation of the innate 
immune response upon L. monocytogenes infection has been 
shown to occur by a gap junction–independent mechanism as 
well (Dolowschiak et al., 2010). Indeed, studies at the single-cell 
level upon challenge with L. monocytogenes revealed that the ma-
jority of proinflammatory chemokine-positive cells were non
infected. Horizontal epithelial activation was found to be dependent 
on the infection-induced synthesis of reactive oxygen intermedi-
ates that spread to neighboring cells, inducing the activation of the 
MAP kinase Erk, which in turn regulates the synthesis of the  
chemokine Cxcl-2 (Fig. 2 C; Dolowschiak et al., 2010).

What have pathogen infections taught us 
about cell–cell interactions?
The study of host–pathogen interactions has in recent years 
been particularly productive not only to understand the molecu-
lar mechanisms of infection, but also to address fundamental 
questions in cell biology, and a number of pathogens (mostly 
viruses and bacteria) are nowadays used as model organisms to 
probe specific eukaryotic pathways. The characterization of 
CAR as a functional component of TJ (Cohen et al., 2001) 
stands as the best example of how the study of viral infection 
has provided important insight in cell biology.

In the case of bacterial pathogens, the study of L. mono­
cytogenes infection has illuminated host cell–cell interactions. To 
better understand how Listeria exploits E-cadherin during infec-
tion, we performed a yeast two-hybrid screen in search of novel 
-catenin interactors. This led to the identification of the Rho 
GAP protein ARHGAP10 (Sousa et al., 2005b). ARHGAP10 is 
a protein of 2,000 amino acids with an N-terminal PDZ domain, 
a central PH domain, and GAP domain, which shows activity 
for RhoA and Cdc42 (Bassères et al., 2002). The C terminus of 
ARHGAP10 presents a binding site for -catenin. The deple-
tion or inhibition of ARHGAP10 prevented the recruitment of 
-catenin at both AJs and Listeria entry sites and accordingly, 
E-cadherin failed to immunoprecipitate -catenin from ARH-
GAP10-depleted cells. Conversely, the overexpression of the 
GAP domain of ARHGAP10 disrupted actin cables, enhanced 
-catenin and cortical actin levels at cell–cell junctions, and in-
hibited Listeria entry (Sousa et al., 2005b). Hence, the study of 
bacterial infections led to the identification of a novel component 
of AJs that mediates -catenin recruitment at sites of intercellu-
lar E-cadherin interactions. More recently, the post-translational 
modifications of E-cadherin that are triggered by InlA-mediated 

enriched in actin and having a diameter of less than 0.7 μm, and 
the latter containing F-actin and microtubules and having a di-
ameter larger than 0.7 μm (Onfelt et al., 2006; Sowinski et al., 
2008). Accordingly, it has been shown that only thicker nano-
tubes can support the intercellular transport of endosomal and 
lysosomal vesicles as well as mitochondria, which move along 
these channels in an ATP-dependent manner with a speed com-
patible with that of microtubule-based transport (Onfelt et al., 
2006). Surprisingly though, thinner, and not thicker nanotubes 
can mediate the cell-to-cell spread of large particles, such as 
streptavidin-coated beads or even bacteria, as in the case of  
Mycobacterium bovis, which surf on these tubes, thereby ex-
ploiting a constant membrane turnover/dynamics to reach 
neighboring cells (Onfelt et al., 2006). More recently, tunneling 
nanotubes have been shown to play a key role for the intercellu-
lar spread of prions (Gousset et al., 2009). Prion dissemination 
through tunneling nanotubes has been observed between neuro-
nal Cath.a-differentiated (CAD) cells as well as between den-
dritic cells and primary neurons, this latter example providing a 
possible mechanism for the documented retrograde transport of 
prions from the intestine to the central nervous system (Gousset 
and Zurzolo, 2009; Gousset et al., 2009). During viral infec-
tions, HIV and murine leukemia virus (MLV) trigger the forma-
tion of filopodial bridges that connect infected cells with 
neighboring non-infected cells, thereby spreading the infection 
(Sherer et al., 2007; Sowinski et al., 2008; Eugenin et al., 2009; 
Jin et al., 2009). However, these virus-induced structures are not 
open-ended (Sherer et al., 2007; Sowinski et al., 2008), suggest-
ing the classification of these cell–cell contacts as cytonemes 
rather than nanotubes (Sherer et al., 2007).

