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Abstract

Although the main role of P-glycoprotein (Pgp) is to extrude a broad range of xenochemicals and to protect the organism
against xenotoxicity, it also transports a large range of endogenous lipids. Using mice lacking Pgp, we have investigated the
possible involvement of Pgp in lipid homeostasis in vivo. In a long term study, we have followed the food intake, body
status and lipid markers in plasma and liver of wild-type and mdr1ab-/- mice over 35 weeks. Pgp-deficient mice showed
excess weight, hypertrophy of adipose mass, high insulin and glucose levels in plasma. Some of these metabolic disruptions
appeared earlier in Pgp-deficient mice fed high-fat diet. Moreover, hepatosteatosis with increased expression of genes
involved in liver detoxification and in de novo lipid synthesis occurred in Pgp-deficient mice. Overall, Pgp deficiency clearly
induced obesity in FVB genetic background, which is known to be resistant to diet-induced obesity. These data reinforce
the finding that Pgp gene could be a contributing factor and possibly a relevant marker for lipid disorder and obesity.
Subsequent to Pgp deficiency, changes in body availabilities of lipids or any Pgp substrates may affect metabolic pathways
that favour the occurrence of obesity. This is of special concern because people are often facing simultaneous exposition to
many xenochemicals, which inhibits Pgp, and an excess in lipid dietary intake that may contribute to the high prevalence of
obesity in our occidental societies.
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Introduction

The P-glycoprotein (Pgp, ABCB1) is a membrane efflux

transporter that belongs to the ATP-binding cassette family,

which in humans is the product of the ABCB1 gene. P-glycoprotein

was first identified as a factor involved in multidrug resistance in

mammalian tumor cells [1] and was subsequently found to be

physiologically expressed at the apical surface of epithelial cells [2].

The main role of Pgp is to actively pump xenobiotics out of cells

and out of the organism. Its widespread tissue distribution and

large substrate specificity confer to this protein a strategic role in

the protection of the tissues and of the whole body against

xenobiotic toxicity [3]. For example, Pgp is located in the intestine

and provides a solid protection by extruding many food

contaminants or naturally occurring dietary substrates back into

the lumen. Similarly, Pgp on the blood-brain-barrier effluxes

compounds out of the brain thereby limiting their neurotoxicity.

By extension, it also limits the intestinal absorption and brain

penetration of drugs which are Pgp substrates, thus limiting their

efficiency. Using Pgp-deficient mice, the pivotal role of Pgp in the

pharmaco- and toxicokinetics of many substrate drugs such as

digoxin, dexamethasone, cyclosporine or ivermectin has been

demonstrated [4-7].

Besides its clear role in the transport of pharmaceuticals and

contaminants, Pgp is also involved in the movement of

endogenous molecules such as cholesterol, phospholipids and

sphingolipids [8] and a variety of steroids [9]. Pgp participates in

the cellular uptake of exogenous cholesterol in recombinant cells

overexpressing Pgp [10]. Pgp is predominantly localised in lipid

rafts which are cholesterol-rich membrane microdomains and it is

involved in cholesterol transbilayer transfer through membranes.

In addition, cholesterol content of membranes affects Pgp

transport activity by modulating the ATPase activity [11-13]. In

vivo, after cholesterol oral loading in Pgp-deficient mice there was

no change in cholesterol intestinal absorption but an increase of

cholesterol ester concentration in the liver [14]. However, until

now, no clear phenotype has been reported for Pgp-deficient

mice in the absence of drug challenge [5] ruling out any

substantial contribution of Pgp in lipid turnover in vivo. But it is

noteworthy that the FVB genetic background of the available

Pgp-deficient mice is known to be resistant to diet-induced lipid

disorders which certainly make elusive any change in lipid

homeostasis [15].

Indeed, studies in human populations are in favour of a link

between cholesterol levels and ABCB1 gene polymorphisms [16-

18]. Most interestingly, a study performed in a Japanese cohort

revealed that a single nucleotide polymorphism on ABCB1 gene

was associated with obesity [19]. In addition to all these data and

in favour of some involvement of Pgp in lipid homeostasis, during

the course of studies performed in our laboratory, we observed an
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intriguing accumulation of abdominal fat in the Pgp-deficient

animals.

Given the possibility that Pgp is involved in lipid trafficking and

because accumulation of abdominal fat can foreshadow a

propensity to obesity, the aim of our work was to study the

impact of Pgp deficiency on lipid homeostasis in the whole

organism. Therefore, we have performed a long term study and

followed body weight change and lipid parameters in Pgp-deficient

(mdr1ab-/-) and wild-type mice. We have then measured the

expression of pivotal genes involved in lipid metabolism (acox, cd36,

fasn, scd-1) and xenobiotic detoxification (cyp2b10 and cyp3a11)

which can be regulated either by lipids or by xenobiotics,

respectively. For the first time, we have demonstrated that the

lack of Pgp is associated with overweight and liver steatosis in mice

arguing in favour of a role for Pgp in maintaining lipid homeostasis

and preventing obesity.

