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A biophysical model of kiwifruit (Actinidia deliciosa) berry development

The Fishman and Génard model including elasticity.

The [START_REF] Fishman | A biophysical model of fruit growth: simulation of seasonal and diurnal dynamics of mass[END_REF] fruit model describes water and dry matter dynamics during peach fruit growth in terms of the physical forces and processes involved. The fruit is described as a single compartment, which takes up water and sugar through composite membranes separating it from the xylem and phloem, and loses water and dry matter through the processes of transpiration and respiration. The fruit's state at any time is described by two state variables, the mass of water (w (g)) and the dry weight (s (g)). The model is driven at an hourly time step by four input variables. Two of these are properties of the external environment: humidity (H) and temperature (T ( o C)) of the air. The other two are properties of the vasculature: the water potential of the vasculature (ψ x (bar)) and the concentration of sugars in the phloem (C p (g g -1 )). It is assumed that the water potential of the phloem is the same as that of the xylem, as the separating membrane is highly permeable to water, so their hydrostatic pressures differ only due to differences in solute potentials.

In brief, the model of Fishman and Génard can be described as follows. The rates of change of fruit water (w) and dry matter (s) at any time (t) are given by
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where U x and U p are the amounts of water taken up per unit time from xylem and phloem respectively, U s is the dry matter uptake rate, and T f and R f are total transpiration and respiration rates respectively. Note that following [START_REF] Brussières | Potential dry matter and water import rates in the tomato fruit in relationship to fruit size[END_REF] we have assumed that a fraction r w =0.6 of respired dry matter is converted to water.

We denote the osmotic and hydrostatic pressures in the phloem by π p and P p (=π p +ψ x ) respectively, and in the xylem by π x and P x . Flows pass from the vasculature through a composite membrane into the fruit tissues. The equations used to describe the mass flow through the composite membrane are the same as those used by Fishman and
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where P f is fruit turgor, π f is the osmotic pressure in the fruit, and a superscript * indicates values in the fruit vasculature rather than the plant vasculature in the original were equal, as were the areas of the two membranes (A p and A x respectively). The membrane areas were assumed to be proportional to fruit surface area: A x = a x A f , and A p = a p A f . Uptake of sugars (and hence dry matter) from the phloem into the fruit (U s ) has three components:
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The second term is uptake due to the mass flow above, and the third term is diffusive flow given a total permeability of the membrane p s . * p C and C f are the concentrations (proportions by weight) of sucrose in the phloem vasculature and fruit respectively, and C s is the average of these two. It is assumed that a proportion Z of the dry matter s is in soluble form, i.e.
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Active uptake U a is described by Michaelis-Menten kinetics,
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where ν m is the maximum uptake rate (g h -1 ) and K M the Michaelis constant, the concentration at which the uptake rate is half its maximum. [START_REF] Fishman | A biophysical model of fruit growth: simulation of seasonal and diurnal dynamics of mass[END_REF] make ν m directly proportional to fruit dry weight s, and include the effect of non-competitive inhibition late in the season.

Transpiration is driven by the difference between the humidity of air spaces within the fruit (H f = 0.996 as in [START_REF] Fishman | A biophysical model of fruit growth: simulation of seasonal and diurnal dynamics of mass[END_REF] and the humidity of the air;
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where A f is the surface area of the fruit, ρ is the permeation coefficient of the fruit surface to water vapour (cm h -1 ), and  is dependent on temperature
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where R is the gas constant (83 cm 3 bar mol -1 K -1 ), M W is the molecular mass of water (18 g mol -1 ), and

T abs (=T+273.3) is absolute temperature (K). Respiration R f is given implicitly by   f s g m f R U q s T q R    ) ( (S11) 
where q g and q m (T) are the coefficients for growth and maintenance respiration respectively, the latter being a function of temperature,
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with q m,293 the value at 20 ºC, ( 293 K) and Q 10 the factor by which this changes for every 10 o C change in temperature.

We calculate the osmotic pressure () corresponding to any sucrose concentration C from
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where M s is the molecular mass of sucrose (342.3 g mol -1 ) and  o is the contribution of other solutes to the osmotic pressure. Following [START_REF] Fishman | A biophysical model of fruit growth: simulation of seasonal and diurnal dynamics of mass[END_REF] we use  p0 = 12.53 bar in the phloem, and  f0 = 6.5 bar in the fruit).

Turgor P f is calculated by equating two expressions for the rate of change of the volume of the fruit. Fruit volume (V) can be written simply as
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where D w (=1) and D s (=1.6) are the densities of water and carbohydrate respectively, so from the rate equations above
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The second expression used in Fishman and Génard (1998) was Lockhart's equation, but we follow [START_REF] Léchaudel | An analysis of elastic and plastic fruit growth of mango in response to various assimilate supplies[END_REF] and include elasticity, so this becomes
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where Y is the yield threshold,  is the cell wall extensibility, and  is the elastic modulus or elasticity (153 bar as given by [START_REF] Léchaudel | An analysis of elastic and plastic fruit growth of mango in response to various assimilate supplies[END_REF]. Equating the right hand side of equation S15 with the second term in equation S16 (Lockhart's equation), [START_REF] Fishman | A biophysical model of fruit growth: simulation of seasonal and diurnal dynamics of mass[END_REF] obtained an algebraic expression for P f , but here we obtain the differential equation given by [START_REF] Léchaudel | An analysis of elastic and plastic fruit growth of mango in response to various assimilate supplies[END_REF],
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This means that if elastic changes occur, then it is not possible to project the state of the fruit into the future without knowledge of its current turgor. With elasticity included, turgor P f becomes a third state variable of the fruit, whose rate of change can be calculated from equation S17.

Fishman

  and Génard (1998) paper. The value of the effective reflection coefficient σ p of the membrane separating the phloem from the fruit allows the one equation to describe both the xylem and phloem flows (i.e. equations S3 and S4 above). The osmotic pressure in the xylem vasculature * x is set to zero, and as the plasma membrane is largely impermeable to sugars, a reflection coefficient of 1 is assumed for the xylem. For simplicity,[START_REF] Fishman | A biophysical model of fruit growth: simulation of seasonal and diurnal dynamics of mass[END_REF] assumed that the conductivity per unit area of the phloem membrane (L p ) and that of the xylem (L x )