Gap junctions, cell–cell communication, and 
propagation of the innate immune response
Gap junctions are specialized cell–cell contact sites that allow 
direct intercellular connections between the cytoplasm of neigh-
boring cells (Goodenough and Paul, 2009). Each gap junction 
consists of two hemichannels called connexons that spans 
across the intercellular space and are composed of connexins, 
four-pass transmembrane proteins that assemble in pore-forming 
hexamers (Fig. 2 C). These channels switch between an open 
and closed conformation and allow the passage of calcium, ATP, 
and other second messengers with a maximum molecular mass 
of 1 kD (Goodenough and Paul, 2009). Recent reports imply 
gap junctions during infection with somewhat opposite long-
term effects, at least in the case of Shigella flexneri. Shigella  
infections induce the opening of connexin 26 hemichannels, 
thereby facilitating the diffusion of calcium from infected cells 
to noninfected neighboring cells and the release of ATP into the 
medium (Fig. 2 C; Tran-Van-Nhieu et al., 2003). This process 
seems to facilitate the cell-to-cell spread of Shigella, although 
the precise mechanism that regulates this interdependency remains 
elusive. The dependency on the secretion of bacterial effectors 
is however demonstrated, as the nonsecreting mxiD mutant fails 
to reproduce the same phenotype. In addition, upon uptake by in-
testinal epithelial cells and escape from the internalization vacuole, 
Shigella is recognized by the pattern recognition receptor Nod1 
that reacts to the bacterial peptidoglycan and activates the signaling 
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Listeria infections have been characterized (Bonazzi et al., 2008). 
These include the Src-mediated phosphorylation and Hakai-
mediated ubiquitination of E-cadherin followed by the recruit-
ment of clathrin at bacterial entry sites (Veiga et al., 2007; 
Bonazzi et al., 2008). Importantly, the use of E-cadherin–coated 
beads showed that the same signaling cascade elicited by  
InlA–E-cadherin interactions is also triggered by E-cadherin– 
E-cadherin interactions, implying that clathrin plays a role in the 
formation of new AJs (Bonazzi et al., 2008). The recent charac-
terization of the machinery that connects actin filaments with 
clathrin-coated pits at the plasma membrane strengthened this 
hypothesis (Bonazzi et al., 2011), and accordingly, the deple-
tion of clathrin impaired the maturation of newly formed AJs 
(unpublished data). Indeed, Dab2, the actin-binding protein 
Hip1R, and myosin VI assemble at clathrin coats during bacte-
rial infections (Bonazzi et al., 2011) and cell–cell junction for-
mation to orchestrate the rearrangements of actin that are required 
for bacterial internalization and the maturation of AJs, respec-
tively. In addition, parallels between the machinery involved in 
clathrin-mediated internalization and AJ formation have led us 
to speculate that cell–cell adhesion is similar to Fc receptor-ligand 
interactions during “frustrated phagocytosis” of macrophage 
(Takemura et al., 1986; unpublished data).

Conclusions and perspectives
Cell adhesion is an essential and extremely conserved process that 
allows sensing of the extracellular environment, cell–cell interac-
tions, motility, and organogenesis. In adults, cell–cell adhesion 
generates a tight barrier that protects deeper tissues from external 
aggressions, including microbial infections. Indeed, epithelial 
barriers constitute the first line of defense against pathogens. 
However, pathogens have developed countless strategies to ex-
ploit those defenses to their advantage and seem to preferentially 
target host proteins implicated in cell adhesion to colonize epithe-
lia, invade host cells, or even disrupt host barriers to facilitate ac-
cess to deeper tissues. Ironically, the first line of defense against 
infection has become one of the most exploited gates to access 
and colonize the organism, which is probably why hosts have de-
veloped at these locations sophisticated immune defenses to rec-
ognize and respond accordingly to specific patterns of pathogenic 
proteins. Importantly, the observation that a large number of 
pathogens hijack endogenous host pathways has allowed the ex-
ploitation of pathogens as tools to address fundamental questions 
in cell biology. Thus, similarly to the fundamental contribution of 
the study of viruses’ internalization to the characterization of en-
docytic mechanisms, the study of bacterial and viral infections has 
shed lights on novel components and dynamics of cell–cell inter-
actions. Strikingly, proteins involved in cell adhesion are often ex-
ploited by pathogens to trigger clathrin- or caveolin-mediated 
internalization, which indicates that a common mechanism may 
regulate adhesion and endocytosis (unpublished data).

We apologize to authors whose work could not be included because of space 
constraints. Illustrations provided by Neil Smith, neil@neilsmithillustration.co.uk.

Work in P. Cossart’s laboratory receives financial support from Institut 
Pasteur, INRA, HMMI, Fondation Jeantet, Fondation les Musquetaire, and the 
European Research Council (ERC, Advanced Grant 233348).

Submitted: 2 June 2011
Accepted: 5 October 2011

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/195/3/349/1354043/jcb_201106011.pdf by Bibliotheque U

niversitaire user on 01 June 2021

http://dx.doi.org/10.1126/science.1081919
http://dx.doi.org/10.1126/science.1081919
http://dx.doi.org/10.1038/ni1423
http://dx.doi.org/10.1016/S0092-8674(01)00231-8
http://dx.doi.org/10.1016/S0092-8674(01)00231-8
http://dx.doi.org/10.1016/S0006-291X(02)00514-4
http://dx.doi.org/10.1128/JVI.00263-07
http://dx.doi.org/10.1126/science.275.5304.1320
http://dx.doi.org/10.1126/science.275.5304.1320
http://dx.doi.org/10.1111/j.1462-5822.2008.01200.x
http://dx.doi.org/10.1111/j.1462-5822.2009.01293.x
http://dx.doi.org/10.1083/jcb.201105152
http://dx.doi.org/10.1083/jcb.201105152
http://dx.doi.org/10.1111/j.1462-5822.2006.00762.x
http://dx.doi.org/10.1111/j.1462-5822.2006.00762.x
http://dx.doi.org/10.1101/cshperspect.a004994
http://dx.doi.org/10.1083/jcb.200306032
http://dx.doi.org/10.1038/nrc1276
http://dx.doi.org/10.1038/nrc1276
http://dx.doi.org/10.1016/j.femsre.2004.07.002
http://dx.doi.org/10.1016/j.femsre.2004.07.002
http://dx.doi.org/10.1083/jcb.200208039
http://dx.doi.org/10.1083/jcb.200208039
http://dx.doi.org/10.1016/S0167-4889(98)00125-6
http://dx.doi.org/10.1073/pnas.261452898
http://dx.doi.org/10.1128/JVI.79.2.1282-1295.2005
http://dx.doi.org/10.1128/JVI.79.2.1282-1295.2005
http://dx.doi.org/10.1126/science.1090124
http://dx.doi.org/10.1126/science.1090124
http://dx.doi.org/10.1016/j.cell.2005.10.035


357The role of cell–cell adhesion during infection • Bonazzi and Cossart

Higashi, H., R. Tsutsumi, S. Muto, T. Sugiyama, T. Azuma, M. Asaka, and M. 
Hatakeyama. 2002. SHP-2 tyrosine phosphatase as an intracellular target 
of Helicobacter pylori Cag. Protein Sci. 295:683–686.