Materials and Methods

Ethics Statement
In vivo studies were conducted in mice under European laws on

the protection of animals (86/609/EEC). Protocols are performed

under procedure and principal for good clinical practice (CVMP/

VICH 59598). The protocols for experimentation on rodents used

in this manuscript have been approved by the local institutional

animal care and ethics committee which is the ‘‘Direction

Départementale des Services Vétérinaires de Haute-Garonne’’.

The specific approval number for this study approval is B31555-

25.

Animal housing
Wild-type and the Pgp knock-out mdr1ab-/- mice with a FVB

genetic background were obtained from Taconic (NY, USA). In

rodents, there are two Pgps encoded by abc1a and abc1b genes and

mdr1ab-/- mice were deficient for the two gene products [5,6].

Mice were housed at INRA’s transgenic rodent facility at 2262uC
under 12-hour light/dark cycles. Animals sampling was designed

to reduce the influence of interfering parameters such as litter

specificity (seven to nine different litters for a ten animals group).

Mice received a standard chow diet recommended for the

breeding and rearing of rodents (Harlan Teklad TRM Rat/

Mouse Diet; Harlan Teklad, Gannat, France). Water and food

were available ad libitum.

Experimental design
Mice of both genotypes (10–12 males and 10 females per group)

were weighted and the food intake was measured weekly from

weaning to 35 weeks of age. At 25 weeks, food was withdrawn 2 hr

prior to euthanasia and 5 animals of each group were anesthetized

by intraperitoneal administration of xylazine and ketamine

cocktail (53 and 10 mg/kg bw, respectively). Blood was collected

from the orbital sinus vein. Several white adipose pads

(subcutaneous inguinal, perigonadal, perirenal, mesenteric) and

liver were then excised and weighted. At 35 weeks, the rest of the

animals (n = 5-6 per groups) were processed as described above for

blood and tissue sampling. Plasma and liver were frozen in liquid

nitrogen and stored at 280uC until analysis.

High-fat diet study
Mice were assigned to normal diet (wild-type n = 6 and

mdr1ab-/- n = 6) and high-fat diet HFD (wild-type n = 6 and

mdr1ab-/- n = 6) (DIO Research diet, Jackson Laboratory,

Brogaarden, Denmark) for 12 and 25 weeks. Energy contents of

the specific diets were (% kcals): 20% protein, 70% carbohydrate,

and 10% fat for normal diet; 20% protein, 35% carbohydrate, and

45% fat for HFD. Animals were weighted and food intake was

measured all along the experiment. Three animals of each group

were sacrificed at 15 and at 25 weeks. Blood was withdrawn and

plasma and liver were collected and frozen for further analysis.

Plasma analysis
Plasma insulin was quantified by using a kit ELISA for mouse

insulin (EUROBIO, France). Plasma glucose was determined by

the glucose oxidase method. The following parameters: alkaline

phosphatase (ALP), alanine transaminase (ALT), aspartate trans-

aminase (AST), lactate dehydrogenase (LDH), lipase, HDL

cholesterol (HDLc) LDL cholesterol (LDLc), triglycerides and free

fatty acids, were measured using a COBAS-MIRA+ analyser

(Service Phénotypage, IFR150/BMT, France).

Lipid analysis in the liver
Lipids were extracted from the liver according to Bligh and

Dyer [20]. Briefly, liver tissue was homogenized in 2 ml of water

and 5 ml of chloroform-methanol (1:1, v/v). Samples were

vortexed and centrifuged at 1500 rpm for 2 minutes at 4uC.

The lower organic phase was removed, dried under nitrogen gas,

taken up in 160 ml ethyl acetate and dried again under nitrogen

gas. The dried lipid samples were dissolved again in 20 ml ethyl

acetate. Triglycerides, total cholesterol and cholesterol esters were

analyzed and quantified by gas chromatography [21] (Plateau de

Lipidomique, IFR150/BMT, Toulouse).

Oil red O staining and histological analysis
A part of the liver was embedding in OCT in Tissue-Teck

(Miles, inc., Kankakee, IL), then the entire block was frozen in

isopentane prior to storage at 280uC. The histological analyses

were performed on serial sections (6 mm thick), fixed in 10%

buffered formalin, stained with oil red O and counterstained with

hematoxylin (original magnification X200, Plateau d’Histopatho-

logie Expérimentale, IFR150/BMT, Toulouse).

Liver mRNA abundance
For RNA extraction, a part of the large lobe of the liver was

collected and immediately frozen in liquid nitrogen before storage at

280uC. Total RNA was extracted with TRIzol reagent (Invitrogen,

France) from liver tissues. For real-time quantitative PCR (Q-PCR),

total RNA samples (2 mg) were reverse-transcribed with SuperScript

II (Invitrogen). All assays were performed on an ABI Prism 7000

(Applied Biosystems, Courtaboeuf, France) using standard PCR

conditions. Primers and Taqman probes for TATA-box binding

protein tbp (NM_013684), acox (NM_015729), cd36 (NM_007643),

fasn (NM_007988), scd-1 (NM_009127), pltp (NM_011125), cyp7a1

(NM_007825), cyp2b10 (NM_009999), cyp3a11 (NM_007818) were

purchased from Applied Biosystems Assays-on-Demand. Primers

for SYBR Green assays were as follows: tbp-F, 59-ACTTCGTG-

CAAGAAATGCTGAA-39; tbp-R, 59-GCAGTTGTCC-GTGGC-

TCTCT-39; acox-F, 59-CAGACCCTGAAGAAATCATGTGG-

39; acox-R, 59-CAGGAACATGCCCAA-GTGAAG-39; cd36-F,

59- GTTAAACAAAGAGGTCCTTACACATACAG-39; cd36-R,

59- CAGTGAAGGCTCAAAGATGGC-39; fasn-F, 59-AGTCAG-

CTATGAAGCAATTGTGGA-39; fasn-R, 59-CACCCAGACGC-

CAGTGTTC-39; scd-1-F, 59-.CCGGAGACCCCTTAGATCGA-

39; scd-1-R, 59- TAGCCTGTAAAAGATTTCTGCAAACC-39;

pltp-F, 59- GGATTAAAGTGTCCAATGTCTCCTG-39; pltp-R,

59- GTGGAGAAAAAGTTATACATCCTCCTG-39; cyp7a1-F,

59- ACATGGTGACACTTTCACTGTCTTC-39; cyp7a1-R, 59-

GAACTTCTGAAAGCTTAATTGTTTTGG-39; cyp2b10-F, 59-
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TTTCTGCCCTTCTCAACAGGAA-39; cyp2b10-R, 59-ATG-

GACGTGAAGAAAAGGAAC-AAC-39; cyp3a11-F, 59-.TCACA-

CACACAGTTGTAGGCAG-AA-39; cyp3a11-R, 59-GTTTAC-

GAGTCCCATATCGGTAGAG-39. A pool of all complemen-

tary DNA samples was used to generate calibration curves. All Q-

PCR data were normalized by TATA-box binding protein mRNA

levels.

Statistical analyses
The experimental values are expressed as mean 6 standard

error of the mean (s.e.m). Statistical analyses were performed using

a three-way factorial ANOVA model. A three-way factorial

ANOVA model with repeated measures was used in the case

where more than one observation came from the same animal.

Multiple comparisons of means were performed with Tukey test.

Statistical significance was accepted as p,0.05.

Results

Body weight and food intake in wild-type versus Pgp-
deficient mice

Mice were fed with a standard chow diet throughout the study

and weekly recording of body weight (bw) was performed over 35

weeks. No phenotypic abnormality was observed in young Pgp-

deficient mice for up to 7 weeks of age for female, and 15 weeks of

age for male mice, and they were morphologically undistinguish-

able from age-matched wild-type mice (Fig. 1A and 1B). After

these respective ages, growth curves showed a significant increase

in body weight for females (p,0.05) and males (p,0.001)

mdr1ab-/- in comparison with wild-type mice. The weight

difference appeared earlier in females, as early as 8 weeks of

age, than in males (18 weeks) but the difference between wild-type

and Pgp-deficient mice was greater in males. Daily food intake was

monitored throughout the experiment and no difference in calorie

intake was observed in mdr1ab-/- males or females, compared with

wild-type (Fig. 1C and 1D). Given that in our experiment the

weight differences were more pronounced in male mice when

compared with females, the subsequent analyses were performed

in males.

Influence of Pgp deficiency on tissue weight in mice
To get insights into the origin of the overweight phenotype in

Pgp-deficient male mice, liver and white adipose tissue from four

anatomical sites (subcutaneous inguinal, periepididymal, perirenal

and mesenteric) were weighed and their relative contribution to

the body weight were calculated in 25- and 35-week old mice

(Table 1). Liver weight was increased in Pgp deficiency to a similar

extent as whole body weight (Fig. 2A and 2B). In the meantime,

the total mass of white adipose tissues was strongly increased at the

two periods in Pgp-deficient mice (Table 1). At 25 weeks of age,

Figure 1. Time kinetic of body weight and food intake in wild-type versus mdr1ab-/- mice. The weights were recorded weekly from
weaning to 35-weeks of age for male (Fig. 1A) or female (Fig. 1B) wild-type (open symbols) and mdr1ab-/- (close symbols) mice fed a standard chow
diet. Results are means 6 s.e.m of 5 to 10 animals. Differences are considered significant when *, p,0.05; **, p,0.01; ***, p,0.001. Daily food intakes
of males (Fig. 1C) and females (Fig. 1D) were calculated weekly by monitoring the total food consumption for wild-type (open symbols) and mdr1ab-/-

(close symbols) mice, measured as mean food consumption for two to three mice caged together. Results are expressed per gram of body weight
and are the means of 3 values per subgroup.
doi:10.1371/journal.pone.0023614.g001
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the contribution of the subcutaneous inguinal, perirenal, mesen-

teric and periepidydimal fat pads to the bw of mdr1ab-/- male

mice increased by 2.6-, 2.3-, 2.7- and 1.2-fold, respectively, in Pgp-

deficient mice compared with wild-type. At 35 weeks of age, the

mass of all the white fat pads were increased in Pgp deficiency but

the differences in their relative contribution to the body weight

Table 1. Liver and adipose tissue contributions to the body weight in wild-type versus mdr1ab-/- mice.