Jamora, C., and E. Fuchs. 2002. Intercellular adhesion, signalling and the cyto
skeleton. Nat. Cell Biol. 4:E101–E108. http://dx.doi.org/10.1038/ 
ncb0402-e101

Jin, J., N.M. Sherer, G. Heidecker, D. Derse, and W. Mothes. 2009. Assembly 
of the murine leukemia virus is directed towards sites of cell–cell contact. 
PLoS Biol. 7:e1000163. http://dx.doi.org/10.1371/journal.pbio.1000163

Kasper, C.A., I. Sorg, C. Schmutz, T. Tschon, H. Wischnewski, M.L. Kim, and C. 
Arrieumerlou. 2010. Cell-cell propagation of NF-B transcription factor and 
MAP kinase activation amplifies innate immunity against bacterial infection. 
Immunity. 33:804–816. http://dx.doi.org/10.1016/j.immuni.2010.10.015

Kerr, J.R. 1999. Cell adhesion molecules in the pathogenesis of and host defence 
against microbial infection. MP, Mol. Pathol. 52:220–230. http://dx.doi 
.org/10.1136/mp.52.4.220

Kim, D.W., G. Lenzen, A.L. Page, P. Legrain, P.J. Sansonetti, and C. Parsot. 2005. 
The Shigella flexneri effector OspG interferes with innate immune re-
sponses by targeting ubiquitin-conjugating enzymes. Proc. Natl. Acad. Sci. 
USA. 102:14046–14051. http://dx.doi.org/10.1073/pnas.0504466102

Knodler, L.A., J. Celli, and B.B. Finlay. 2001. Pathogenic trickery: deception 
of host cell processes. Nat. Rev. Mol. Cell Biol. 2:578–588. http://dx.doi 
.org/10.1038/35085062

Kobielak, A., and E. Fuchs. 2004. Alpha-catenin: at the junction of intercellular 
adhesion and actin dynamics. Nat. Rev. Mol. Cell Biol. 5:614–625. http://
dx.doi.org/10.1038/nrm1433

Lafont, F., G. Tran Van Nhieu, K. Hanada, P. Sansonetti, and F.G. van der Goot. 
2002. Initial steps of Shigella infection depend on the cholesterol/
sphingolipid raft-mediated CD44-IpaB interaction. EMBO J. 21:4449–
4457. http://dx.doi.org/10.1093/emboj/cdf457

Lecuit, M., S. Dramsi, C. Gottardi, M. Fedor-Chaiken, B. Gumbiner, and P. 
Cossart. 1999. A single amino acid in E-cadherin responsible for host 
specificity towards the human pathogen Listeria monocytogenes. EMBO 
J. 18:3956–3963. http://dx.doi.org/10.1093/emboj/18.14.3956

Lecuit, M., S. Vandormael-Pournin, J. Lefort, M. Huerre, P. Gounon, C. Dupuy, 
C. Babinet, and P. Cossart. 2001. A transgenic model for listeriosis: role 
of internalin in crossing the intestinal barrier. Science. 292:1722–1725. 
http://dx.doi.org/10.1126/science.1059852

Lecuit, M., D.M. Nelson, S.D. Smith, H. Khun, M. Huerre, M.C. Vacher-
Lavenu, J.I. Gordon, and P. Cossart. 2004. Targeting and crossing of the 
human maternofetal barrier by Listeria monocytogenes: role of interna-
lin interaction with trophoblast E-cadherin. Proc. Natl. Acad. Sci. USA. 
101:6152–6157. http://dx.doi.org/10.1073/pnas.0401434101

Liao, A.P., E.O. Petrof, S. Kuppireddi, Y. Zhao, Y. Xia, E.C. Claud, and J. Sun. 
2008. Salmonella type III effector AvrA stabilizes cell tight junctions to 
inhibit inflammation in intestinal epithelial cells. PLoS ONE. 3:e2369. 
http://dx.doi.org/10.1371/journal.pone.0002369

Lobert, V.H., A. Brech, N.M. Pedersen, J. Wesche, A. Oppelt, L. Malerød, and 
H. Stenmark. 2010. Ubiquitination of alpha 5 beta 1 integrin controls 
fibroblast migration through lysosomal degradation of fibronectin-integrin 
complexes. Dev. Cell. 19:148–159. http://dx.doi.org/10.1016/j.devcel 
.2010.06.010

Matsuzawa, T., A. Kuwae, and A. Abe. 2005. Enteropathogenic Escherichia coli 
type III effectors EspG and EspG2 alter epithelial paracellular perme-
ability. Infect. Immun. 73:6283–6289. http://dx.doi.org/10.1128/IAI.73 
.10.6283-6289.2005

Meertens, L., C. Bertaux, L. Cukierman, E. Cormier, D. Lavillette, F.L. Cosset, 
and T. Dragic. 2008. The tight junction proteins claudin-1, -6, and -9 are 
entry cofactors for hepatitis C virus. J. Virol. 82:3555–3560. http://dx.doi 
.org/10.1128/JVI.01977-07

Miyake, M., M. Hanajima, T. Matsuzawa, C. Kobayashi, M. Minami, A. Abe, 
and Y. Horiguchi. 2005. Binding of intimin with Tir on the bacterial sur-
face is prerequisite for the barrier disruption induced by enteropathogenic 
Escherichia coli. Biochem. Biophys. Res. Commun. 337:922–927. http://
dx.doi.org/10.1016/j.bbrc.2005.09.130