25 weeks 35 weeks

Wild-type (n = 6) Mdr1ab-/- (n = 5) F Wild-type (n = 6) Mdr1ab-/- (n = 5) F

Weight (g) 31.960.6 43.961.0a 1.38 36.261.3 44.162.0b 1.22

Liver (% of bw) 4.9460.28 4.8760.21 0.98 4.6360.16 4.8860.21 1.05

White adipose tissue (% of bw)

subcutaneous inguinal 1.0560.41 2.7260.13b 2.58 1.3560.20 4.0560.50a 2.99

perigonadal 1.8660.31 2.1860.22 1.17 2.3760.27 3.5560.17b 1.50

perirenal 0.4260.09 0.9860.02b 2.32 0.9160.18 1.2960.10 1.42

mesenteric 0.7560.06 2.0260.22a 2.69 1.8860.19 2.2660.15 1.21

Total 4.0960.65 7.9160.53b 1.94 6.5160.69 11.1560.46a 1.71

Mice were sacrificed at 25 and 35 weeks of age and discrete fat pads from five anatomical sites were dissected and weighed. WAT refers to white adipose tissue. Total
WAT weight represents the sum of the data reported for the four WAT sites considered in the study. Body weight is expressed in gram and tissue weights are expressed
as percentage of body weight. F is the ratio of mdr1ab-/- versus wild-type. Results are means 6 s.e.m. Statistical relevance of data is assessed by p values.
ap,0.05;
bp,0.01.
doi:10.1371/journal.pone.0023614.t001

Figure 2. Morphological comparison and liver lipid content in wild type and mdr1ab-/- males. 2A. Whole body. 2B. Respective livers at 35
weeks of age. 2C. Oil red O staining of liver sections. Livers were collected from 25- or 35-week old mice and kept frozen in OCT at 280uC until
analysis. 2D. Lipid content of liver. Total cholesterol (upper histogram) and triglycerides (lower histogram) in liquid-frozen liver samples from 25- and
35- week old mice, were quantified by liquid chromatography in wild-type (open bars) and mdr1ab-/- (solid bars) males. Results are expressed as
means 6 s.e.m of 5 to 7 mice. Differences are considered significant when p,0.05. ***, p,0.001.
doi:10.1371/journal.pone.0023614.g002
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between wild-type and Pgp-deficient mice were less pronounced

than earlier, certainly related to the increase in mass of adipose

tissues which was observed with age.

Analysis of enzymes, lipids and glucose in plasma
Biological parameters were measured in mice plasma and were

reported in Table 2. At 25 weeks, none of the plasma parameters

explored were different between Pgp-deficient compared with

wild-type mice, apart from insulin levels, which were strongly

increased (0.5860.39 and 6.6262.11 ng/mL, p,0.05). At 35

weeks, the alkaline phosphatase (ALP) and alanine transaminase

(ALT) activities were increased in Pgp-deficient mice (p,0.01 and

ns, respectively, compared with wild-type). In the mean time,

aspartate transaminase (AST) activity was significantly decreased

(1.5 fold, p,0.05) and lipase and lactate dehydrogenase (LDH)

activities were unchanged. Total cholesterol concentration in

plasma was slightly but significantly higher in mdr1ab-/- mice

compared with wild-type (4.0360.13 versus 3.4660.17 mmol/L,

p,0.05). At the same time, HDL cholesterol was significantly

enhanced in mdr1ab-/- mice whereas no change was observed for

plasma LDL cholesterol level. The triglycerides tended to be

decreased in the plasma of Pgp-deficient mice while the free fatty

acid levels were unchanged. Overall, in mdr1ab-/- mice, plasma

glucose and insulin concentrations were increased compared with

wild-type (1.5- and 23-fold, respectively, p,0.05).

Liver morphology and composition
Major hepatic abnormalities were observed at necropsy of the

Pgp-deficient liver at 35 weeks, with a pale steatotic colour of the

liver and a regular pattern of pale dots displayed on all lobe surfaces

(Fig. 2B). These abnormalities, which are strongly evocative of

hepatic steatosis, were also observed in some of the 25-week old

Pgp-deficient livers (1 over 3). Histological analyses of neutral lipid

in oil red O stained sections of frozen livers, revealed at 25 and 35

weeks clear accumulation of intracellular fat droplets restricted to

the centrilobular area of mdr1ab-/- livers (Fig. 2C). At 25-weeks,

most of the fat droplets appear bigger when compare to liver at 35

weeks where fat droplets were smaller. Normal hepatocytes were

restricted to periportal zones while wide centrilobular areas

suggested fat storage. At 25 weeks, hepatic triglyceride concentra-

tions were 10-fold greater in mdr1ab-/- livers than in wild-type and

this difference was maintained at 35 weeks (Fig. 2D, 20.263.7 and

4.360.6 nmol/mg, respectively, p,0.001). In addition, in Pgp

deficient mice at both ages, the total cholesterol content in the liver

was unchanged (Fig 2D, ns) while cholesterol ester concentration

tended to be higher (2-fold, ns, not shown). In addition, the total bile

acids and cholesterol concentrations were significantly higher in

Pgp-deficient mice compared with wild-type (Fig. 3).

Influence of high fat diet on Pgp-deficient mice
In order to test the impact of a high fat diet, a new study was

conducted with mdr1ab-/- and wild-type mice fed a high fat-diet

(HFD) from weaning to 25 weeks. No difference in body weight

between the two different groups fed HFD was observed during

the experiment suggesting that the overweight observed in Pgp-

deficient mice fed normal chow diet was maximal. By contrast,

wild-type mice fed HFD gained weight compared to those fed

normal chow diet. At 25 weeks, plasma glucose concentrations

were increased in both groups fed HFD when compared to mice

fed normal diet and the increase was greater in the Pgp-deficient

mice (2.1-fold, p,0.01) than in wild-type mice (1.5-fold, p,0.05).

In the mean time, the triglycerides level in plasma were unchanged

by HFD in wild-type mice and were increased in Pgp-deficient

mice fed HFD (Table 3, p,0.05). In Pgp-deficient mice fed HFD,

the liver showed apparent abnormalities as soon as 15 weeks and

at 25 weeks of age. In age-matched animals fed a normal diet, no

liver abnormality was observed in wild-type mice at 25 weeks

while some of Pgp-deficient animals displayed apparent liver

abnormality. Lipids measurements performed in the liver showed

that at 15-week old, Pgp-deficient mice fed HFD tend to have

higher liver triglyceride concentration compared with wild-type

mice (30.166.1 and 18.266.1 nmol/mg, respectively, ns). At 25

Table 2. Biomarker analysis in plasma of wild-type and mdr1ab-/- mice.

25 weeks 35 weeks

Wild-type Mdr1ab-/- F Wild-type Mdr1ab-/- F

ALP (U/L) 18.3610.3 16.065.0 0.87 4.061.5 14.061.2 b 3.50

ALT (U/L) 30.767.4 101.3633.1 3.30 76.6623.6 134.8632.1 1.76

AST (U/L) 107.7627.2 199.0639.6 1.85 530.8670.7 277.6642.7 a 0.52

LDH (U/L) 9846268 20746558 2.11 47646596 38696641 0.81

Lipase (U/L) 21.061.2 26.362.4 1.25 29.062.0 37.6610.2 1.30

Cholesterol (mmol/L) 3.2660.11 3.2360.01 0.99 3.4660.17 4.0360.13 a 1.16

HDLc (mmol/L) 3.0560.09 2.7360.14 0.89 3.1160.18 3.6760.13 a 1.18

LDLc (mmol/L) 0.1060.01 0.1060.01 1.00 0.1660.02 0.1660.02 1.00

Triglycerides (mmol/L) 0.8660.07 0.9260.04 1.07 2.1360.30 1.4660.30 0.69

Free Fatty Acid (mmol/L) 2.8860.12 3.0060.15 1.04 1.1060.05 1.1260.06 1.02

Glucose (mmol/L) 18.361.7 16.161.3 0.88 13.461.1 20.963.0 a 1.56

Insulin (ng/mL) 0.5860.39 6.6262.11a 11.4 0.1760.02 4.7361.82 a 27.8

Individual plasma samples collected at 25 and 35 weeks were analyzed. Results are expressed as means 6 S.E.M. of 5 analysis for wild-type and mdr1ab-/- mice, except
for ALP analysis where only 3 samples of each group were analysed. F is the ratio of mdr1ab-/- versus wild-type.
ap,0.05;
bp,0.01.
ALP: Alkaline phosphatase; ALT: Alanine transaminase; AST: Aspartate transaminase; LDH: Lactate dehydrogenase; HDLc: High density lipoprotein cholesterol; LDLc: Low
density lipoprotein cholesterol.
doi:10.1371/journal.pone.0023614.t002
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weeks of age, triglyceride concentration in the liver was higher in

both strain fed HFD compared with 15-week old mice, but the

increase was more pronounced in the Pgp-deficient mice than in

wild-type (70.6618.8 and 31.563.7 nmol/mg tissue, respectively,

p,0.01, Fig. 4). In the mean time, a 2-fold increase in cholesterol

ester concentration was measured in the liver of Pgp-deficient mice

compared with wild-type (4.4260.4 and 8.7561.04 ng/mg

respectively, p,0.05, not shown).