Moreno-Ruiz, E., M. Galán-Díez, W. Zhu, E. Fernández-Ruiz, C. d’Enfert, S.G. 
Filler, P. Cossart, and E. Veiga. 2009. Candida albicans internaliza-
tion by host cells is mediated by a clathrin-dependent mechanism. Cell. 
Microbiol. 11:1179–1189. http://dx.doi.org/10.1111/j.1462-5822.2009 
.01319.x

Nava, P., S. López, C.F. Arias, S. Islas, and L. González-Mariscal. 2004. The 
rotavirus surface protein VP8 modulates the gate and fence function of 
tight junctions in epithelial cells. J. Cell Sci. 117:5509–5519. http://dx.doi 
.org/10.1242/jcs.01425

Niessen, C.M. 2007. Tight junctions/adherens junctions: basic structure and 
function. J. Invest. Dermatol. 127:2525–2532. http://dx.doi.org/10.1038/ 
sj.jid.5700865

Dean, P., and B. Kenny. 2004. Intestinal barrier dysfunction by enteropathogenic 
Escherichia coli is mediated by two effector molecules and a bacterial 
surface protein. Mol. Microbiol. 54:665–675. http://dx.doi.org/10.1111/
j.1365-2958.2004.04308.x

Dickman, K.G., S.J. Hempson, J. Anderson, S. Lippe, L. Zhao, R. Burakoff, and 
R.D. Shaw. 2000. Rotavirus alters paracellular permeability and energy 
metabolism in Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 
279:G757–G766.

Disson, O., S. Grayo, E. Huillet, G. Nikitas, F. Langa-Vives, O. Dussurget, M. 
Ragon, A. Le Monnier, C. Babinet, P. Cossart, and M. Lecuit. 2008. 
Conjugated action of two species-specific invasion proteins for feto-
placental listeriosis. Nature. 455:1114–1118. http://dx.doi.org/10.1038/ 
nature07303

Dolowschiak, T., C. Chassin, S. Ben Mkaddem, T.M. Fuchs, S. Weiss, A. 
Vandewalle, and M.W. Hornef. 2010. Potentiation of epithelial innate 
host responses by intercellular communication. PLoS Pathog. 6:e1001194. 
http://dx.doi.org/10.1371/journal.ppat.1001194

Eugenin, E.A., P.J. Gaskill, and J.W. Berman. 2009. Tunneling nanotubes (TNT) 
are induced by HIV-infection of macrophages: a potential mechanism for 
intercellular HIV trafficking. Cell. Immunol. 254:142–148. http://dx.doi.
org/10.1016/j.cellimm.2008.08.005

Evans, M.J., T. von Hahn, D.M. Tscherne, A.J. Syder, M. Panis, B. Wölk, T. 
Hatziioannou, J.A. McKeating, P.D. Bieniasz, and C.M. Rice. 2007. 
Claudin-1 is a hepatitis C virus co-receptor required for a late step in 
entry. Nature. 446:801–805. http://dx.doi.org/10.1038/nature05654

Fujita, Y., G. Krause, M. Scheffner, D. Zechner, H.E.M. Leddy, J. Behrens, T. 
Sommer, and W. Birchmeier. 2002. Hakai, a c-Cbl-like protein, ubiq-
uitinates and induces endocytosis of the E-cadherin complex. Nat. Cell 
Biol. 4:222–231. http://dx.doi.org/10.1038/ncb758

Gerdes, H.H., N.V. Bukoreshtliev, and J.F.V. Barroso. 2007. Tunneling nano-
tubes: a new route for the exchange of components between animal cells. 
FEBS Lett. 581:2194–2201. http://dx.doi.org/10.1016/j.febslet.2007 
.03.071

Goodenough, D.A., and D.L. Paul. 2009. Gap junctions. Cold Spring Harb. 
Perspect. Biol. 1:a002576. http://dx.doi.org/10.1101/cshperspect.a002576

Gouin, E., M. Adib-Conquy, D. Balestrino, M.A. Nahori, V. Villiers, F. Colland, 
S. Dramsi, O. Dussurget, and P. Cossart. 2010. The Listeria monocyto­
genes InlC protein interferes with innate immune responses by targeting 
the IB kinase subunit IKK. Proc. Natl. Acad. Sci. USA. 107:17333–
17338. http://dx.doi.org/10.1073/pnas.1007765107

Gousset, K., and C. Zurzolo. 2009. Tunnelling nanotubes: a highway for prion 
spreading? Prion. 3:94–98. http://dx.doi.org/10.4161/pri.3.2.8917

Gousset, K., E. Schiff, C. Langevin, Z. Marijanovic, A. Caputo, D.T. Browman, 
N. Chenouard, F. de Chaumont, A. Martino, J. Enninga, et al. 2009. 
Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol. 
11:328–336. http://dx.doi.org/10.1038/ncb1841

Gruenheid, S., R. DeVinney, F. Bladt, D. Goosney, S. Gelkop, G.D. Gish, T. 
Pawson, and B.B. Finlay. 2001. Enteropathogenic E. coli Tir binds Nck 
to initiate actin pedestal formation in host cells. Nat. Cell Biol. 3:856–
859. http://dx.doi.org/10.1038/ncb0901-856

Guglielmi, K.M., E. Kirchner, G.H. Holm, T. Stehle, and T.S. Dermody. 2007. 
Reovirus binding determinants in junctional adhesion molecule-A. J. Biol. 
Chem. 282:17930–17940. http://dx.doi.org/10.1074/jbc.M702180200

Guttman, J.A., and B.B. Finlay. 2009. Tight junctions as targets of infec-
tious agents. Biochim. Biophys. Acta. 1788:832–841. http://dx.doi.org/ 
10.1016/j.bbamem.2008.10.028

Guttman, J.A., Y. Li, M.E. Wickham, W. Deng, A.W. Vogl, and B.B. Finlay. 
2006a. Attaching and effacing pathogen-induced tight junction disruption 
in vivo. Cell. Microbiol. 8:634–645. http://dx.doi.org/10.1111/j.1462-
5822.2005.00656.x