Analysis of xenobiotics and lipids target genes
To gain insight into the molecular mechanisms underlying the

effects of Pgp deficiency on hepatic lipid composition, we have

examined the liver expression of several representative genes

involved in lipid homeostasis that are controlled by nuclear

receptors activated by endogenous cholesterol and derivatives

(liver X receptor, LXR) or by fatty acids (peroxisome proliferator-

activated receptors, PPARa and PPARc). We focused on genes

coding for representative enzymes or transporters involved in fatty

acid synthesis (stearoyl-coenzyme A desaturase, SCD-1, and fatty

acid synthase, FASn), lipid uptake (cluster of Differentiation 36,

CD36) and peroxisomal b-oxidation (fatty acyl-CoA oxidase,

ACOX) at 12 and 25 weeks, ages corresponding for Pgp-deficient

mice to normal weight and early overweight phenotype,

respectively. At 12-week of age, only the expression level of scd-1

was significantly increased in mdr1ab-/- mice when compared with

wild-type mice (2.5-fold, p,0.01, Fig. 5A) while at 25 weeks of age,

simultaneous and significant increases of fasn, scd-1 and cd36

mRNA abundance occur in mdr1ab-/- mice. At both ages, the

expression of acox was unchanged by Pgp deficiency (Fig. 5B). In

addition, in Pgp-deficient mice at 35 weeks the expression of two

genes cyp7a1 and pltp encoding cholesterol 7 alpha-hydroxylase

(CYP7A), involved in bile acid formation and phospholipid

transfer protein (PLTP), involved in cholesterol elimination were

increased by 2.5-fold in the same way as scd-1.Given that Pgp is

involved in xenobiotic transport, we also explored the expression

of the cytochrome genes cyp2b10 and cyp3a11 which are modulated

by xenosensors such as the constitutive active/androstane receptor

(CAR, NR1I3), and the pregnane X receptor (PXR, SXR,

NR1I2). At 12 weeks, both genes expressions were significantly

increased with a massive increase of cyp2b10 (6-fold, p,0.001,

Fig. 5A). At 25 weeks both genes were 3-fold induced in Pgp-

deficient mice when compared with wild-type mice (Fig. 5B).

Discussion

The toxicological and pharmacological impacts of Pgp have

been well established for many xenobiotic [4–7]. On the basis of its

ability to transport a large range of lipids [8,9], a role in lipid

homeostasis has been evocated for Pgp but has never been clearly

established in vivo.

Our study showed for the first time that the Pgp-deficient mice

fed a standard chow diet developed an overweight phenotype

which occurred earlier and was more pronounced in males than in

females. Besides becoming overweight, a substantial increase of

white abdominal, subcutaneous and visceral adipose tissue mass

was observed with severe hyperinsulinemia which evolved to

hyperglycemia.

Hypertrophy of visceral fat pads is considered as a predictive

factor for lipid metabolic disorders linked to obesity and our data

Figure 3. Lipid content in bile of wild-type and mdr1ab-/- mice.
Cholesterol and bile acids were quantified in bile in wild-type (open
bars) and mdr1ab-/- (solid bars) 35-week old male mice. Results are
expressed as means 6 s.e.m of 5 mice. Differences are considered
significant when *, p,0.05; **, p,0.01; ***, p,0.001.
doi:10.1371/journal.pone.0023614.g003

Figure 4. Influence of high fat diet (HFD) on hepatic
triglyceride concentrations in wild-type and mdr1ab-/- mice.
Mice were fed with HFD during 25 weeks. Triglycerides have been
quantified in liver samples from 15- or 25-week old wild-type (open
bars) and mdr1ab-/- (solid bars) mice. Results are expressed as nmol per
mg of liver and are means 6 s.e.m of 3 values at 15-week old and 5 at
25-week old. Differences are considered significant when *, p,0.05;
**, p,0.01.
doi:10.1371/journal.pone.0023614.g004

Table 3. Influence of high fat diet on plasma glucose and
triglyceride concentrations in wild-type and mdr1ab-/- mice at
25 weeks of age.

Wild-type Mdr1ab-/-

Glucose (mmol/L) Standard diet 18.361.7 16.161.3

HFD 26.961.7 * 34.361.3 a **

Triglyceride (mmol/L) Standard diet 0.8060.07 0.9260.04

HFD 0.7060.03 0.9960.05 a

Mice were fed from weaning to 25 weeks of age whether with a standard chow
diet or a high fat diet (HFD). Glucose and triglycerides were analysed in plasma
samples from wild-type and mdr1ab-/- mice. Results are expressed as means 6

s.e.m. of 3 to 5 animals.
ap,0.05 when compared with wild-type.
*p,0.05;
**p,0.05, when compared with standard diet.
doi:10.1371/journal.pone.0023614.t003
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obtained in Pgp-deficient mice are consistent with the increased

propensity of people who are overweight to develop insulin

resistance via the oversupply of fatty acids to tissues. In addition,

liver steatosis appeared clearly in overweight 25-week old Pgp-

deficient mice as evidenced by the massive hepatic triglyceride

accumulation, the increases in cholesterol and biliary acid in bile,

and of ALP and ALT activities in plasma.