Guttman, J.A., F.N. Samji, Y. Li, A.W. Vogl, and B.B. Finlay. 2006b. Evidence 
that tight junctions are disrupted due to intimate bacterial contact and not 
inflammation during attaching and effacing pathogen infection in vivo. 
Infect. Immun. 74:6075–6084. http://dx.doi.org/10.1128/IAI.00721-06

Hamon, M., H. Bierne, and P. Cossart. 2006. Listeria monocytogenes: a multi
faceted model. Nat. Rev. Microbiol. 4:423–434. http://dx.doi.org/10.1038/ 
nrmicro1413

Hanajima-Ozawa, M., T. Matsuzawa, A. Fukui, S. Kamitani, H. Ohnishi, A. 
Abe, Y. Horiguchi, and M. Miyake. 2007. Enteropathogenic Escherichia 
coli, Shigella flexneri, and Listeria monocytogenes recruit a junctional 
protein, zonula occludens-1, to actin tails and pedestals. Infect. Immun. 
75:565–573. http://dx.doi.org/10.1128/IAI.01479-06

Hartsock, A., and W.J. Nelson. 2008. Adherens and tight junctions: structure, 
function and connections to the actin cytoskeleton. Biochim. Biophys. 
Acta. 1778:660–669. http://dx.doi.org/10.1016/j.bbamem.2007.07.012

Hauck, C.R., F. Agerer, P. Muenzner, and T. Schmitter. 2006. Cellular adhesion 
molecules as targets for bacterial infection. Eur. J. Cell Biol. 85:235–242. 
http://dx.doi.org/10.1016/j.ejcb.2005.08.002

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/195/3/349/1354043/jcb_201106011.pdf by Bibliotheque U

niversitaire user on 01 June 2021

http://dx.doi.org/10.1038/ncb0402-e101
http://dx.doi.org/10.1038/ncb0402-e101
http://dx.doi.org/10.1371/journal.pbio.1000163
http://dx.doi.org/10.1016/j.immuni.2010.10.015
http://dx.doi.org/10.1136/mp.52.4.220
http://dx.doi.org/10.1136/mp.52.4.220
http://dx.doi.org/10.1073/pnas.0504466102
http://dx.doi.org/10.1038/35085062
http://dx.doi.org/10.1038/35085062
http://dx.doi.org/10.1038/nrm1433
http://dx.doi.org/10.1038/nrm1433
http://dx.doi.org/10.1093/emboj/cdf457
http://dx.doi.org/10.1093/emboj/18.14.3956
http://dx.doi.org/10.1126/science.1059852
http://dx.doi.org/10.1073/pnas.0401434101
http://dx.doi.org/10.1371/journal.pone.0002369
http://dx.doi.org/10.1016/j.devcel.2010.06.010
http://dx.doi.org/10.1016/j.devcel.2010.06.010
http://dx.doi.org/10.1128/IAI.73.10.6283-6289.2005
http://dx.doi.org/10.1128/IAI.73.10.6283-6289.2005
http://dx.doi.org/10.1128/JVI.01977-07
http://dx.doi.org/10.1128/JVI.01977-07
http://dx.doi.org/10.1016/j.bbrc.2005.09.130
http://dx.doi.org/10.1016/j.bbrc.2005.09.130
http://dx.doi.org/10.1111/j.1462-5822.2009.01319.x
http://dx.doi.org/10.1111/j.1462-5822.2009.01319.x
http://dx.doi.org/10.1242/jcs.01425
http://dx.doi.org/10.1242/jcs.01425
http://dx.doi.org/10.1038/sj.jid.5700865
http://dx.doi.org/10.1038/sj.jid.5700865
http://dx.doi.org/10.1111/j.1365-2958.2004.04308.x
http://dx.doi.org/10.1111/j.1365-2958.2004.04308.x
http://dx.doi.org/10.1038/nature07303
http://dx.doi.org/10.1038/nature07303
http://dx.doi.org/10.1371/journal.ppat.1001194
http://dx.doi.org/10.1016/j.cellimm.2008.08.005
http://dx.doi.org/10.1016/j.cellimm.2008.08.005
http://dx.doi.org/10.1038/nature05654
http://dx.doi.org/10.1038/ncb758
http://dx.doi.org/10.1016/j.febslet.2007.03.071
http://dx.doi.org/10.1016/j.febslet.2007.03.071
http://dx.doi.org/10.1101/cshperspect.a002576
http://dx.doi.org/10.1073/pnas.1007765107
http://dx.doi.org/10.4161/pri.3.2.8917
http://dx.doi.org/10.1038/ncb1841
http://dx.doi.org/10.1038/ncb0901-856
http://dx.doi.org/10.1074/jbc.M702180200
http://dx.doi.org/10.1016/j.bbamem.2008.10.028
http://dx.doi.org/10.1016/j.bbamem.2008.10.028
http://dx.doi.org/10.1111/j.1462-5822.2005.00656.x
http://dx.doi.org/10.1111/j.1462-5822.2005.00656.x
http://dx.doi.org/10.1128/IAI.00721-06
http://dx.doi.org/10.1038/nrmicro1413
http://dx.doi.org/10.1038/nrmicro1413
http://dx.doi.org/10.1128/IAI.01479-06
http://dx.doi.org/10.1016/j.bbamem.2007.07.012
http://dx.doi.org/10.1016/j.ejcb.2005.08.002


JCB • VOLUME 195 • NUMBER 3 • 2011� 358

Sonoda, N., M. Furuse, H. Sasaki, S. Yonemura, J. Katahira, Y. Horiguchi, and 
S. Tsukita. 1999. Clostridium perfringens enterotoxin fragment removes 
specific claudins from tight junction strands: Evidence for direct involve-
ment of claudins in tight junction barrier. J. Cell Biol. 147:195–204. 
http://dx.doi.org/10.1083/jcb.147.1.195

Sousa, S., M. Lecuit, and P. Cossart. 2005a. Microbial strategies to target, cross 
or disrupt epithelia. Curr. Opin. Cell Biol. 17:489–498. http://dx.doi 
.org/10.1016/j.ceb.2005.08.013

Sousa, S., D. Cabanes, C. Archambaud, F. Colland, E. Lemichez, M. Popoff, S. 
Boisson-Dupuis, E. Gouin, M. Lecuit, P. Legrain, and P. Cossart. 2005b. 
ARHGAP10 is necessary for -catenin recruitment at adherens junc-
tions and for Listeria invasion. Nat. Cell Biol. 7:954–960. http://dx.doi 
.org/10.1038/ncb1308

Sousa, S., D. Cabanes, L. Bougnères, M. Lecuit, P. Sansonetti, G. Tran-Van-Nhieu, 
and P. Cossart. 2007. Src, cortactin and Arp2/3 complex are required for 
E-cadherin-mediated internalization of Listeria into cells. Cell. Microbiol. 
9:2629–2643. http://dx.doi.org/10.1111/j.1462-5822.2007.00984.x

Sowinski, S., C. Jolly, O. Berninghausen, M.A. Purbhoo, A. Chauveau, K. 
Köhler, S. Oddos, P. Eissmann, F.M. Brodsky, C. Hopkins, et al. 2008. 
Membrane nanotubes physically connect T cells over long distances pre-
senting a novel route for HIV-1 transmission. Nat. Cell Biol. 10:211–219. 
http://dx.doi.org/10.1038/ncb1682

Steed, E., M.S. Balda, and K. Matter. 2010. Dynamics and functions of tight 
junctions. Trends Cell Biol. 20:142–149. http://dx.doi.org/10.1016/ 
j.tcb.2009.12.002

Stewart, P.L., and G.R. Nemerow. 2007. Cell integrins: commonly used recep-
tors for diverse viral pathogens. Trends Microbiol. 15:500–507. http://
dx.doi.org/10.1016/j.tim.2007.10.001

Tafazoli, F., C.Q. Zeng, M.K. Estes, K.E. Magnusson, and L. Svensson. 2001. 
NSP4 enterotoxin of rotavirus induces paracellular leakage in polar-
ized epithelial cells. J. Virol. 75:1540–1546. http://dx.doi.org/10.1128/ 
JVI.75.3.1540-1546.2001

Takai, Y., and H. Nakanishi. 2003. Nectin and afadin: novel organizers of intercellular 
junctions. J. Cell Sci. 116:17–27. http://dx.doi.org/10.1242/jcs.00167

Takemura, R., P.E. Stenberg, D.F. Bainton, and Z. Werb. 1986. Rapid redistri-
bution of clathrin onto macrophage plasma membranes in response to Fc 
receptor-ligand interaction during frustrated phagocytosis. J. Cell Biol. 
102:55–69. http://dx.doi.org/10.1083/jcb.102.1.55

Tran Van Nhieu, G., C. Clair, R. Bruzzone, M. Mesnil, P. Sansonetti, and L. 
Combettes. 2003. Connexin-dependent inter-cellular communication in-
creases invasion and dissemination of Shigella in epithelial cells. Nat. 
Cell Biol. 5:720–726. http://dx.doi.org/10.1038/ncb1021

Veiga, E., J.A. Guttman, M. Bonazzi, E. Boucrot, A. Toledo-Arana, A.E. 
Lin, J. Enninga, J. Pizarro-Cerdá, B.B. Finlay, T. Kirchhausen, and P. 
Cossart. 2007. Invasive and adherent bacterial pathogens co-Opt host 
clathrin for infection. Cell Host Microbe. 2:340–351. http://dx.doi.org/ 
10.1016/j.chom.2007.10.001

Viswanathan, V.K., A. Koutsouris, S. Lukic, M. Pilkinton, I. Simonovic, M. 
Simonovic, and G. Hecht. 2004. Comparative analysis of EspF from en-
teropathogenic and enterohemorrhagic Escherichia coli in alteration of 
epithelial barrier function. Infect. Immun. 72:3218–3227. http://dx.doi 
.org/10.1128/IAI.72.6.3218-3227.2004

Voth, D.E., and J.D. Ballard. 2005. Clostridium difficile toxins: mechanism 
of action and role in disease. Clin. Microbiol. Rev. 18:247–263. http://
dx.doi.org/10.1128/CMR.18.2.247-263.2005

Walters, R.W., P. Freimuth, T.O. Moninger, I. Ganske, J. Zabner, and M.J. 
Welsh. 2002. Adenovirus fiber disrupts CAR-mediated intercellular ad-
hesion allowing virus escape. Cell. 110:789–799. http://dx.doi.org/10 
.1016/S0092-8674(02)00912-1

Watarai, M., S. Funato, and C. Sasakawa. 1996. Interaction of Ipa proteins of 
Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria 
into mammalian cells. J. Exp. Med. 183:991–999. http://dx.doi.org/10 
.1084/jem.183.3.991

Wu, S., K.C. Lim, J. Huang, R.F. Saidi, and C.L. Sears. 1998. Bacteroides fragilis en-
terotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl. Acad. 
Sci. USA. 95:14979–14984. http://dx.doi.org/10.1073/pnas.95.25.14979

Wu, S., P.J. Morin, D. Maouyo, and C.L. Sears. 2003. Bacteroides fragilis entero-
toxin induces c-Myc expression and cellular proliferation. Gastroenterology. 
124:392–400. http://dx.doi.org/10.1053/gast.2003.50047