When Pgp-deficient mice were fed HFD, deregulation of

metabolism occurred early. Plasma glucose and plasma and

hepatic triglycerides were increased at 15 weeks when compared

with matched wild-type mice fed HFD, revealing that Pgp

deficiency leads to a sensitisation to high-fat diet.

Obesity is multifactorial and overeating is one of the obvious

causes. Indeed, hyperphagia has been observed in several

monogenic disruption obese mouse models (ob [22], db [23], or

agouti [24]). Because the lack of Pgp did not notably influence

feeding behaviour, we exclude overfeeding as the cause of the

obesity in our model.

Obesity occurs in many situations where genes involved in lipid

homeostasis are disrupted. The liver steatosis observed here evokes

up regulation of de novo lipid synthesis in the liver. Indeed, Fasn and

scd-1 expressions were increased in the livers of Pgp-deficient mice

and by their pivotal role in de novo fatty acids synthesis they could

be major contributors of hepatosteatosis. Overexpression of scd-1

was observed in 12-week old Pgp null mice and appeared as an

early event in the onset of lipid disorder. In accordance with our

results, mice lacking SCD-1 are lean with significantly reduced

triglyceride storage in the liver [25] and obesity is related to an

increased expression of scd-1 [15,26]. Similarly, the overexpression

of the well-known ubiquitous scavenger receptor CD36 in the

livers of obese Pgp-deficient mice, may contribute to the onset of

obesity by favouring lipid accumulation in tissues [27,28]. At the

same time, the Acox gene coding for a rate-limiting enzyme in b-

oxidation of fatty acids, was not modified. This suggests that fat

catabolism remains stable in our model.

These data are all the more interesting in that obesity occurred,

as a consequence of Pgp deficiency, in a FVB genetic background

which is known to be resistant to diet-induced obesity. Indeed,

body weight and energy expenditure [15] or hallmark obesity

genes, such as scd-1 [29], were unchanged in normal FVB mice

fed high-fat diet, which is in contrast to C57BL/6 in which HFD

rapidly induces an overweight condition and massive overexpres-

sion of scd-1 [15]. In the same vein, obese transgenic C56BL/6ob/

ob mice had massive increased expression of scd-1 while only a

moderate increase was observed in FVBob/ob [26].

It is obvious that the gene expression profile described above led

to unbalanced lipid homeostasis, contributed to hepatosteatosis

and to the obesity phenotype in the Pgp-deficient mice. Given that

cd36, scd-1 and Fasn are overexpressed in our model and that their

expressions are regulated by the nuclear receptors PPARc for cd36

[30] and LXR for scd-1 and Fasn [31], respectively, we suggest that

the turn-over of activators of these nuclear receptors, i.e., fatty

acid-derived ligands or cholesterol, might be affected in Pgp

deficiency.

The accumulation of triglycerides in the liver was concomitant

with the strong increase in concentrations of bile acids and

cholesterol measured in bile of 35-week old Pgp-deficient mice.

Together with the increase of cyp7a1 expression observed in Pgp-

deficient liver, our data are in accordance with the role of the

enzyme CYP7A1 in bile acid synthesis. In the same vein, given the

role of PLTP in HDL remodelling, the increased expression of pltp

was consistent with the increase of HDL in plasma of Pgp-deficient

mice and attests of abnormal clearance of cholesterol. Cyp7a1 and

pltp are direct targets of LXR [32,33] and our results demonstrate

that the cholesterol metabolic pathway is altered in Pgp deficiency.

In support with our data, another study performed in mdr1ab-/-

mice fed HFD showed the increased levels of LXR protein and

PLTP activity [34].

Nevertheless, the main role of Pgp is to extrude a broad range of

chemicals and mice lacking Pgp accumulate significantly higher

plasma and tissue concentrations of Pgp substrates such as

glucocorticoids and xenochemicals [7] and certainly food

components. We showed that in Pgp-deficient animals, the

expression of cyp2b10 and cyp3a11 were increased, consistent with

likely increases in the availability of ligands of the hepatic

xenosensors PXR and CAR [35,36]. The list of candidate stimuli

that are transported by Pgp and that can influence P-450s,

through CAR and PXR activation, is long and includes exogenous

Figure 5. Analysis of lipids and xenobiotics target genes
expression in the liver. Relative gene expressions of scd-1, fasn, cd36,
acox, cyp2B10 and cyp3A11 were quantified in liver samples from 12-
week old (Fig. 5A) and 25-week old (Fig. 5B) mice by real-time time PCR.
Similarly, scd-1, cyp7a1 and pltp expressions were quantified in 35-week
old mice (Fig. 5C); wild-type (open bars) and mdr1ab-/- (solid bars).
Values were normalized to TBP gene and expressed as arbitrary unit.
Values shown are means 6 s.e.m (n = 3). Differences are considered
significant when p,0.05. *, p,0.05; **, p,0.01; ***, p,0.001.
doi:10.1371/journal.pone.0023614.g005
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regulators of dietary origin, such as pesticides [37], flavonoids [38]

and phytooestrogens [39], whose presence depends on the housing

conditions. Indeed in previous works, P-450 genes were shown to

be differentially modulated in Pgp-deficient mice, depending on

the controlled animal housing conditions and the origin of the

standard chow [40].