Wu, Z., P. Nybom, and K.E. Magnusson. 2000. Distinct effects of Vibrio chol­
erae haemagglutinin/protease on the structure and localization of the 
tight junction-associated proteins occludin and ZO-1. Cell. Microbiol. 
2:11–17. http://dx.doi.org/10.1046/j.1462-5822.2000.00025.x

Yang, W., C. Qiu, N. Biswas, J. Jin, S.C. Watkins, R.C. Montelaro, C.B. Coyne, 
and T. Wang. 2008. Correlation of the tight junction-like distribution 
of Claudin-1 to the cellular tropism of hepatitis C virus. J. Biol. Chem. 
283:8643–8653. http://dx.doi.org/10.1074/jbc.M709824200

Nikitas, G., C. Deschamps, O. Disson, T. Niault, P. Cossart, and M. Lecuit. 
2011. Transcytosis of Listeria monocytogenes across the intestinal barrier 
upon specific targeting of goblet cell accessible E-cadherin. J. Exp. Med. 
208:2263–2277. http://dx.doi.org/10.1084/jem.20110560

Nusrat, A., C. von Eichel-Streiber, J.R. Turner, P. Verkade, J.L. Madara, and 
C.A. Parkos. 2001. Clostridium difficile toxins disrupt epithelial barrier 
function by altering membrane microdomain localization of tight junc-
tion proteins. Infect. Immun. 69:1329–1336. http://dx.doi.org/10.1128/ 
IAI.69.3.1329-1336.2001

Obert, G., I. Peiffer, and A.L. Servin. 2000. Rotavirus-induced structural and 
functional alterations in tight junctions of polarized intestinal Caco-2 cell 
monolayers. J. Virol. 74:4645–4651. http://dx.doi.org/10.1128/JVI.74.10 
.4645-4651.2000

Onfelt, B., S. Nedvetzki, R.K.P. Benninger, M.A. Purbhoo, S. Sowinski, A.N. 
Hume, M.C. Seabra, M.A.A. Neil, P.M.W. French, and D.M. Davis. 
2006. Structurally distinct membrane nanotubes between human mac-
rophages support long-distance vesicular traffic or surfing of bacteria.  
J. Immunol. 177:8476–8483.

Patel, S.D., C.P. Chen, F. Bahna, B. Honig, and L. Shapiro. 2003. Cadherin-
mediated cell-cell adhesion: sticking together as a family. Curr. Opin. 
Struct. Biol. 13:690–698. http://dx.doi.org/10.1016/j.sbi.2003.10.007

Pentecost, M., J. Kumaran, P. Ghosh, and M.R. Amieva. 2010. Listeria mono­
cytogenes internalin B activates junctional endocytosis to accelerate 
intestinal invasion. PLoS Pathog. 6:e1000900. http://dx.doi.org/10.1371/
journal.ppat.1000900

Perez-Moreno, M., C. Jamora, and E. Fuchs. 2003. Sticky business: orchestrat-
ing cellular signals at adherens junctions. Cell. 112:535–548. http://dx.doi 
.org/10.1016/S0092-8674(03)00108-9

Phan, Q.T., C.L. Myers, Y. Fu, D.C. Sheppard, M.R. Yeaman, W.H. Welch, 
A.S. Ibrahim, J.E. Edwards Jr., and S.G. Filler. 2007. Als3 is a Candida 
albicans invasin that binds to cadherins and induces endocytosis by host 
cells. PLoS Biol. 5:e64. http://dx.doi.org/10.1371/journal.pbio.0050064

Pizarro-Cerdá, J., and P. Cossart. 2006. Bacterial adhesion and entry into host 
cells. Cell. 124:715–727. http://dx.doi.org/10.1016/j.cell.2006.02.012

Ploss, A., M.J. Evans, V.A. Gaysinskaya, M. Panis, H. You, Y.P. de Jong, and 
C.M. Rice. 2009. Human occludin is a hepatitis C virus entry factor re-
quired for infection of mouse cells. Nature. 457:882–886. http://dx.doi 
.org/10.1038/nature07684

Rajabian, T., B. Gavicherla, M. Heisig, S. Müller-Altrock, W. Goebel, S.D. 
Gray-Owen, and K. Ireton. 2009. The bacterial virulence factor InlC per-
turbs apical cell junctions and promotes cell-to-cell spread of Listeria. 
Nat. Cell Biol. 11:1212–1218. http://dx.doi.org/10.1038/ncb1964

Romero, S., and G. Tran Van Nhieu. 2009. A bacterial virulence factor that 
dissipates tension. Nat. Cell Biol. 11:1174–1175. http://dx.doi.org/10 
.1038/ncb1009-1174

Rustom, A., R. Saffrich, I. Markovic, P. Walther, and H.H. Gerdes. 2004. 
Nanotubular highways for intercellular organelle transport. Science. 
303:1007–1010. http://dx.doi.org/10.1126/science.1093133

Saadat, I., H. Higashi, C. Obuse, M. Umeda, N. Murata-Kamiya, Y. Saito, H. Lu, 
N. Ohnishi, T. Azuma, A. Suzuki, et al. 2007. Helicobacter pylori CagA 
targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature. 
447:330–333. http://dx.doi.org/10.1038/nature05765

Sakaguchi, T., H. Köhler, X. Gu, B.A. McCormick, and H.C. Reinecker. 2002. 
Shigella flexneri regulates tight junction-associated proteins in human in-
testinal epithelial cells. Cell. Microbiol. 4:367–381. http://dx.doi.org/10 
.1046/j.1462-5822.2002.00197.x