The activation of CAR or PXR by xenobiotics may be

contributing to obesity in Pgp-deficient mice, especially since the

role of xenosensors has been expanded to the regulation of lipid

metabolism and energy expenditure. Indeed, CAR has been

shown to impact on serum triglyceride levels [41] and PXR

increases hepatic deposit of triglycerides [42]. In addition, they

both increase de novo hepatic lipogenesis by enhancing the

expression thyroid hormone-responsive 14 protein [43]. Whether

PXR and CAR activation, as a consequence of Pgp deficiency, is

a direct cause of obesity and steatosis by disrupting genes

involved in lipid homeostasis or whether gene induction by

xenobiotics and by lipids are two independent pathways, remains

to be determined.

Interestingly, in favour of a role for Pgp in lipid metabolism in

humans, single nucleotide polymorphisms on the Pgp coding

gene ABCB1 have been associated with lipid metabolism disorders

in several independent studies. In hypercholesterolemic patients,

the haplotype G2677T and C3435T on ABCB1 is associated with

higher levels of total and LDL cholesterolemia [18]. Similarly, in

hypercholesterolemic women the ABCB1 allele G2677T/A was

associated with higher levels of total and LDL cholesterol than

those with the more frequent allele G [17]. While in

STANISLAS cohort, G2677T/A polymorphism was associated

with a decrease in plasma total cholesterol but this was in healthy

subjects [16]. Moreover, among 95 polymorphisms of 67

candidate genes, explored in a Japanese cohort including 4252

individuals, only a Pgp gene polymorphism was clearly and

significantly associated with obesity. The body mass index was

greater for individuals with the Pgp gene variant 2677A/T allele

than for those with the GG genotype [19]. Although such an

allele is not associated with deficient Pgp function as we would

have expected in accordance with our results, this study

reinforces our finding of a strong link existing between Pgp and

lipid homeostasis.

In humans, there is no genotype described so far associated with

a full lack of Pgp function. Nevertheless, SNPs in the Pgp gene,

including synonymous SNPs, have been associated with low Pgp

function [44,45]. In addition, therapy is sometimes based on using

drugs which are strong inhibitors of Pgp. As an example, HIV

patients chronically treated with antiretroviral protease inhibitors

frequently elicit a metabolic syndrome including hyperlipidemia,

lipodystrophy, and insulin resistance [46]. Although several

mechanisms have been proposed to explain such drug-induced

deregulations and because protease inhibitors are strong Pgp

inhibitors, we cannot rule out that Pgp inhibition may contribute,

to some extent, to these disorders.

Thus, our results are relevant in the context of people having

low Pgp activity-associated polymorphisms and being exposed

simultaneously to drugs (often used in combination), food

contaminants and natural food components that can be Pgp

inhibitors [47]. With such combinations, substantial inhibition of

the transporter activity may occur and favour the onset of lipid

metabolism disorders. Interestingly, Pgp polymorphism associated

with a complete lack of Pgp function has previously been described

in several canine strains [48,49] but the link between obesity and

Pgp deficiency has never been investigated so far in dogs.

Our data indicate that Pgp-deficient mice develop excess

weight, metabolic disorders, hepatic steatosis that clearly char-

acterise obesity. The metabolic disruption appeared earlier and

was more severe in Pgp-deficient mice fed a high-fat diet. Overall,

Pgp deficiency reverses the resistance to obesity phenotype which

characterizes FVB mice. This is the first time that a clear obese

phenotype has been described in Pgp-deficient mice since they

have been generated [5]. Given the key role of Pgp in controlling

the entrance of a broad range of compounds into the body, we

thus propose that subsequent to Pgp inhibition, lipids or any active

compounds may be absorbed at a higher rate and modulate target

gene expression, affecting metabolic pathways that favour the

occurrence of an obesity syndrome. These data reinforce the

findings that some polymorphisms in the Pgp gene could be a

predisposing factor and may be a relevant marker for obesity.

Indeed, any decrease in Pgp function, due to simultaneous

occurrence of polymorphism and chemical inhibition, may favour

obesity. This can be even worse in occidental societies, where

people are facing a dramatic excess in lipid dietary intake, which if

combined with Pgp inhibition, may accelerate the onset of lipid

metabolic disorders. Deciphering the mechanisms by which Pgp

deficiency is involved in the development of obesity in mice may

help reveal novel physiological functions for Pgp and elucidate

factors associated with the onset of obesity.
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