Sansonetti, P.J., and A. Phalipon. 1999. M cells as ports of entry for enteroinvasive 
pathogens: mechanisms of interaction, consequences for the disease process. 
Semin. Immunol. 11:193–203. http://dx.doi.org/10.1006/smim.1999.0175

Selbach, M., S. Moese, C.R. Hauck, T.F. Meyer, and S. Backert. 2002. Src is 
the kinase of the Helicobacter pylori CagA protein in vitro and in vivo.  
J. Biol. Chem. 277:6775–6778. http://dx.doi.org/10.1074/jbc.C100754200

Selbach, M., S. Moese, R. Hurwitz, C.R. Hauck, T.F. Meyer, and S. Backert. 
2003. The Helicobacter pylori CagA protein induces cortactin dephos-
phorylation and actin rearrangement by c-Src inactivation. EMBO J. 
22:515–528. http://dx.doi.org/10.1093/emboj/cdg050

Sherer, N.M., M.J. Lehmann, L.F. Jiménez-Soto, C. Horensavitz, M. Pypaert, 
and W. Mothes. 2007. Retroviruses can establish filopodial bridges for 
efficient cell-to-cell transmission. Nat. Cell Biol. 9:310–315. http://dx.doi 
.org/10.1038/ncb1544

Shi, F., and J. Sottile. 2008. Caveolin-1-dependent beta1 integrin endocytosis is 
a critical regulator of fibronectin turnover. J. Cell Sci. 121:2360–2371. 
http://dx.doi.org/10.1242/jcs.014977

Singh, U., C.M. Van Itallie, L.L. Mitic, J.M. Anderson, and B.A. McClane. 
2000. CaCo-2 cells treated with Clostridium perfringens enterotoxin form 
multiple large complex species, one of which contains the tight junction 
protein occludin. J. Biol. Chem. 275:18407–18417. http://dx.doi.org/10 
.1074/jbc.M001530200

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/195/3/349/1354043/jcb_201106011.pdf by Bibliotheque U

niversitaire user on 01 June 2021

http://dx.doi.org/10.1083/jcb.147.1.195
http://dx.doi.org/10.1016/j.ceb.2005.08.013
http://dx.doi.org/10.1016/j.ceb.2005.08.013
http://dx.doi.org/10.1038/ncb1308
http://dx.doi.org/10.1038/ncb1308
http://dx.doi.org/10.1111/j.1462-5822.2007.00984.x
http://dx.doi.org/10.1038/ncb1682
http://dx.doi.org/10.1016/j.tcb.2009.12.002
http://dx.doi.org/10.1016/j.tcb.2009.12.002
http://dx.doi.org/10.1016/j.tim.2007.10.001
http://dx.doi.org/10.1016/j.tim.2007.10.001
http://dx.doi.org/10.1128/JVI.75.3.1540-1546.2001
http://dx.doi.org/10.1128/JVI.75.3.1540-1546.2001
http://dx.doi.org/10.1242/jcs.00167
http://dx.doi.org/10.1083/jcb.102.1.55
http://dx.doi.org/10.1038/ncb1021
http://dx.doi.org/10.1016/j.chom.2007.10.001
http://dx.doi.org/10.1016/j.chom.2007.10.001
http://dx.doi.org/10.1128/IAI.72.6.3218-3227.2004
http://dx.doi.org/10.1128/IAI.72.6.3218-3227.2004
http://dx.doi.org/10.1128/CMR.18.2.247-263.2005
http://dx.doi.org/10.1128/CMR.18.2.247-263.2005
http://dx.doi.org/10.1016/S0092-8674(02)00912-1
http://dx.doi.org/10.1016/S0092-8674(02)00912-1
http://dx.doi.org/10.1084/jem.183.3.991
http://dx.doi.org/10.1084/jem.183.3.991
http://dx.doi.org/10.1073/pnas.95.25.14979
http://dx.doi.org/10.1053/gast.2003.50047
http://dx.doi.org/10.1046/j.1462-5822.2000.00025.x
http://dx.doi.org/10.1074/jbc.M709824200
http://dx.doi.org/10.1084/jem.20110560
http://dx.doi.org/10.1128/IAI.69.3.1329-1336.2001
http://dx.doi.org/10.1128/IAI.69.3.1329-1336.2001
http://dx.doi.org/10.1128/JVI.74.10.4645-4651.2000
http://dx.doi.org/10.1128/JVI.74.10.4645-4651.2000
http://dx.doi.org/10.1016/j.sbi.2003.10.007
http://dx.doi.org/10.1371/journal.ppat.1000900
http://dx.doi.org/10.1371/journal.ppat.1000900
http://dx.doi.org/10.1016/S0092-8674(03)00108-9
http://dx.doi.org/10.1016/S0092-8674(03)00108-9
http://dx.doi.org/10.1371/journal.pbio.0050064
http://dx.doi.org/10.1016/j.cell.2006.02.012
http://dx.doi.org/10.1038/nature07684
http://dx.doi.org/10.1038/nature07684
http://dx.doi.org/10.1038/ncb1964
http://dx.doi.org/10.1038/ncb1009-1174
http://dx.doi.org/10.1038/ncb1009-1174
http://dx.doi.org/10.1126/science.1093133
http://dx.doi.org/10.1038/nature05765
http://dx.doi.org/10.1046/j.1462-5822.2002.00197.x
http://dx.doi.org/10.1046/j.1462-5822.2002.00197.x
http://dx.doi.org/10.1006/smim.1999.0175
http://dx.doi.org/10.1074/jbc.C100754200
http://dx.doi.org/10.1093/emboj/cdg050
http://dx.doi.org/10.1038/ncb1544
http://dx.doi.org/10.1038/ncb1544
http://dx.doi.org/10.1242/jcs.014977
http://dx.doi.org/10.1074/jbc.M001530200
http://dx.doi.org/10.1074/jbc.M001530200

